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 Underground mines are the source of 33% of US coal production and 60% of worldwide 

coal production.  Room-and-pillar mining with continuous miners has been the most common 

production system used in these mines since the 1960s.  The introduction of continuous miners 

mechanized the underground coal mining industry triggering a period of sustained growth in 

mine productivity; however, productivity peaked at the turn of the century and has been in 

decline for a decade.  Research on productivity in underground coal mines began at Southern 

Illinois University Carbondale in 2000 and led to development of a deterministic spreadsheet 

model for evaluating continuous miner production systems.  As with other production models, 

this model uses a heuristic approach to define the fundamental input parameter known as a cut 

sequence.  This dissertation presents a dynamic programming algorithm to supplant that trial-

and-error practice of determining and evaluating room-and-pillar mining sequences.  Dynamic 

programming has been used in mining to optimize multi-stage processes where production 

parameters are stage-specific; however, this is the inaugural attempt at considering parameters 
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that are specific to paths between stages.  The objective of the algorithm is to maximize 

continuous miner utilization for true production when coal is actually being loaded into haulage 

units.  This is accomplished with an optimal value function designed to minimize cut-cycle time.  

In addition to loading time, cut-cycle time also includes change-out and place change times.  The 

reasonableness of the methodology was validated by modeling an actual mining sequence and 

comparing results with time study and production report data collected from a cooperating mine 

over a two-week time period in which more than 300 cuts were mined.  The validation effort also 

inspired some fine-tuning adjustments to the algorithm.  In a case study application of the 

dynamic programming algorithm, a seven-day “optimal mining sequence” was identified for 

three crosscuts of advance on an eleven-entry super-section developing a main entry system for a 

new mine in southern Illinois.  Productivity improvements attributable to the optimal sequence 

were marginal but the case study application reconfirmed the reasonableness of the 

methodology. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background 

Importance of underground coal mines.  Since the early days of the Industrial 

Revolution two and one-half centuries ago, coal has been a leading source of world energy 

production.  In the United States (US), according to statistics compiled by the Energy 

Information Administration (EIA), coal was the leading source of energy production from the 

Civil War through World War II, a position that it regained following two oil crises in the 1970s, 

and held until 2010 when natural gas claimed the top spot (EIA, 2011a).  Even then, in that year 

coal accounted for one-fifth of total energy consumption in the US with the electric power sector 

responsible for 94% of coal consumption (Freme, 2010).  Coal’s staying power at the forefront 

of the nation’s energy mix for more than a century is the result of low-cost price stability, driven 

in part by a major shift in production from numerous underground mines in relatively thin coal 

seams east of the Mississippi River to a few surface mines in the massively thick coal seams of 

the Powder River Basin (PRB) in Wyoming. 

In the US, despite PRB coal’s economies-of-scale and other negative influences, such as 

political efforts to regulate carbon emissions and detrimental impacts of mine disasters, 

underground coal mining still contributes 31% of coal production, and in Illinois that 

contribution is 85% (EIA, 2011b).  Worldwide, underground mining accounts for 67% of coal 

production (DOE, 2009).  Although underground mines typically produce bituminous coal, 

which has a higher energy value than sub-bituminous PRB coal, the real resilience of 

underground coal mining is due to significant productivity gains made possible in the last half 
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century by an “extensive application of complex continuous systems possessing remarkably high 

production rates” (Pavlovic, 1989).  The two obvious “complex continuous systems” are the 

continuous miner and the longwall.   

Continuous miners and longwalls are the centerpiece of mechanized mining systems.  As 

shown in Figure 1.1, this mechanization of the industry increased US underground coal mine 

productivity (in tons per man-hour) from 0.68 in 1949 to 4.15 in 2000 (EIA, 2011a).  Of present 

concern is the steady decline over the past decade, which may be attributable in part to 

increasing regulatory requirements and depleting coal reserves.  The MINER Act of 2006 may 

be contributing to a downturn similar to that of the 1970s caused by Federal Mine Safety and 

Health Acts of 1969 and 1977.  US coal reserves remain abundant but reserves with the best 

conditions continue to deplete forcing underground coal mining to deeper and sometimes thinner 

coal seams, which present more difficult productivity challenges. 

 

 

Figure 1.1. Underground coal mining productivity in the US. 
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Brief description of underground coal mining.  Work in an underground coal mine 

consists of two functions, both of which are essential (Stefanko, 1983).  One is the actual 

production of coal.  Underground coal mines consist of one or more units or sections where coal 

is produced at a location called the “face.”  Each section has a specific production method that 

may be either longwall, which has one long face, or room-and-pillar with multiple narrow faces 

as shown in Figure 1.2, which are often collectively called the face.  All other work functions, 

which could include installation of infrastructure such as conveyor belt and power supply 

systems, maintenance of production equipment and safety devices, and delivery of materials and 

supplies, are classified as auxiliary operations.  They are no less essential than production, but 

they take place “outby” the face and do not contribute directly to the output of coal.  This study 

focuses exclusively on production functions of a room-and-pillar section. 

 

 

Figure 1.2. Cut-away showing face area layout of room-and-pillar mining 

section (scan of graphic in promotional literature from Kerr-

McGee Coal Corporation’s Galatia Mine, 1985). 

 

 

Room-and-pillar mining is so named because pillars of coal are left in place to support 

rock above openings (rooms) that are created by the mining equipment.  Room-and-pillar 
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sections typically have as few as three or as many as fifteen parallel rooms called entries that are 

connected at regular intervals by additional rooms called crosscuts.  Crosscuts are usually 

oriented perpendicular to entries unless adverse horizontal stresses create unstable conditions or 

continuous haulage systems are used, in which case, crosscuts may be oriented diagonally in a 

chevron or herringbone pattern.  Entry and crosscut spacing combined with room width 

determine pillar size.  Rooms vary between 16 and 22 feet in width with 20 feet being the most 

common.  Entry and crosscut spacing, room width, and cut depth constitute the mine geometry 

and are functions of geological parameters such as depth of coal seam, equipment characteristics 

such as haulage unit size, and production requirements. 

Entries and crosscuts are mined in small segments called “cuts” that vary in depth from 

as little as five feet up to as much as 40 feet.  Figure 1.3 shows the plan view of a 7-entry room-

and-pillar mining section.  Each numbered block represents an individual cut and ordered 

numbers identify a mining or cut sequence.  All 26 cuts make up a cut-cycle for one crosscut of 

advance.  Once two or more of these cycles are completed, mine infrastructure such as the 

section’s conveyor belt and power center are moved forward to keep them in close proximity to 

the face. 

 

 

Figure 1.3. Plan view of room-and-pillar section showing hypothetical cut 

sequence for a cut-cycle that achieves one crosscut of advance. 
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 In the 1970s, the super-section concept was developed with two production machines 

operating in the same section (Suboleski, 1975).  Initial super-sections had a single crew with 

two machine operators but only one machine produced coal at any given time.  At the end of a 

cut, one of the machine operators commenced a new cut with the machine that had not been 

producing coal while the second operator moved the machine that had been producing coal to the 

next face.  This was called a walk-between or single-crew super-section.  More recently, 

ventilation plans have changed allowing intake air to travel up the center entries of a section to 

the face area where it splits providing fresh air to both sides of the section (fish-tail mine 

ventilation) enabling both machines to produce coal simultaneously.  This is called a split-

ventilation or dual-crew super-section. The effect has been to combine two smaller sections into 

one large section.  Super-sections offered several productivity gains to the mine operator.  

Initially, the primary benefits were a huge reduction in place change time and fewer production 

stoppages due to breakdowns because the second machine functioned as a spare when one 

machine had problems.  Other benefits included a reduction in manpower (the section could be 

run with one foreman, one utility man, and one repairman) and a reduction in required capital 

(only one feeder breaker and one section conveyor were needed instead of two).  While the 

number of super-sections now in operation is not specifically reported, an informal review of 

large (>100,000 tons annual production) eastern US underground mines indicated that at least 

one-third employed some form of super-section (Suboleski and Donovan, 2000).  All active 

room-and-pillar mines in Illinois employ super-sections. 

 Continuous miners – the workhorse of the underground coal mine.  A continuous 

miner (CM) is the primary piece of production equipment used in room-and-pillar coal mines 

worldwide.  In the US, the only room-and-pillar mines not utilizing CMs are conventional mines 
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employing drilling and blasting techniques, of which there are very few still in operation.  In 

addition to one or more CMs, a CM production system includes either batch or continuous 

haulage equipment that transports excavated coal from the face to a network of conveyors that 

remove it from the mine.  Another component of a CM production system is the roof bolter that 

installs supports into the rock above the coal that was removed allowing miners to work in the 

excavated area.   

Given the two production methods identified previously, a mine may consist totally of 

CMs operating in room-and-pillar sections, but it cannot operate exclusively with longwall 

sections because room-and-pillar gate entries and set-up rooms must be mined by CMs before 

longwall equipment can be deployed.  Thus, in a typical longwall mine, 20% of production 

comes from CMs in room-and-pillar sections developing longwall gate entries and set-up rooms 

(EIA, 2011b).  Consequently, as indicated in Table 1.1, CMs account for almost 60% of total 

underground coal production in the US. 

 

 

Table 1.1. US underground coal mine production in 2010 by mining method 

(EIA, 2011b). 

 

Type of Mine Extraction Method 
Production 
(MM tons) 

% of 
Total 

 

Room-and-Pillar 
Continuous Miner 163 49 

Conventional 5 1 

Longwall 
Continuous Miner 34 10 

Longwall 135 40 

Total  337 100 
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CM systems have the advantage over longwall systems in mine planning flexibility by 

being able to size up or down.  They are compatible with all types of reserve configurations, 

whereas longwalls require large, contiguous blocks of coal.  At mining depths greater than 1,000 

feet, longwalls have an advantage due to geologic constraints requiring larger pillars, which 

generally cause room-and-pillar mining to become less efficient (Darmstadter, 1997).  For this 

reason, longwall mining is more prevalent in deep, thick-seam, mines located in the western 

states of Colorado, Montana, New Mexico, Utah, and Wyoming where 13 of the 18 operating 

underground coal mines are longwall mines (EIA, 2011b; Fiscor, 2011).  While flexibility and 

efficiency are important, the chief factor enabling CM systems to be the primary means of 

production at most of the nation’s underground coal mines is the comparatively low capital 

investment required to operate them (Thomas, 2002).  Larger producers generally have more 

capital to invest explaining why half of the active longwall faces (22 out of 44) in the US are 

operated by the four largest coal producers – Alpha Natural Resources, Arch Coal, CONSOL 

Energy, and Peabody Energy/Patriot Coal (EIA, 2011b; Fiscor, 2011). 

There is no doubt that longwall systems have played a major role in the underground coal 

mine productivity gains cited earlier.  In the decade from 1983 to 1993, average longwall 

productivity rose from 2% lower to 19% higher than average CM productivity, all while CM 

productivity was increasing rapidly (EIA, 1995); however, of 497 underground coal mines in the 

US in 2010, only 44 were longwall mines (EIA, 2011b; Fiscor, 2011).  Thus, CM systems 

remain well established as the backbone of the industry and, despite the fact that tons per miner 

may be higher for longwalls than for CMs, most mine operators still choose CMs for their 

production system. 
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1.2  Problem Definition 

The name “continuous” describes the ideal for the CM production system and developing 

continuous systems has been the focus of considerable research over the past 50 years.  

Accomplishments include remote-controlled machines, continuous haulage, miner-bolters, dust 

scrubbers, extended cuts, and high-voltage equipment, to name a few;  however, studies continue 

to suggest that despite all of these progressive developments, the potential still exists to nearly 

double CM productivity (Davis, 1980; Chugh, 2003).  Without diligently focusing on keeping 

the CM at the face cutting and loading coal, productivity can be needlessly sacrificed.  

Obviously, over the course of a normal shift, there are regular times when the CM does not 

produce coal, such as when equipment maintenance is performed, when it is moved from a 

completed cut to a new cut, or when it is waiting on the roof bolter; however, delays that occur 

while the CM is at the face ready to load coal have the most significant impact on CM utilization 

(Davis, 1980; King and Suboleski, 1991; Hirschi et al., 2004).  These delays are mostly from 

changing haulage units at the face or waiting for them to complete their haulage cycle and can 

cause utilization of production equipment to consistently fall below 50% and mine laborers to be 

involved in nonproductive work as much as 40% of the time (Douglas, 1980; Hanslovan and 

Visovsky, 1984). 

The critical importance of miner productivity stems from the fact that, even with 

increasing levels of mechanization, labor costs account for almost half of total production costs 

(Hanslovan and Visovsky, 1984; Chugh, 2001a; Thomas, 2002; Moharana, 2004).  Those tasks 

that must be completed by human and machine interaction to produce coal are listed in Table 1.2 

along with how many times they are repeated in a typical shift.  These repetitive tasks are well-

suited to industrial engineering analysis using modeling and simulation.  Geologic modeling 
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tools exist but integrating them with production modeling is extremely difficult.  Thus, miners 

depend on lessons learned from previous experiences in handling these challenges.  The resulting 

wide variety of experience levels hampers efforts to formulate and define standard operating 

procedures (SOPs) for repetitious tasks and for critical decision making.  This dissertation 

addresses the need for developing such an SOP for planning and executing optimal cut 

sequences. 

 

 

Table 1.2. Critical path mining tasks and repetitions per shift typical of batch 

haulage CM systems. 

 
Mining Segment Repetitions/shift 
 

Travel to/from work site (face) 2 

Tram CM from cut to cut 10 

Clean up after cut 10 

Move or handle CM cable 25 

Reposition CM during cut 50 

Load haulage unit 200 

Haulage unit change-out 200 

Dump haulage unit 200 

 

 

In any particular room-and-pillar section, a specified cut sequence can be repeated almost 

daily making it desirable to specify an optimal sequence.  Engineering tools such as computer 

modeling exist for analytically determining a mining sequence, but the time required to make use 

of them is often more than the busy mine engineer has, especially if that modeling involves a 

trial-and-error approach.  Furthermore, the mine foreman, who directs underground operations 

including the sequence of cuts, has limited access to computers and no time for trial-and-error 

approaches. Consequently, one of them typically designates a sequence based on previous 
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mining experience, which becomes the standard procedure for the mine.  This practice 

compromises any effort to achieve ongoing process improvement because the cut sequence upon 

which such effort is based has no scientific criteria for evaluation.  Computer modeling does 

enable mine engineers to evaluate operational scenarios on paper instead of in the mine, but to be 

relevant, they require certain input data and the cut sequence is one of the foundational inputs.   

To illustrate the scope and importance of defining an optimum cut sequence by computer 

modeling, consider Figure 1.4, which shows only the left side of a super-section where 38 cuts 

are to be mined in a two-crosscut cut-cycle that creates pillars with non-uniform geometries.  

Bold red numbers define entry spacing, italicized blue numbers define cut lengths, and black 

letters and numbers identify cuts.  The number of permutations for sequencing these 38 cuts is 

38! or 5.23 X 10
44

.  Obviously, the vast majority of these sequences are not feasible.  For 

example, any sequence that places E1.4 before E1.1 is not possible since E1.1, E1.2, and E1.3 

must all be mined before the CM has access to E1.4.   

If the problem is reduced to just the first cut in each entry, there are still 6! or 720 

different sequences.  Using a simple computer production model to determine productivity 

(measured in tons per minute) for each one of those 720 sequences yields the range of 

productivities shown by the histogram in Figure 1.5, which clearly identifies a very limited 

number of optimal sequences.  Only two of the 720 possible sequences (0.28%) are optimum 

(i.e., tons per minute is maximized) and only eight (1.11%) are optimal as defined by the top 

25% of the productivity range.  Unfortunately, most cut sequence options are sub-optimal, 

thereby increasing the chance that the mine foreman’s experience-based sequence selection will 

be as well.   
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Figure 1.4. Two-crosscut cut-cycle for the left-side CM of a super-section 

using alternate mining geometries. 

 

 

 

Figure 1.5. Histogram of modeled productivity for each possible cut sequence 

if only cuts E1.1, E2.1, E3.1, E4.1, E5.1, and E6.1 in Figure 1.3 are 

mined. 

 

C21.2 C32.2 C43.2 C45.3 C45.4 E56.3 E56.4

32.5 E1.3 E2.3 E3.3 E4.3 E5.3 E6.3

C21.1 C32.1 C43.1 C45.1 C45.2 E56.1 E56.2

30 30 35 15 25 15 30

32.5 E1.1 E2.1 E3.1 E4.1 E5.1 E6.1

50 50 55 65

32.5

E1.2 E2.2 E4.2

E1.4 E2.4 E3.4

32.5 E3.2

E4.4 E5.4

6560

E6.4
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Computer modeling and simulation can be used to identify an optimum mining sequence, 

but existing techniques, such as the Monte Carlo method, rely on repeated and often random 

computations in a time consuming trial-and-error process, even when begun with a sequence 

based on reputable mining experience.  Multiple model iterations are required to find an optimal 

sequence or confirm that the starting sequence was indeed optimal.  The computational aspect of 

the work is not a problem for today’s powerful computers, but the time commitment required to 

supply all necessary input parameters and set up a model for repeated simulations is beyond the 

scope of time and computing resources available to most mine engineers.  This work aims to 

replace the trial-and-error approach with an algorithm developed to specifically identify optimal 

cut sequences prior to commencing any production modeling for process improvement purposes. 

 

1.3  Objectives 

 The overall objective of this dissertation is to utilize an optimization technique known as 

dynamic programming (DP) to develop an algorithm for determining an optimized mining 

sequence (OMS) for any type of room-and-pillar mining.  The goal is that application of an 

identified OMS will result in demonstrated improvements in face productivity while 

simultaneously having a positive impact on the health and safety of underground coal miners. 

DP is a technique used for optimizing multi-stage decision processes, which are 

processes that can be separated into a number of sequential steps called “stages” with one or 

more options for completion to choose from.  It is based on Bellman’s principle of optimality 

which states that “an optimal policy has the property that, regardless of the decisions taken to 

enter a particular state in a particular stage, the remaining decisions must constitute an optimal 

policy for leaving that state” (Bellman, 1957; Bronson and Naadimuthu, 1997).  Each decision 
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has a return usually described in terms of costs or benefits.  The objective of DP analysis is to 

determine an optimal policy or sequence of decisions that results in the best total return.  DP has 

been used in mining to optimize multi-stage decision processes where parameters are stage-

specific; however, this is the inaugural effort to consider parameters that are specific to paths 

between stages.   

Mining sequence optimization is just one component of the overall mine engineering 

process.  Over the past decade, the author has been part of a Southern Illinois University (SIU) 

research team working on optimization concepts for underground coal mines in Illinois in an 

effort to slow or reverse the downward trend in productivity previously mentioned.  This 

research attempts to bridge the gap back to earlier industrial engineering studies that are 

described in a journal paper (Hirschi, 2007), most of which is included in the literature review of 

Chapter 2.  Initial efforts focused on production modeling leading to the development of the 

SIU/Suboleski Production (SSP) Model, which was used to provide productivity training at 

mines throughout the Illinois Basin (Hirschi et al., 2004; Kroeger, 2004; Moharana, 2004; 

Kroeger, 2006).  Later efforts focused on finite element (FE) modeling of alternate mining 

geometries that were successfully demonstrated in the field (Chugh, 2006a; Chugh, 2007).  Both 

efforts required developing cut sequences for computer modeling and underground application 

that had to be done using the conventional trial-and-error approach.  The DP model presented in 

Chapter 3 completes the suite of optimization concepts developed by the team.  These concepts 

are just as important for the new mine as they are for existing operations where performance 

evaluation should be an ongoing process. 
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1.4  Scope of Work 

 To accomplish the overall objective of this study, the following three tasks were 

completed: 

 

1.4.1 Development of a DP Algorithm for Identifying Optimal Mining Sequences 

The DP algorithm described in Chapter 3 is built on an optimal value function, which 

seeks to maximize or minimize a particular parameter, such as revenue or cost.  In this coal 

mining study, minimizing cycle time was selected over maximizing production for the optimal 

value function as it relies on time study data, which is easier to obtain than production data for 

individual mining units.  This is because most room-and-pillar coal mines are comprised of 

several mining sections with production from each section pooled to form total output from the 

mine, the level at which production is generally measured.  At the section level, the production 

process is measured in terms of time increments for completing the various steps in the 

production process.  The optimal value function developed in this study is comprised of 

production and place change time elements with industrial engineering studies providing data 

required to determine time values for these elements. 

For the purposes of this study, minimizing cycle time and maximizing CM utilization are 

synonymous.  CM utilization refers to the time the CM spends actually producing or loading 

coal.  Moving the CM from cut to cut (the place change element) is a necessary part of the 

mining cycle during which the CM is definitely in use; however, since coal is not produced 

during place changing, it is not considered as CM utilization.  Furthermore, the production 

element consists of loading and change-out components.  As with the place change element, coal 

is not loaded during change-out time periods, so they are also not considered as CM utilization.  
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For a given mine plan, most cuts are of uniform volume causing the loading component to 

approach a constant value.  Thus, seeking to minimize non-producing place change and change-

out functions while maintaining a near constant loading function allows the DP algorithm to 

select cuts with minimum cycle times, which are analogous to cuts that achieve maximum CM 

utilization. 

 

1.4.2 Validation of the DP Algorithm 

As described in Chapter 4, the DP algorithm was validated by comparing cycle times 

generated by the model with cycle times measured in the mine of a cooperating company and 

cycle times reported by mine foremen for an actual mining sequence completed at the same mine 

over a two-week time period during which 331 cuts were made.  Industrial engineering data 

collected for seven cuts on the last day of the two-week period was used to define various 

operational parameters within the algorithm. 

It is important to note that in addition to validating the DP algorithm, this effort also fine-

tuned the algorithm.  Initial comparisons of algorithm outputs and shift report data revealed some 

significant differences in both the place change element and the production element.  

Discrepancies causing these differences were identified by revising algorithm parameters until 

algorithm outputs and time study data matched for the seven cuts that were studied.  This led to 

one parameter in the change-out component of the production element of the DP algorithm being 

revised and a new parameter being added to the loading component of the production element of 

the DP algorithm.  The algorithm presented in Chapter 3 is the product of the fine tuning 

validation process. 
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1.4.3 Application Case Study 

The final task, described in Chapter 5, utilizes the developed DP model with its validated 

optimization algorithm to identify optimal mining sequences for a particular case study.  The 

case chosen for application of the DP model is the same mining section that provided time study 

and shift report data utilized in the validation process.  This allows for easier identification of 

optimal patterns as data on actual mining sequences are readily available and differences 

between them and optimal sequences predicted by the model can be clearly shown.   

The application case study was completed in two parts.  First, the DP model was used to 

identify one-day (12-18 cuts) optimal mining sequences for four different scenarios selected 

from actual settings experienced at the mine during the two-week study period.  Second, the DP 

model was used to identify an optimal mining sequence for advancing the entire section by three 

crosscuts or enough to complete belt and power moves.  These are compared with sequences that 

were actually mined to show productivity improvement potential from following optimal 

sequences.   

 

1.5  Significant Contributions and a Limitation 

Path-specific versus state-specific parameters.  DP was created to provide 

mathematical solutions to any type of multi-stage decision process.  These processes can be 

found in virtually every aspect of human life, such as factory production lines, warehouse 

inventories, hospital waiting rooms, classroom scheduling, and investment decisions, to name 

just a few.  The mining industry is replete with such processes and DP has been used extensively, 

even for solving OMS problems. In every DP study reviewed by the author, defining parameters 

have been specific to a particular state or stage and in most cases those parameters are fixed or 
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constant.  For example, determining an OMS for an underground sub-level stoping operation 

depends on knowing the ore grade for each block to be mined, which is accomplished through an 

exploratory drilling program. That grade remains constant throughout the iterative DP process.  

Storage capacities and equipment/human resources availabilities are examples of other fixed or 

constant parameters used in DP applications to mining. The optimal value function for these DP 

models generally takes the big picture approach seeking to maximize revenues or minimize 

costs.  

For the research topic under consideration of an OMS in an underground room-and-pillar 

coal mining operation, parameters such as cut volume and grade have little if any bearing on the 

problem.  Those parameters that were considered critical are distances between cuts, of which 

there are a fixed amount that are easily defined; however, as the DP process progresses through 

each stage, the distance used to evaluate a particular stage at any point in time changes, 

generating a degree of complexity not found in other DP applications.  To simplify the problem 

to the extent possible, rather than examining the bigger picture of maximizing 

production/revenue, an optimal value function was chosen for development that seeks to 

minimize the very basic variable of cut-cycle time, which is a function of parameters specific to 

the path between feasible states within a stage rather than to parameters defining the state itself.  

Therefore, to the best of author’s knowledge, not only is this the first known attempt at using DP 

to analytically determine an OMS for a room-and-pillar coal mine, it is the inaugural attempt at 

DP modeling of path-specific parameters rather than state-specific parameters. 

Bridging the gap.  Industrial engineering concepts born out of the Industrial Revolution 

reached a level of maturity as the world endured two wars in the first half of the twentieth 

century.  As industry emerged from the strain of these wars, mechanization was starting to take 
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hold in the nation’s coal mines providing a ready-made environment for the application of newly 

developed operations research techniques.  Furthermore, the advent of the computer spurred 

growth in the use of applied statistics and higher mathematics to generate models that produced 

results quickly using exactly repeatable methods allowing the engineer to focus on the relevancy 

and accuracy of input data and analytical methods rather than on computational mechanics 

(Douglas et al, 1983). 

Charting developments in production modeling for underground coal mines that is 

reviewed in Chapter 2 creates an interesting historical timeline that clearly identifies three 

distinct phases.  In the twenty years following World War II, with academic institutions leading 

the way, a foundation was put in place for computer modeling and simulation in underground 

coal mines.  With the foundation in place, there followed a second twenty-year period of intense 

activity in mine modeling and simulation, again driven primarily by academic institutions, but 

spreading into industry as college graduates built their careers.  Then suddenly, just as computing 

capabilities exploded, computer modeling in the underground coal mining industry seemed to 

vanish.  As the next twenty years passed, a gap emerged in the development and use of computer 

models for production process improvement engineering.  While it is not hard to find a computer 

at today’s coal mine, their use for modeling and simulation is not happening even though 

simulation programming languages are more readily available and powerful.  Computer 

modeling languages have become so complex that developing models and simulators for 

underground coal mining and getting them to run is generally beyond the knowledge level of the 

experienced mine engineer, and recent college graduates with the latest computing skills and 

knowledge are more interested in production management as face bosses and mine managers 

where there is more money to be earned. 
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The widespread acceptance and use of the SSP Model experienced by the SIU research 

team highlights the demand for simplicity offered by a simple, deterministic, spreadsheet model 

that can be easily manipulated with quick responses.  The one drawback of the SSP Model has 

been the time-consuming process of entering cut sequences, which had to be repeated any time a 

different sequence was to be evaluated for productivity improvement potential.  Thus, one of the 

significant contributions of this work is to bridge the computing gap for the modern mine 

engineer by providing the foundational algorithm for creating an OMS model that integrates well 

with the SSP Model by reducing the effort required to input a cut sequence and by eliminating 

the heuristic nature of evaluating multiple sequences for optimality. 

Limitation.  Having identified the contribution of providing the basis for a simple OMS 

model, it must now be pointed out that this dissertation only goes as far as defining and 

validating the OMS model algorithm.  For it to become an effective tool in the hands of a mine 

engineer, a person skilled in Excel
®
 programming will have to build an OMS module for 

integration with the SSP Model.  The author learned FORTRAN programming as an 

undergraduate student before beginning a career in mining that has lasted more than 25 years, 

during which time that learning was never utilized.  Upon returning to the academic setting 12 

years ago, the author found that advances in computer programming had progressed far beyond 

the limited capabilities of basic FORTRAN programming.  Therefore, the author would leave it 

to some interested person with the necessary programming skills to incorporate the algorithm 

outlined in this dissertation into a spreadsheet module for integration with the SSP Model.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Introduction 

 The literature review for this dissertation has two objectives.  The first is to provide the 

reader who might not be familiar with continuous miner (CM) coal production systems, which 

are not very well known by those outside of the underground coal mining industry, with a basic 

understanding of such systems and the setting in which they operate.  The second is to review 

research pertaining to both the development of these mining systems as well as efforts to 

improve their efficiencies.   

The next three sections of this chapter focus on the mining process reviewing research 

efforts to develop and improve all of the principal components of CM coal production systems 

and the designing of underground coal mines in which they operate.  This includes information 

on dust control research with specific emphasis on characterizing the environment in which CM 

production systems operate.  The last two sections of this chapter focus on operations research 

studies related to underground coal mines reviewing research efforts to develop models for 

simulating CM production systems and optimization techniques for improving those systems. 

  

2.2  Continuous Miner Coal Production Systems 

Continuous miners.  Joy Machine Company, the predecessor to today’s Joy Global, a 

leading original equipment manufacturer (OEM) of underground coal mining equipment, 

shipped their first CM with a ripper head in 1948 (Harrold, 1980).  Boring machines actually 

preceded CMs developing miles of entries in Illinois in the 1920s (Stefanko, 1983), but they 
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lacked mobility and depended on mining conditions that would allow cutting in one entry for 

long distances without regard for roof conditions.  Furthermore, the product was so fine that it 

was not very salable for domestic heating, the primary market of the day.  As the market shifted 

to utilities burning pulverized coal, CMs gained wide acceptance easily supplanting conventional 

systems prevalent at the time by incorporating all of the system’s production functions 

(undercutting, drilling, blasting, and loading) into one machine (Harrold, 1980). 

In 1969, CM production surpassed conventional production for the first time (Keystone, 

1981).  Manufacturing of new CMs peaked a few years later in 1975 and by 1980, roughly 3,000 

machines were producing approximately one-fourth of the total annual US coal production 

(Harrold, 1980).  Then, as production shifted to large western surface mines and longwall mining 

increased in popularity, the number of CMs in use and their production both leveled off.  In 

1994, production from longwall mines exceeded that of room-and-pillar mines for the first time 

(NMA, 2003).  OEMs bore the brunt of this industry transitioning and went through a difficult 

period of bankruptcies, consolidations, and mergers.  Nevertheless, because of its versatility, the 

popularity of the CM has endured, and today, because of a combination of depleting longwall 

reserves, increasing stripping ratios, and a continually expanding energy market, CM production 

systems remain at the forefront of underground coal mining in the US. 

Over the years, CM design has evolved from ripper heads to oscillating heads and finally 

to the milling head or hardhead common today (Stefanko, 1983).  This head is a large metal 

drum laced with conical metal bits in a spiral winding supported by a boom at the front end of 

the CM (see Figure 2.1).  As the drum turns, bits dig into the coal seam cutting loose various-

sized pieces of coal, which fall to the ground where they are gathered by a large scoop called a 
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pan onto a steel chain conveyor and carried to the rear of the CM where they are dumped into a 

haulage unit for transport away from the face. 

 

 

Figure 2.1.   Joy Global’s Model 14CM15 continuous miner. 

 

 

Research in the 1970s (Campbell et al., 1978) produced the flooded-bed scrubber for 

capturing dust generated by the CM cutting drum (Campbell et al., 1983).  This system 

transforms the cutter head boom into something like a ventilation hood above a kitchen stove 

with multiple inlets.  The duct work on the boom connects to another duct on the side of the 

CM’s main chassis that runs the length of the chassis.  At the mid-point of this duct is an inclined 

filter that is sprayed with water.  Further to the rear of the CM, the duct contains a demister box 

that removes dust laden water droplets from the air.  Near the tail end of the CM, an axial vane 

fan is mounted to the duct to create the suction needed to draw air into the ductwork.  Dusty air 
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around the cutter drum is sucked into the hood on the boom and pulled through the filter duct 

where dust is wetted and removed from the air by the filter panel and demister box before 

“scrubbed” air is discharged back into the mine atmosphere.  A schematic of the CM scrubber is 

shown in Figure 2.2. 

 

 

Figure 2.2. CM flooded-bed scrubber schematic (Thatavarthy, 2003). 

 

 

Another development with CMs has been increased horsepower.  Cutting motors 

typically experience the most severe duty cycles and the objective behind increasing horsepower 

has been to extend the life of these motors.  A prototype high-voltage, high-profile CM went into 

production at an Illinois mine in 1997.  The power supply was 2,300 volts for 966 horsepower as 

compared to 950 volts and 740 horsepower on a standard machine.  It weighed 82 tons, 17 tons 

more than the standard machine and the cutting drum was seven inches bigger in diameter with 

6-inch bit spacing as compared to 4.5 inches.  This high-voltage machine utilized continuous 
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haulage and productivity increased to the point that the haulage system had to be redesigned 

(Sprouls, 1998). 

     In 2001, the SIU research team, including the author, conducted an industrial 

engineering analysis of a prototype high-voltage, medium-profile CM, also operated in an 

Illinois mine.  The high-voltage machine operated alongside a standard-voltage machine with the 

same profile in a super-section with haulage provided by battery ramcars.  The study determined 

in a comparison of the two machines that the loading rate (measured in tons per minute) of the 

high-voltage machine was 30% greater, the tram speed (measured in feet per minute) of the high-

voltage machine was 8% faster, and the increase in tons per car being loaded by the high-voltage 

machine was almost 9% or one ton per car (Moore, 2001).  However, when comparing actual 

unit shift productivity, no difference was found between the two machines.  The study concluded 

that the high-voltage miner can provide productivity increases only if the haulage system can 

transport coal away from the face fast enough (Chugh, 2001a). 

Super-sections. As already pointed out in Chapter 1, the idea of a super-section with two 

CMs operating in the same production unit was developed nearly three decades ago (Suboleski, 

1975) and the concept caught on until it is hard to find room-and-pillar operations that do not 

employ it.  In Illinois, every room-and-pillar mine operates super-sections.  Initial super-sections 

were single-crew (SCSS) or walk-between (WBSS) super-sections where only one CM was 

producing coal at any given time with the CM operator and his or her helper walking back and 

forth between machines.  Eventually, the helper was replaced with a second operator and each 

operator was assigned to one CM, moving it to a new face when it was not loading coal.  As 

super-sections increased in popularity, the dual-crew (DCSS) or dual-split (DSSS) super-section 
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with fish-tail ventilation was developed to enable both machines to produce coal simultaneously.  

The effect was to combine two single CM sections into one.  

Super-sections offer several productivity gains to the mine operator.  Initially, primary 

benefits were a huge reduction in the time required to move from one face to another (place 

change time) and fewer production stoppages due to breakdowns because the second CM 

functioned as a spare when one CM had problems.  Other benefits included a reduction in 

manpower because the section could be run with one foreman, one utility man, and one 

repairman; and a reduction in required capital because only one feeder breaker and one section 

conveyor were needed instead of two.  Developments in the underground coal mining industry 

such as higher horsepower machinery, deeper cuts, more stringent dust regulations, rising capital 

costs, and declining yields, have changed the economics of super-sections to a certain extent, but 

their use is still justified and they remain a popular and effective mining method (Suboleski and 

Donovan, 2000). 

Haulage systems.  To the mine engineer, haulage encompasses a broad array of activities 

including transporting workers to their stations in personnel carriers, moving supplies from 

storage areas to the work area on supply cars, and moving coal from the mining section to the 

surface on conveyor belts, in skips, or in rail cars.  While these haulage systems are important, 

this dissertation focuses strictly on face haulage or the movement of coal from the CM to a 

conveyor feeder.  Due to the repetitive nature of face haulage, as was shown in Table 1.2, it is 

the foundation of CM production systems and is the part of the system that offers the greatest 

potential for productivity improvements.  Face haulage systems are either continuous or batch, 

the latter being more common.   
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Batch haulage.  Batch haulage systems consist of individual vehicles called cars.  Coal is 

loaded into cars by the CM when they arrive at the face and they haul that coal to a dump point 

where a feeder transfers it onto a conveyor belt.  The number of cars used depends on the car 

design and the mine plan.  Because entry widths and car sizes make it impossible for cars to pass 

each other in the same entry, “change-out delays” are inherent.  A change-out delay begins when 

a loaded car departs from the CM and lasts until the next car arrives for loading.  During this 

delay, the CM operator usually continues to cut coal and fill the pan; however, no loading 

occurs.  While change-out delays cannot be eliminated, they can be reduced by maximizing car 

capacity, minimizing pillar size, keeping the change-out point as close to the face as possible, 

and routing cars to avoid having to turn around at the change-out point.  Of these factors, 

numerous studies clearly show that haulage unit capacity has the greatest impact on productivity 

(Smith and Blohm, 1978; Hanslovan and Visovsky, 1984; King and Suboleski, 1991; Sanda, 

1998; Chugh, 2001a; Chugh, 2003; Hirschi et al., 2004). 

In addition to change-out delays, a second delay is possible in batch haulage systems.  If 

an empty car is not waiting at the change-out point when the loaded car passes, then a “wait – no 

car” delay occurs.  Most operations are able to eliminate this delay by keeping a sufficient 

number of cars in the loop so that an empty car is always waiting at the change-out point; 

however, this does not always benefit the operation in terms of equipment utilization.  In 

addition to adding cars, the “wait – no car” delay can be minimized by keeping the dump point 

close to the face to minimize haul distances and by optimizing mine planning in terms of number 

of entries and entry spacing. 

Cars used in batch haulage systems are either tethered or untethered.  Tethered cars are 

called shuttle cars and untethered cars are called ramcars (see Figure 2.3).  Joy Machine 
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Company introduced the first shuttle car into a US coal mine in 1938 (Brezovec, 1982) and they 

continue to dominate the shuttle car market.  Although a great variety of haulage equipment has 

been tried and continues to be used throughout the industry, the shuttle car remains the preferred 

haulage device accounting for 78% of all underground haulage (Stefanko, 1983; Sanda, 1998).  

A shuttle car is open on either end and has a chain conveyor in the bed to “shuttle” coal from the 

loading end to the discharge end.  These cars are powered by an electric cable connected to the 

section power supply transformer.  A powered cable reel on the car lets cable out and takes it in 

as the car travels back and forth between the miner and dump point.  The number of shuttle cars 

used and shuttle car haulage routes are limited because one car cannot cross the cable of another 

car.  This limitation results in large change-out delays and some “wait – no car” delays.  Studies 

indicate that even in the best shuttle car systems, 15-25% of available production time is lost to 

change-out delays (Stefanko, 1983; King and Suboleski, 1991). 

 

  

Figure 2.3. Batch haulage units – shuttle car (left) and ramcar (right) (pictures 

provided by Joy Global). 

 

 

Ramcars are cable-less vehicles developed to alleviate shuttle car restrictions.   They are 

built like a truck with a power unit on one end and a trailer bed on the other.  Hydraulic steering 
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articulates the car around a center joint between the motor end and the trailer bed.  Hence, 

ramcars are often referred to as articulated haulage.  The power unit can be diesel or battery.  The 

bed has a ram plate in it that is retracted as the car is loaded.  The ram plate then pushes coal out 

of the bed at the dump point.  Because no cable restrictions exist, there is much more flexibility 

in the number of cars and haulage routes used; however, ramcars load and dump from the same 

end requiring the car to turn around twice in each haulage cycle, which can add to change-out 

and “wait – no car” delays.  Also, space taken up by the power unit typically reduces the capacity 

of a ramcar when compared with a similar sized shuttle car. 

Ironically, the first shuttle car was battery-powered (Brezovec, 1982); however, a cable 

version came out the next year and it has been the industry standard since.  Early battery units 

could not provide sufficient power and traction in difficult mining conditions.  In 1978, diesel 

ramcars were introduced to the underground coal industry as a cable-less alternative with 4-

wheel-drive power sufficient to navigate steep grades on wet mine bottoms.  The initial US 

Bureau of Mines test was successful with vehicle performance far exceeding original 

expectations.  Payloads up to 13 tons were hauled in wet conditions up and across grades 

pitching 25% (Gunderman, 1979).  Proven productivity gains quickly boosted the popularity of 

diesel ramcars while regulatory agencies studied health and safety aspects of diesel emissions.  

When filtration and ventilation requirements finally became law, diesel equipment popularity 

disappeared as fast as it had come into being; however, their introduction clearly showed the 

value of flexible cable-less haulage and equipment manufacturers took up the torch and ran with 

it, taking advantage of improved battery technology to develop battery ramcars that were 

competent hauling significant loads in difficult conditions (Sanda, 1998). 
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In 1998, Phillips Machine Service began development of a diesel-electric shuttle car in an 

effort to combine the capacity advantage of shuttle cars with the flexibility advantage of cable-

less haulage.  The end result was a battery-powered shuttle car, named the Freedom Car, shown 

in Figure 2.4.  MSHA permissibility testing and approval was completed in 2001, the car was 

demonstrated with very favorable results at several Appalachian coal mines throughout 2002 

(Skinner, 2003), and the first commercial units were shipped in 2003 (Hirschi et al., 2004).  The 

author was involved in arranging a trial demonstration of the Freedom Car at an Illinois mine in 

2006.  Phillips Machine Service is primarily a rebuild shop and their inability to be competitive 

with larger OEMs kept the Freedom Car from gaining the interest it deserved. 

 

 

Figure 2.4.   Freedom Car (picture taken by the author). 

 

 

Table 2.1 (from Hirschi et al., 2004) summarizes strengths and weaknesses of batch 

haulage systems used in underground coal mines during the last decade.  Joy Global dominates 

the cable shuttle car market, OEM mergers and acquisitions have reduced battery ramcar 

suppliers to basically two – Joy Global and Caterpillar, only Phillips Machine Service offers 
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battery-powered shuttle cars, and diesel ramcars have pretty much been regulated out of 

existence. 

 

Table 2.1.   Advantages and disadvantages of common batch haulage systems 

(from Hirschi et al., 2004). 

 
Advantages Disadvantages 

 

Cable Shuttle Car 

 Capacity  Fixed haulage route, no overlap 

 No turn around required  Number of units is limited 

 Controlled dumping  Cable maintenance delays 

 No harmful emissions  Confined travel distance 

 

Battery Shuttle Car 

 Same as cable shuttle car  Higher capital costs 

 Flexible haulage routes  Battery reliability and maintenance  

 Number of units not limited  Battery change-out delay 

 

Diesel Ramcar 

 Flexible haulage routes  Risk from diesel PM undefined 

 More power in bad conditions  Capacity 

 Number of units not limited  Switch out or turning required 

 Unconfined travel distance  Uncontrolled dumping 

 

Battery Ramcar 

 Flexible haulage routes  Capacity 

 Number of units not limited  Switch out or turning required 

 Unconfined travel distance  Battery change-out delay 

 No harmful emissions  Battery reliability and maintenance 

 

 

Continuous haulage.  The CM produces only intermittently in a batch haulage system 

because of the change-out requirement.  To realize their full potential as “continuous” miners, 

continuous haulage was devised with the US Bureau of Mines playing the key role in 

establishing multiple industry collaborations to develop the technology.  Chain and belt 

conveyors from CMs and regular conveyor belts were adapted beginning with simple bridge 



31 

 

 

 

systems followed by extensible belts, bridge conveyor systems, and modular interconnected 

conveyors (Evans and Mayercheck, 1988).  Successful systems included the monorail bridge 

conveyor, the multiple-unit continuous haulage (MUCH) system, the mobile bridge conveyor 

(MBC), and the flexible conveyor train (FCT), each of which went on to successful 

commercialization by cooperating OEM partners.  In the last two decades of the 20
th

 century, 

five OEMs supplied about 150 continuous haulage systems with the MBC and the FCT shown in 

Figure 2.5 faring the best.  Systems cover a range of mining heights including western seams as 

high as eight feet, but continuous haulage has a definite advantage in lower seams, particularly 

40 inches and below, because low seam height restricts the full utilization of batch haulage 

capacity (Sanda, 1998). 

 

 

Figure 2.5. Fairchild’s MBC (left) and Joy Global’s FCT (right) (pictures 

provided by OEMs). 

 

 

Continuous haulage connects the CM with the section conveyor belt allowing the CM to 

load non-stop from beginning to end of cut; however, they are usually slow changing places and 

they make it difficult to move the roof bolter and supply vehicles across the section (King and 

Suboleski, 1991).  The importance of continuous haulage technology has steadily increased due 
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to the natural depletion of massive blocks of coal best suited for longwall mining.  Nevertheless, 

while much of the remaining proven underground reserves may require using continuous haulage 

systems to be economically mineable (Coal Age, 2003), experience has shown that continuous 

haulage can be very productive only under certain ideal conditions, and it is not very flexible in 

adapting to complications when one or more of those conditions do not exist.  The ideal 

conditions are as follows (McGolden, 2003): 

1. Reserve configuration – resources necessary to set up panels are significant; short panels 

are generally not cost effective (Sprouls, 1998); in addition to long panels, adjacent 

panels should be close; long moves between panels and irregular-shaped reserves restrict 

productivity (Sanda, 1998). 

2. Roof stability – belt entry must be wide enough for the system to move alongside the 

belt; 22 feet is the typical width that must be maintained keeping supplemental support to 

a minimum. 

3. Coal seam consistency – continuous haulage can only negotiate limited height variations 

and undulations in the coal seam; any limits affect overall productivity.  

4. Geologic conditions – continuous haulage is not as adaptable to poor conditions as batch 

haulage; wet, muddy mine floors will especially hamper productivity. 

Surge car.  One as yet undeveloped option that could merge the continuous loading 

capabilities of continuous haulage systems with the flexibility of batch haulage systems is the 

surge car concept.  The surge car is a pass-through hopper positioned directly behind the CM for 

the duration of each cut providing storage capacity for CM output while batch haulage units are 

changing out.  When a haulage unit is in place, it unloads quickly due to a much higher loading 

rate than the CM.  This accelerates haulage cycle times and eliminates time the CM spends 
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waiting for haulage units thereby improving overall cut-cycle time.  The surge car would also 

allow the CM to operate independent of haulage units during the clean-up segment of the cut 

when loading rates are lower and CM and haulage units are continually repositioning. (Hirschi et 

al., 2004). 

Previous attempts to develop a surge car have met with little success, primarily because 

too many “extras” were included rather than focusing solely on providing surge capacity.  The 

first documented surge car attempt occurred in the 1970s combining surge car and continuous 

haulage concepts.  The system consisted of an extendable conveyor belt system with the tail 

roller mounted to the rear of a crawler-mounted hopper car.  As the hopper car advanced with the 

CM, belt was pulled out of a take-up device and it ran on the floor and on itself until the distance 

of advance permitted belt structure to be manually inserted between carrying and returning 

sections of belt, which could be done while the system was in operation provided workers stayed 

caught up (Haynes, 1975).  The system was straight-line and could not negotiate turns.  After a 

relatively short trial, it was abandoned due to a cumbersome roof control technique (McWhorter, 

2004). 

In the 1980s, the US Bureau of Mines designed, fabricated, and tested a Hopper-Feeder-

Bolter (HFB).  The objective was to combine roof bolting, lump breaking, and surge capacity 

functions into one machine.  Because the HFB could bolt beside the CM, entry-to-entry places 

changes were replaced with in-place side-to-side equipment changes (Evans et al., 1988).  The 

inclusion of roof bolting limited CM production and after a 12-week trial in a Midwestern coal 

mine, it was abandoned (Mayercheck, 1988). 

In the 1990s, Stamler Corporation introduced a surge car designed to reduce total 

production time for each cut by loading haulage units faster and fuller (a natural byproduct of the 
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faster loading rate) than the CM thereby reducing haulage cycle times and the number of haulage 

unit trips required for a cut.  It was mounted on crawlers and resembled a feeder breaker with 

power supplied via an electric cable similar to the CM.  Underground trials were performed and 

despite the fact that the cutting and loading portion of the total cut-cycle was reduced, because 

two machines had to be moved during place changes, the net effect on unit shift productivity was 

negligible and the machine was never used beyond the field trial and demonstration stage 

(Combs, 1993). 

In 2004, the author participated in a collaborative effort between academia and industry 

to secure Federal funding for designing, developing, and demonstrating a surge car based the 

Freedom Car concept.  Studies indicated that a surge car with the mobility and flexibility of a 

haulage unit had the potential to increase productivity of a typical batch haulage system by as 

much as 30% (Johnson and McGolden, 2004).  This study also showed, however, that the value 

of the surge car is a function of the haulage system and without an existing optimized haulage 

system, little gain would be realized by incorporating a surge car.  In fact, because the surge car 

adds an additional piece of equipment at the face requiring an extra person to operate it, some 

applications would result in a negative impact on productivity. 

 

2.3  Room-and-Pillar Mine Design   

Room-and-pillar mine plans divide a coal reserve into sections or blocks known as 

production panels, which are accessed and connected by a network of main and submain 

excavations.  Main and submain entries and crosscuts are designed to remain open for the life of 

the mine as they become part of the mine’s infrastructure and are used for travel, ventilation, 

conveying, storage, and other purposes after actual mining takes place.  Production panel entries 
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and crosscuts are designed to remain open for the life of the panel during which as much coal as 

possible is removed.  For economic viability of the coal mine, pursuing maximum “extraction” 

consistent with desired structural “stability” must be accomplished in both mains and panels. 

Extraction.  Room-and-pillar systems are inherently limited in the level of extraction 

achievable because of the pillar component of the system.  Extraction ratios (the ratio of coal 

removed to original coal in place) vary depending on the depth of the coal seam and whether 

mining is in main entries or panels.  Deeper mines require bigger pillars to support the 

overburden.  Main entries also require bigger pillars to insure long-term stability for mine 

infrastructure.  Thus, extraction ratio decreases as depth of coal seam increases and lower 

extraction ratios are achieved when mining main entries versus production panels.  While coal 

seam depth is fixed, the mine engineer can design the mine layout with minimum main and 

submain footprints allowing a larger percentage of the coal reserve to be mined in production 

panels at higher extraction ratios thereby maximizing the amount of coal extracted or recovered 

from the reserve. 

The traditional approach to room-and-pillar design in coal seams has been to create 

pillars of uniform size, albeit with different sizes for mains, submains, and panels.  While this 

practice is conducive to simplified production management in general and mining sequences in 

particular, it results in sub-optimal extraction ratios.  To increase extraction ratios to more 

optimal levels without significantly adding to the complexity of production management, the 

SIU research team investigated appropriate applications of the alternate mining geometry (AMG) 

concept first proposed by Chugh and Pytel (1992).  The AMG concept consists of a mining 

section layout with pillars of unequal sizes created by varying entry spacing across the section 

while maintaining uniform crosscut spacing along the section such that larger pillars are created 
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in the center of the section to protect conveyor and power supply systems typically located in 

that area, and smaller pillars are created at both edges of the section where they benefit from 

being in the shadow of barrier pillars, blocks of coal separating panels from mains or other 

panels. 

The AMG concept has been demonstrated at two southern Illinois mines, both of which 

were carefully studied by the SIU research team.  In the first demonstration at a deep mine 

(Chugh, 2001b), the extraction ratio increased from 41.8% to 43.8% for an 8-entry production 

panel.  In the second demonstration at a shallower mine (Chugh, 2006a; Chugh 2007), the 

extraction ratio increased from 53.3% to 56.5% for a 12-entry submain.  Production modeling of 

the second demonstration indicated that a productivity increase of almost 7% was possible 

primarily due to the ability to mine crosscuts between outside entries in one cut.  Unfortunately, 

the timing of both demonstrations precluded careful and detailed monitoring of productivity 

enhancements to confirm model predictions. 

Stability.  Peng and Finfinger (2001) described the challenge involved in constructing 

stable openings as follows: 

“Mining engineers work with the most challenging construction materials.  

They must deal with rock materials as they exist in their natural states and design 

mine structures without well-known and defined properties.  Further complicating 

the design process is the variability of the in situ rock materials with rock types 

and rock properties varying widely from place to place.” 

In any type of underground mining, single entries, or an entry sufficiently isolated to be 

considered single, have the best stability, but a single-entry coal mine is completely impractical.  

Hence, in room-and-pillar coal mining sections, entries are usually driven in sets with the 
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number in a set determined by production demands as well as requirements for face haulage and 

general mine services such as ventilation, escapeways, power supply and conveyor systems, 

water drainage, and men and material transport.  Entry width is a function of roof strength with 

other factors including floor and coal strength, size of equipment, and regulatory statutes, being 

of lesser importance (Obert and Duvall, 1973).  Factors of safety with respect to roof, pillars, and 

floor are used to design excavations of the desired stability with numerous studies (see Mark and 

Barczak, 2010 for an excellent summary) having delineated proper criteria for determining 

adequate safety factors. 

In testing the AMG concept, the objective of the SIU research team was to establish more 

uniform pillar and floor safety factors across the entire width of a mining section (Chugh, 2007).  

Pillar safety factor (PSF) refers to failure of a coal pillar. Holland’s formula (1964; 1973) is used 

to find pillar strength as follows: 

σp = σcc *
h

Wp
 (2.1) 

where  σp  = in situ pillar strength, 

 σcc  = critical size or in situ coal strength, 

 Wp = pillar width, 

and h  = coal seam height. 

The PSF is the ratio of pillar strength to load on the pillar as follows: 

PSF = (σp) / [(1.1*D) / (1 – e)] (2.2) 

where  D = depth of overburden 

and e  = extraction ratio. 
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Due to Illinois’ weak floor conditions (Chugh et al., 1990), floor safety factor (FSF) must 

also be accounted for.  FSF refers to failure of the floor underneath the coal pillar or foundation 

failure.  Mohr-Coulomb failure criterion is commonly used to calculate rock failure or yielding 

as follows (Hoek and Brown, 1980): 

τ = σn * tan(ϕ) + c (2.3) 

where τ = shear strength of the failure plane, 

σn = normal stress on the failure plane, 

 ϕ =  angle of internal friction for rock, 

and c = cohesive strength of rock. 

Knowing these parameters and the average bearing capacity of the floor obtained from in-mine 

plate load tests, the ultimate bearing capacity of the roof-coal-floor column is determined as 

follows (Chugh et al., 1990; Chugh and Hao, 1992): 

S1  = ( Average Bearing Capacity / Nc
* 

) (2.4) 

where S1  = cohesion 

and Nc
*
  = bearing capacity factor from literature (6.17 assuming ϕ = 0). 

mO NSq 1   (2.5) 

where qo = ultimate bearing capacity (UBC) of column, 

and Nm  = modified bearing capacity factor. 

Vesic (1975) proposed the following equation for determining Nm: 
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where K =  unconfined shear strength ratio of lower hard layer (S2) to the upper weak layer (S1), 
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 ,  (2.7) 

which can be found from the width (B), length (L), and thickness (H) of the foundation (weak 

floor).  B and L correspond to pillar width (Wp) and pillar length (Wl), respectively. 

 Finally, the FSF is the ratio of UBC to load on the pillar column as follows: 

FSF = qo  / [(1.1*D) / (1 – e)]. (2.8) 

Stable pillar designs for room-and-pillar coal mines in Illinois require minimum PSF and FSF of 

1.5 and 1.3, respectively (Chugh, 2007). 

For uniform pillars in a conventional mining geometry (CMG), size is based on the 

greatest pillar loading, which is seen on middle pillars of the section if using the tributary area 

theory to determine that load.  That being the case, pillars on both outside edges of the mining 

section are overdesigned based on PSFs and FSFs determined for the CMG.  Thus, as shown by 

the comparison in Figure 2.6 of safety factors for the second AMG demonstration and its 

corresponding CMG, the unequal-sized pillars of the AMG are more efficiently designed. 

 

 

Figure 2.6. Comparison of pillar (left) and floor (right) safety factors across 

CMG and AMG sections (Chugh, 2007). 
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Crosscuts.  Crosscuts are an essential component of room-and-pillar systems as mining 

them completes pillar creation, provides ventilation air to the face, and increases face haulage 

mobility.  The first crosscut (or two) in a row of crosscuts must be “turned,” which is generally 

the slowest mining.  At the same time, crosscut centers must be carefully planned as they 

determine change-out distances, a critical component of any mining sequence optimization 

algorithm. 

Roof support systems.  Perhaps noticeably absent in the previous section on continuous 

miner production systems was any discussion of roof bolting.  That is because this dissertation 

focuses only on those functions that are directly involved with production.  While roof bolting is 

a critical component of any room-and-pillar mining system and installing roof bolts is the most 

repeated task performed by a production crew, it does not produce any coal.  Therefore, roof 

bolting will only be included in this study to the extent that the CM and the roof bolter must 

travel in the same entries and crosscuts and work in the same limited number of entries at the 

face.  This will require verifying that CM travel routes in an OMS will not conflict with being 

able to get the roof bolter into unbolted cuts in a prompt and timely manner. 

 

2.4  Characterization of Dust Exposure for Different Cut Configurations 

Dust control research in the US has been extensive as summarized by Colinet et al. 

(2010).  This study does not attempt to develop or promote any technologies specifically aimed 

at improving dust control in underground coal mines.  Rather, the objective is to develop a tool 

that could lead to improved mining practices with regard to mining sequences that minimize 

exposure to respirable dust.  To that extent, only that portion of the dust control literature that 
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relates specifically to dust exposure levels for the various cut configurations encountered in 

mining sequences will be reviewed. 

The National Institute for Occupational Safety and Health (NIOSH) is one of the leading 

research organizations working on dust control in underground coal mines.  They evaluated face 

dust concentrations at six mines making deep cuts (Potts et al., 2011), the practice of mining a 

cut in two increments to achieve the maximum depth allowable under ventilation and roof 

control plans approved by MSHA.  The ability to make deep cuts is desirable as it reduces the 

number of times the CM has to change places.  Through the 1980s, the CM operator sat in a cab 

on the back of the machine where all of the controls to operate the machine were located.  As the 

CM operator was not permitted to travel under unsupported roof, the depth of a cut was limited 

to the a few feet less than the length of the machine, usually about 20 feet.  Technology 

improvements to the CM brought about the previously described flooded-bed scrubber and 

remote control capabilities.  The latter allowed the CM operator to get off of the machine and 

stay under supported top while the CM advances under unsupported top to depths beyond 20 

feet.  The suctioning power of the scrubber draws ventilation air into the newly excavated area to 

control dust and methane even as the cut extents to greater depths.  Of concern was that the 

scrubber did not do an adequate job during the second (deeper) half of the cut, but this was 

shown not to be the case as long as mining practices previously shown to control dust at any cut 

depth were carefully followed. 

Two studies by the SIU research team provide data on dust exposure levels for different 

configurations of the CM in terms of entry positioning.  During an extensive evaluation of the 

“wet-head miner” (WHM), a CM with water sprays behind each bit on the cutting drum, seven 

different types of cuts were identified.  While dust sampling was performed for each type, results 
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were not reported as they were inconclusive due to a high degree of variability in the 

measurements (Chugh, 2006b). 

A second attempt was made to quantify dust exposure levels for different configurations 

during demonstration of SIU’s innovative spray system for CMs.  This time, eight different 

configurations were identified and sampled.  Results indicate that three cut configurations have 

the highest dust exposure levels and three cuts have the lowest exposure levels.  Those 

configurations with the highest exposure levels are cuts that begin in an entry that is already 

deeper than two lengths of the CM, cuts that complete a crosscut with the mining direction 

opposite that of the ventilation air flow, and cuts that begin a crosscut with the CM turning out of 

the entry into the crosscut.   Those configurations with the lowest exposure levels are cuts that 

begin in an entry that’s depth is less than half the length of the CM, cuts that begin a crosscut 

with the CM positioned in a completed crosscut perpendicular to the entries being connected 

(head-on mining), and cuts that complete a crosscut with the mining direction the same as that of 

the ventilation airflow (Chugh, 2012). 

 

2.5  Operations Research and Computer Modeling in Underground Coal Mining  

Industrial engineering.  As the Industrial Revolution moved work from the cottage to 

the factory, industrial engineering (IE) was created to establish and improve work rates, define 

job descriptions, and implement correct job procedures.  From there, IE progressed into plant 

location and design, tool design, quality control, inventory control, and production scheduling.  

The strain of war brought about the development of operations research (OR) techniques, which 

is generally concerned with optimal decision making through the process of applying statistics 

and higher mathematics to the solution of real-world, human-based problems.  Initially, most IE 
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efforts were corrective in nature, addressing problems as they arose.  Following World War II, 

the attention of IE professionals turned to prevention and quality control.  It was only natural 

that, in the underground coal mining industry where the increasing presence of mechanized 

equipment provided a ready-made environment, IE methods would be used to evaluate the 

complex interaction between humans, machines and their surroundings (Douglas, 1980).  

Throughout the 1950s, considerable effort went into conducting time studies and developing 

work improvement methods for underground coal mines. 

Computer applications.  One of the major contributing factors to the rapid application 

of IE and OR concepts throughout the industrial work place, including underground coal mines, 

was development of the computer.  Computers enabled IE professionals to utilize computer 

modeling and simulation techniques.  Mine engineers have been interested in using computers to 

build models that simulate mining operations ever since the computer was introduced to the 

industry in the 1960s (Sturgul, 1995).  The primary reason for this interest is that computer 

models imitate real-life systems in such a way that operational scenarios can be tested and 

evaluated without the need for actual field experimentation, which is always a difficulty given 

the challenging variability of the mine environment.  Mine engineers were applying IE principles 

and techniques before the computer, but computerized procedures provided the important 

advantage of producing results quickly using exactly repeatable methodologies that allowed the 

engineer to focus on relevancy and accuracy of input data and analytical methods used rather 

than on computational mechanics (Douglas et al., 1983). 

Mine modeling.  The development of IE systems analysis in the mining industry most 

likely began with the “Combined Study Method” developed at Pennsylvania State University 

(Penn State) in 1949.  It explained how to layout and time study a mechanized section leading to 
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widespread use of time studies and modeling of production methods by mining companies and 

consultants.  It included information gathered from over 100 coal mines (Bise and Albert, 1984) 

and became the foundation for later models and simulators used throughout the industry. 

In the early 1950s, a West Virginia company known as Coal Standards developed what 

many believe to be the first mathematical model of an underground coal mine.  Several of Coal 

Standards’ founders and engineers had been trained on the Penn State time study method and 

went on to become prominent mining engineering professors. 

During the 1960s, researchers started building computer simulation models of mining 

operations.  FORTRAN was used primarily because it was the standard scientific programming 

language at the time.  Programming was slow and a considerable amount of time and effort was 

spent writing and de-bugging programs.  Most of this work was done on college campuses as 

few mine engineers in the field had the time or computer resources to devote to such a task. 

Engineers at Virginia Polytechnic Institute and State University (Virginia Tech) 

developed some of the first mathematical programs to model loading and hauling components of 

conventional and continuous mining systems (Prelaz et al., 1964).  The original “Mathematical 

Model” was a FORTRAN model that took several months to write.  After spreadsheet software 

revolutionized computing in the early 1980s, the “Mathematical Model” was converted to a 

spreadsheet (Lotus) model in just a few days and in the 1990s it was converted to Microsoft
®
 

Excel (Suboleski, 2004).  The model had the limitation that only average values could be used to 

evaluate equipment; variability could not be introduced. 

To overcome this limitation and generally improve the model, SIMULATOR1 (later 

known as FACESIM) was developed to simulate the entire operation of conventional or 

continuous mining systems (Prelaz et al., 1968).  FACESIM allowed distributions to be entered 
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to account for variations in equipment rates and speeds.  It was an event-oriented program 

wherein the time or rate for each event was sampled throughout the entire shift from user-

supplied distributions.  FACESIM was eventually converted to a PC-based program and was still 

being used in the 1990s. 

Mine Simulation.  Modeling with average values produces a single mathematical 

solution to an analytical problem.  Simulation, on the other hand, is a technique that is “run” 

rather than “solved”.  The difference is notable in both the effort required to develop input and in 

the extent of output.  To get a distribution of results from FACESIM, a mining scenario had to be 

repeatedly modeled and each result manually recorded.  Wanting output answers to appear as a 

distribution produced from hundreds of runs, a Virginia Tech team modified it, developing 

CONSIM, a discrete, event-oriented simulation model that tracks events updating the status of 

the system as well as tracking clocks every time an event is completed (Topuz and Nasuf, 1985).  

It automatically generates much of the input data while allowing for both deterministic and 

probabilistic interaction between equipment over any time period specified by the user. 

Penn State also had a team working on computerized simulation.  The first simulation 

model was completed in 1961 and others soon followed.  As various projects took shape, it was 

decided to merge them all into a Master Design Simulator (MDS) that would include geology 

and reserves, ventilation, methane drainage, rail haulage, ground control, and cost as well as 

production systems analysis (Ramani et al., 1983).  The production model, called Underground 

Generalized Materials Handling Simulator (UGMHS), utilized equipment performance 

characteristics rather than time study data and had the ability to provide detailed outputs such as 

motor torque curves for predicting rim-pull on shuttle car drive wheels (Sanford and Manula, 

1969).  UGMHS was a “time-slice” simulation model written in FORTRAN but a specialized 
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“language” was used to input geometric data such as tramming paths of equipment (Suboleski, 

2005). 

The Bureau of Mines was very active during this period of computer modeling and 

simulation and they also developed a production simulator (Hanson and Selim, 1975).  Their 

model had the user specify a calendar of events to be simulated, thus permitting ready 

application to any type of mining operation including longwalls. 

In the 1980s, the KETRON consulting group availed themselves of Penn State’s 

ventilation module and Virginia Tech’s conveyor simulator and developed their own production 

module to form a Mineral Industries Software System.  The production module, called CPMINE, 

employed the critical path method (CPM) combined with statistical variations in data inputs to 

produce histograms of various mine parameters (Douglas et al., 1983).  KETRON also modified 

UGMHS to produce graphical output of equipment working (Suboleski, 2005). 

As computing became more commonplace, familiarity with computers brought about 

increased use and vice versa.  Higher level programming languages made their appearance 

including those specifically designed for simulation, such as GPSS, SIMSCRIPT, and GASP.  

These languages reduced the programming skills needed to create detailed simulation models 

and later versions even included capability for animation (Sturgul, 2000). 

Southern Illinois University/Suboleski Production (SSP) Model.  To effectively 

analyze production systems by way of modeling and simulation, two items are critical. The first 

is to have a simple model that is easy to use and understand.  Creating a simple model requires 

two key decisions (Leemis, 1995).  First, which elements of systems should be excluded or 

included?  Second, what level of detail should be used to represent components?  Eighty percent 

of the value of a simulator is derived from thinking through the mine plan and inputting data 
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(Suboleski, 2004).  If the model is so complex that the human mind cannot follow the logic that 

is used and visualize how the model mathematically describes the mining process, then there is 

little practical value and the likelihood of the model being used for process improvement is slim. 

The other key item required of a useful model is accuracy and relevancy of input data.  

Development of realistic production data is not an easy task due to varying conditions, which are 

often used as an excuse for not formulating an objective approach using controllable factors to 

predict productivities.  This lack of information limits the control ongoing operations have in 

affecting productivity improvements since changes cannot be measured against expected practice 

to determine which factors have the most impact. 

In 2000, the SIU research team identified in Chapter 1 began investigating strategies for 

reducing the cost of producing Illinois Basin coal.  A deficiency in readily available production 

models was recognized and the team went back to models of the 1960s.  Dr. Stan Suboleski, one 

of the “Mathematical Model” creators, provided the Microsoft
®
 Excel version (Suboleski, 2002), 

which he had used in various productivity studies (King and Suboleski, 1991; Suboleski and 

Donovan, 2000).  The model’s predicted production outputs were compared with data from 

several Illinois Basin mines and proved to be extremely accurate.  Most importantly, the model 

enhanced the exercise of thinking through the mine plan during the modeling process. 

After developing a familiarity with the model, the team felt that data input was somewhat 

cumbersome and prone to error propagation, and the size of the spreadsheet made finding desired 

output a challenge.  Consequently, the model was upgraded with separate input and output 

sections and named the SIU/Suboleski Production Model or SSP Model (Hirschi et al., 2004).  

The SIU research team then developed additional modules for analyzing roof bolting constraints, 

out-of-seam dilution (OSD), and production costs, which were incorporated into the SSP Model 
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(Moharana, 2004; Chugh et al., 2005).  The SSP Model was used extensively throughout the 

Illinois Basin as part of a miner training program to enhance underground coal mine productivity 

(Kroeger, 2004; Kroeger, 2006).  The one drawback of the SSP Model has been the time-

consuming process of entering cut sequences, which had to be repeated any time a different 

sequence was to be evaluated for productivity improvement potential.   

Computer modeling and simulation are valuable tools in mine planning and process 

improvement efforts, but to be relevant, computer models require accurate input data.  There are 

many input parameters, but the cut sequence is a foundational one.  All of the production models 

just reviewed would heuristically determine an optimum cut sequence, if that is one of the 

desired outputs.  Doing so requires numerous iterations, each modeling a different cut sequence.  

Inputting a cut sequence is a time consuming process even with the most advanced input 

modules.  Thus, even when beginning with a sequence expected to be optimal based on reputable 

mining experience, inputting cut sequences for multiple iterations of the model is required to 

confirm that the starting sequence is indeed optimal. 

 

2.6  Dynamic Programming Optimization Techniques in Mining 

As stated previously, OR is the engineering discipline focused on optimal decision 

making for and modeling of real-life situations.  A survey of OR applications in the mining 

industry (Topuz and Duan, 1989) identified eleven different techniques that had been widely 

used.  Dynamic programming (DP) is just one OR methodology used for optimizing multi-stage 

decision processes.  Others methods for solving these types of problems include decision theory, 

Markov chains, Monte-Carlo method, and stochastic programming (Bronson and Naadimuthu, 

1997).  The Topuz-Duan survey distinguished between methods better suited for deterministic 
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systems with no randomness and stochastic or probabilistic systems, and DP was identified as a 

deterministic method while the other methods were identified as probabilistic methods.  Because 

the original aim of this project was to develop a cut sequencing module for integration with the 

SSP Model, which is a deterministic model, DP was chosen as the methodology to solve the 

OMS problem. 

OR techniques in general and DP in particular have seen many applications in different 

mining scenarios.  Production planning and scheduling is the area of application that has seen the 

greatest use of OR methods according to the Topuz-Duan survey (1989).  Long-range production 

planning problems such as determining optimal open pit limits (Lerchs and Grossman, 1965; 

Johnson and Sharp, 1971; Caccetta and Giannini, 1986) and short-range production scheduling 

problems such as grade control in underground sub-level stoping operations (Dowd, 1976; 

Dowd, 1980; Ribeiro, 1982; Dowd and Elvan, 1987) have been solved using DP.  Wang and 

Huang (1997) used DP to develop a cut sequence for an open pit mine that optimized the net 

present value of the ore produced.  Equipment selection and scheduling has been another 

frequent application of DP methods such as a study by White and Olsen (1986) on dispatching 

haul trucks.  Grayson (1989) formulated a DP model to optimally allocate coal miners among 

various work activities on an operating shift basis.  The author believes this is the first 

application of DP to the problem of determining an OMS for a room-and-pillar coal mine.  The 

methodology used in this study show some similarities to the cut-sequencing study by Wang and 

Huang as well as those production scheduling applications just cited; however, all of these 

applications develop decision policies based on parameters (both deterministic and stochastic) 

that define fixed stages in the problem, whereas this study develops a decision policy that is 

based on parameters defining paths between different stages as well as stage-specific parameters. 
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DP is a recursive, or step-by-step, approach, where at each stage, decisions are made after 

analysis, providing information used in succeeding decisions.  The process continues through all 

stages until the decision criteria is optimized in the final stage giving an optimal policy that can 

be traced back through the process.  To apply DP to the mining sequence optimization problem 

of a CM production system in a room-and-pillar coal mine, the following items must be defined 

(Grayson, 2002): 

 Stages, 

 Constraints or feasible states at each stage, 

 Optimal value function, and 

 Recurrence relation. 

The state, X, of the system is the number and position of cuts remaining to be mined.  For 

example, cuts remaining to be mined for one crosscut of advance in a 3-entry longwall gate road 

development are illustrated by dashed lines in Figure 2.7.  In a room-and-pillar mining system, a 

stage, identified by the letter i, is a cut.  “Cut i-1” identifies a cut that has just been mined.  The 

objective at each stage is to select a cut for mining that best satisfies the optimal value function, 

fi(X).  For the sequence depicted in Figure 2.7, it is assumed the cut ib best satisfies fi(X) at each 

stage. At each stage, only those cuts that are feasible can be selected from.  To be feasible, the 

cut must be accessible by way of previously mined cuts.  As shown by subscript letters a and b in 

Figure 2.7, more than one feasible state may exist at each stage.   
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Figure 2.7. A sequence of four stages in a 3-entry longwall gate road 

development section with cut ib selected at each stage.  Stage 1 (top 

left), Stage 2 (top right), Stage 3 (bottom left), and Stage 4 (bottom 

right). 

 

 

Constraints can also be used to define feasible states.  For example, cuts just “inby” “Cut 

i-1” in Figure 2.7 are not identified as feasible because they have not yet been bolted.  

Constraints also define how and when crosscuts are mined to satisfy ventilation and roof control 

plan requirements.  Other irregular factors, such as abnormal geologic conditions or equipment 

breakdowns, can also be defined as constraints.   

The optimal value function can be a maximization or minimization problem, such as 

maximizing production in a given timeframe (unit shift productivity) or minimizing haulage 

distance or delays (equipment utilization).  The DP algorithm developed in this dissertation is a 

minimization function.  The objective is to minimize cut-cycle time, which could also be 

construed as maximizing CM utilization given the distinction as stated earlier that CM utilization 

is defined as the CM cutting and loading coal.   
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The recurrence relation considers the repetitive nature of cut sequences, such as haulage 

distances based on mining geometry, roof bolting constraints based on time and space, and CM 

movement, also based on time and space.  An optimal decision is made at each stage, and this 

process continues through all stages until the optimal value function is optimized in the last stage 

giving an optimal cut sequence for a given cut-cycle (Grayson, 1989; Chugh, 2006b). 

 

2.7  Chapter Summary 

 The Industrial Revolution was slow coming to the industry that fueled it, but by the mid-

1900s, underground coal mining was steeped in mechanization and the trend toward greater 

mechanization continues to this day.  Mechanization lends itself to industrial engineering 

analysis.  Focusing specifically on the room-and-pillar mining method in underground coal 

mines, industrial engineering work was prolific from 1965 to 1985, most of it being research on 

college campuses where computing resources were more available.  As computing capabilities 

became more widespread, their use in coal mining shifted from specialized engineering 

applications to generic management information systems.  From 1985 to 2005, industrial 

engineering activity at underground coal mines was almost nonexistent, but there has been a 

rebirth in the last few years with the advent of process improvement teams at many operations.  

Gone are the days when productivity improvements could be realized simply by purchasing 

bigger, stronger mining machines.  

As more attention is devoted to process improvement, the importance of repetitive cycles 

so common in underground room-and-pillar mining methods is being realized.  As was pointed 

out in Table 1.2, several tasks that constitute the critical path in CM production systems are 

repeated hundreds of times in a single shift.  The mining sequence forms the foundation for all of 
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these repetitive tasks and it too is regularly repeated, at least to the extent that standard operating 

procedures are in place.  Otherwise, the mining sequence depends on the whims of the mine 

foremen who relies on instincts developed through personal experiences during his or her tenure 

in the mines.  This experience-based mentality seems to have been the methodology used to 

identify mining sequences that were modeled and simulated during the industrial engineering 

heyday described earlier, and it continues to be common practice today, despite the existence of 

techniques, such as dynamic programming, that are well-suited for optimizing repetitive 

processes. 

Dynamic programming is not a new optimization technique; however, it has been used 

sparingly in mining and this work appears to be the first documented application of the technique 

to the problem of cut sequencing in underground room-and-pillar coal mines.  The algorithm 

presented in the next chapter applies the dynamic programming optimization technique to the 

problem of identifying optimal mining sequences utilizing in the DP algorithm both state-

specific parameters as well as path-specific parameters, the latter for what the author believes to 

be the first time. 
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CHAPTER 3 

DYNAMIC PROGRAMMING ALGORITHM  

FOR OPTIMIZING CONTINUOUS MINER CUT SEQUENCES 

 

3.1  Introduction 

 At the core of this study is the DP algorithm for optimizing mining sequences, which is 

presented in this chapter.  Development of the algorithm was guided by several fundamental 

policies, which are presented first.  Then the optimal value function, which is the core of the 

algorithm, is defined.  The optimal value function has two primary components which are fully 

described.  The DP algorithm operates within the recurrence relation, which constitutes the DP 

model.  The recurrence relation and how it is used to determine global versus local optimization 

are explained next.  Finally, the DP model can be made to operate within certain constraints, two 

of which are presented and described. 

 

3.2  Guiding Policies and Practices 

The following policies and practices are adhered to in developing the DP model for 

optimizing mining sequences: 

Complete crosscuts in a timely fashion.  Completing crosscuts is critical because doing 

so accomplishes three things.  First, completed crosscuts establish and maintain the flow of 

ventilation air across the mining section and promote the availability of adequate face ventilation 

as close to each face as possible.  Line curtain is hung from roof bolts on one side of the entry to 

direct ventilation air from the last open crosscut (LOXC) to each face in entries where mining 

has advanced the face beyond the LOXC (see Figure 3.1); however, ventilation air follows the 
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path of least resistance making line curtain leakage a common occurrence, which reduces the 

volume of air reaching the face to inadequate levels.  Furthermore, line curtain restricts entry 

width forcing face haulage units to travel at reduced speed, which lengthens change-out delays.  

Completing crosscuts minimizes the amount of line curtain that must be hung.  Second, as 

crosscuts are used by face haulage units traveling to and from the CM, each completed crosscut 

establishes a change-out point that is closer to the face thereby minimizing change-out distances.  

Third, completed crosscuts provide for uniform advance of the section face area.  As CMs tram 

through crosscuts to access entry faces, uniform advance of the section face area minimizes CM 

tram distances between cuts. Therefore, cuts that deepen entries that are already deep enough to 

start or complete crosscuts should be avoided. 

 

 

 

Figure 3.1.   Line curtain restricting entry width. 

 

 

This is illustrated by an example.  Consider a mining section with entries and crosscuts 

on 80-ft centers making 32-ft deep extended cuts.  After three cuts in an entry, the face is 96 feet 

from the LOXC, which means the entry is deep enough to complete one or both of the crosscuts 

that will connect it to adjacent entries.  If a fourth cut is made before a crosscut is completed, 
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nearly 100 feet of line curtain will be required to get air to the face.  The cut will be very dusty 

due to air losses and take a long time to complete due to reduced speeds over longer distances for 

face haulage units.  If the same cut is made after a crosscut connecting it to an adjacent entry is 

completed, there will be better ventilation at the face because the line curtain will have been 

removed and what had been the LOXC will now have drop curtain hung in it forcing air up the 

entry to the new LOXC.  Furthermore, with no line curtain restricting the entry, face haulage 

units can travel at normal speeds reducing change-out delays during the cut. 

Maximize starting crosscuts “head-on.”  Turning a crosscut from an entry requires the 

CM to start at an acute angle with the entry and turn while making the cut until it is 

perpendicular with the entry.  This allows the CM cutting drum only incremental contact with the 

coal face (see left side of Figure 3.2) for much of the cut.  Furthermore, it also requires the CM 

operator to frequently back up and reposition the machine.  With each repositioning, the operator 

needs to check alignment and will usually stand behind the CM to do it, which is a danger zone 

with face haulage units coming and going.  Starting a crosscut head-on with the CM 

perpendicular to entries being connected allows full contact (see right side of Figure 3.2).   

 

 

      

Figure 3.2.   Starting a crosscut by turning (left) and head-on (right). 
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Research by Chugh (2009) found that 80% of roof falls in underground coal mines occur 

at intersections where entries and crosscuts meet.  The diagonal span across an intersection is the 

widest part of a mine opening and it should be minimized to reduce exposure to unstable roof 

and roof falls.  Crosscuts that are turned create wider diagonals at intersections than crosscuts 

that are started head-on. 

Mine crosscuts in the direction of ventilation air flow.  The last cut in a crosscut is 

called the “hole-through.”  When this cut is completed, that crosscut becomes the LOXC and the 

path of least resistance for the ventilation air sweeping the section face area.  If the hole-through 

is made with the CM cutting in the opposite direction of the ventilation air flow, all of the dust 

surrounding the CM cutter head envelopes the area occupied by CM and face haulage unit 

operators.  Starting and completing a crosscut head-on in the direction of ventilation air flow 

allows both operators to remain in fresh air where dust levels are lower. 

Follow a hole-through cut in a crosscut with a cut in the entry from which the 

crosscut was accessed.  One of the delays encountered in the mining cycle is handling cable as 

the CM changes places.  Cable handling is avoided if the CM can make two cuts during one trip 

into an entry as shown in Figure 3.3.  Doing so is called “double cutting” and it substantially 

reduces cable handling and travel time to the next cut.  Double cutting is not an option if the 

crosscut is short enough that it can be mined in one cut because immediately following 

completion of that cut, the crosscut has not yet been  supported by the roof bolter and neither the 

CM nor any face haulage unit operators can travel past or work inby any area considered 

unsupported.   
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Figure 3.3.   Double cutting illustration. 

 

 

Keep a buffer of one or more cuts between the cut most recently mined by the CM 

and the cut most recently supported by the roof bolter.  The roof bolter can normally support 

a cut faster than the CM can mine it; however, roof conditions, stocking the roof bolter, and 

mechanical problems can create unexpected roof bolting delays.  A buffer minimizes any 

influence these delays might have on determining an optimum mining sequence.  Furthermore, 

this buffer helps to reduce congestion in the face area, as illustrated by the example of a 2-entry 

section.  When the CM completes a cut in one entry, it has to wait for the roof bolter to travel 

through the crosscut between entries before it can travel through that crosscut to the next cut.  A 

buffer serves to minimize the number of instances where this type of congestion occurs on a 

mining section 

Repeat mining sequences every crosscut.  Uniformly advancing the section face area 

reduces CM tram distances, allows for easier ventilation of the section face area, improves face 

haulage unit efficiency by minimizing travel distance to the dump point, and allows for more 

efficient scheduling of conveyor belt and power supply extensions.  But perhaps the most 

significant advantage of uniform face advance is having a repeatable mining sequence that 
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becomes automatic for the mining crew and eliminates “thinking” delays that can occur when the 

section foreman is unsure of the best option (Suboleski, 2011).  

 

3.3  Optimal Value Function 

 Every DP model is an algorithm built upon an optimal value function, which seeks to 

optimize (maximize or minimize) a particular parameter.  In determining an optimum mining 

sequence, cycle time, production, or feet of advance may be the target of the optimization 

algorithm.  Minimizing cycle time was selected over maximizing production for the optimal 

value function as cycle times are based on time study data, which is more readily available than 

production data for individual mining units.  Accurate production data from belt scales and 

storage facilities are usually for the entire mine and not for individual sections.  At the section 

level, the production process is measured in terms of time increments for completing each of the 

various steps in the production process.  Thus, the basic optimal value function is defined as: 

fi(X) = minimum cut-cycle time that results from following an optimal policy for 

stage i given state X. 

 

Cut-cycle time is composed of two elements and defined as follows: 

 CCTi(X) = MOVE
i
i-1(X) + PRODi(X), (3.1) 

 

where  CCTi(X) = cut-cycle time for stage i given state X, 

  MOVE
i
i-1(X) = place change element from stage i-1 to stage i in state X,   

and  PRODi(X) = production element for stage i given state X. 

The two elements in Equation 3.1 are described in detail below. 
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 Place change element.  The place change element of the cut cycle is the time required to 

move the CM from cut to cut.  The basic components in place change element are the tram 

distance between cuts and CM tram speed, which are defined as follows: 

 TD
i
i-1(X) = tram distance (in feet) from stage i-1 to stage i given state X, 

and SPDCM = CM tram speed (in feet per minute). 

Tram distance is measured from the face or deepest point of the last completed cut (stage i-1) to 

the face of each feasible cut (stage i) in state X as shown in Figure 3.4.  CM tram speed is 

measured in time studies but in the absence of data measured in the mine, speeds provided by the 

equipment vendor in their service literature may be used until such data are available. 

 

 

 

Figure 3.4.   Diagram illustrating tram distance measurement. 

 

 

The basic time value for the place change element is [TD
i
i-1(X) / SPDCM].  Because negotiating 

corners, handling cable, and road conditions introduce delays into the place change function, the 

basic time for the place change element must be adjusted to account for these delays. 

Cornering adjustment factor. The place change time element is adjusted for extra time 

required to negotiate corners by adding a cornering factor, TCOR
i
i-1(X), which is a function of 
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the number of corners negotiated moving from stage i-1 to stage i given state X.  Three typical 

cornering maneuvers are shown in Figure 3.5. 

 

 

     

Figure 3.5.   Illustration of cornering maneuvers with 0-point turn (left), 1-point 

turn (center), and 2-point turn (right). 

 

 

Each of the above scenarios illustrates the negotiation of one corner, which adds an additional 

amount of time, CORTMCM, to the basic time for tramming the CM through the distance moved 

in turning the corner.   

In addition to negotiating the corner, the middle and right illustrations in Figure 3.5 

identify additional legs involved in making 1-point and 2-point turns, respectively.  The number 

of points in a turn is the number of times the CM reverses directions.  Reversing directions adds 

another time segment, DRCHTMCM, to the basic time because the CM must tram beyond the 

intersection being turned in and then back to it.  The cornering adjustment factor is thus defined 

as follows: 
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 TCOR
i
i-1(X) = [NUMCOR

i
i-1(X) * CORTMCM]  

  + [NUMDRCH
i
i-1(X) * DRCHTMCM] (3.2) 

 

where NUMCOR
i
i-1(X)  =  number of corners negotiated moving from stage i-1 to stage i 

given state X, 

 CORTMCM = extra time required for CM to negotiate a corner, 

 NUMDRCH
i
i-1(X) = number of times CM reverses direction while negotiating corners 

in moving from stage i-1 to stage i given state X, 

 and DRCHTMCM = extra time required when CM reverses direction. 

Values for CORTMCM and DRCHTMCM are determined from time studies.  For functional 

testing of the model, values of 0.5 and 0.25 minutes, respectively, were used. 

 Cable handling adjustment factor.  As the CM changes places, several stops are made to 

handle the cable requiring a cable handling adjustment, CH
i
i-1(X), which is extra time that must 

be added to the basic time.  The three most common types of cable handling are described as 

follows: 

HANGTMCM: When CM cable is hung against the roof to allow the CM or haulage units 

to pass through where the CM cable is routed (see left side illustration of 

Figure 3.6). 

HOOKTMCM: When the CM stops so a loop (or loops) of CM cable can be placed on or 

removed from hooks or bits on the CM (see middle illustration of Figure 

3.6). 

HANDTMCM: When CM cable that has been unhooked from the CM is picked up off 

the ground and moved to a position against the rib so an entry or crosscut 

is unrestricted for travel by either the CM or haulage units (see right side 

illustration of Figure 3.6). 
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Figure 3.6. Cable handling scenarios: hanging (left), hooking on CM (middle), 

and handling (right). 

 

 

Value for HANGTMCM, HOOKTMCM, and HANDTMCM are determined from time studies.  For 

functional testing of the model, values of 2.0, 0.25, and 1.0 minutes, respectively, were used. 

The cable handling adjustment factor is defined as follows: 

 CH
i
i-1(X) = [NUMHANG

i
i-1(X) * HANGTMCM] 

 + [NUMHOOK
i
i-1(X) * HOOKTMCM] (3.3) 

 + [NUMHAND
i
i-1(X) * HANDTMCM] 

 

where NUMHANG
i
i-1(X)  =  number of times the CM cable must be hung or unhung while 

moving from stage i-1 to stage i given state X, 

 NUMHOOK
i
i-1(X) = number of times the CM stops while moving from stage i-1 to stage 

i given state X so that a loop (or loops) of CM cable can be hooked 

on to or unhooked from the CM, 

and NUMHAND
i
i-1(X) = number of times the CM stops while moving from stage i-1 to stage 

i given state X so that CM cable on the ground can be moved out 

of an entry or crosscut by operators who pick it up and handle it. 

 

To minimize cable handling, the CM generally moves across the mining section away 

from the location where slack cable is stored, which is typically on the side of the section where 

ventilation air reaches the face area (intake), until it eventually reaches the outer edge of the 

mining section, which is typically where ventilation air leaves the face area (return).  Then, extra 

cable handling is required to re-route the cable back to the intake or the entry or crosscut where 
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slack cable is stored.  Because re-routing the CM cable is necessary when the outermost return 

entry has been mined to a depth aligning it with the rest of the mining section, and the previously 

defined cable handling adjustments would penalize such a move to the extent that it would never 

be selected in the optimal value function, no cable handling adjustment is factored into the path 

from the outermost entry to the entry adjacent to where slack cable is stored.  In other words,  

CH
i
i-1(X)  = 0.0 minutes when re-routing cable back to the stage i that is the intake or 

entry where slack cable is stored after completing a stage i-1 that squares 

the outermost return entry with the rest of the section. 

 

This allows for periodic rerouting of the miner cable at certain identifiable points in the mining 

sequence without incurring the normal cable handling delay that would always penalize such a 

move under any other circumstances than those specified. 

Road condition adjustment factor.  The basic place change time element is the amount 

of time required to tram at normal speed from stage i-1 to stage i given state X.  The road 

condition adjustment factor, RDCON
i
i-1(X), is the additional time needed to pass through any 

areas with poor road conditions while moving from stage i-1 to stage i given state X.  Poor road 

conditions may be caused by water accumulations, soft bottoms due to floor heave, and bad top 

where fallen roof rock is obstructing the roadway. 

To determine the road condition adjustment factor, three variables, along with their 

associated effects on CM tram speed used in functional testing of the model, are defined.  Actual 

effects on CM tram speed would be measured in time studies. 

WATERSPDCM = CM speed when traveling through water, 

 = SPDCM/2.5, i.e. speed through water is 40% of normal; 

SOFTBTSPDCM = CM speed when traveling over soft roads (bottoms), 

 = SPDCM/2.0, i.e. speed over soft roads is 50% of normal; 
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BDTOPSPDCM = CM speed when traveling through areas of fallen roof rock, 

 = SPDCM/1.5, i.e. speed through fallen rock is 67% of normal; 

WATER
i
i-1(X) = length of water hazard(s) encountered moving from stage i-1 to stage i 

given state X; 

SOFTBT
i
i-1(X) = length of soft roadway hazard(s) encountered moving from stage i-1 

to stage i given state X; 

BDTOP
i
i-1(X) = length of bad top hazard(s) encountered moving from stage i-1 to 

stage i given state X. 

 

The method for determining the road condition adjustment factor is the same for each 

detrimental road condition and is described in the example shown in Figure 3.7, which considers 

a place change from stage i-1 to stage i through two water hazards of length d1w and d2w. 

 

 

 

Figure 3.7.   Diagram of place change with two water hazards. 

 

 

The total length of water hazards encountered moving from stage i-1 to stage i is d1w + 

d2w.  The time required to go through these hazards is (d1w + d2w) / WATERSPDCM.  The time 

required to go the same distance without water is (d1w + d2w) / SPDCM.  The road condition 

adjustment factor is the difference between these two times.  Since (d1w + d2w) = WATER
i
i-1(X), 

then RDCON
i
i-1(X) for this example scenario is given as: 

 RDCON
i
i-1(X) = [WATER

i
i-1(X)/WATERSPDCM] – [WATER

i
i-1(X)/SPDCM]. 
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Similarly, for soft roads, the road condition adjustment factor is: 

 RDCON
i
i-1(X) = [SOFTBT

i
i-1(X)/SOFTBTSPDCM] – [SOFTBT

i
i-1(X)/SPDCM]; 

 

and for areas of bad top where roof rock has fallen, it is: 

 RDCON
i
i-1(X) = [BDTOP

i
i-1(X)/BDTOPSPDCM] – [BDTOP

i
i-1(X)/SPDCM]. 

 

Thus, the complete road condition adjustment factor is defined as follows: 

 RDCON
i
i-1(X) = [WATER

i
i-1(X)/WATERSPDCM] – [WATER

i
i-1(X)/SPDCM] 

 + [SOFTBT
i
i-1(X)/SOFTBTSPDCM] – [SOFTBT

i
i-1(X)/SPDCM]  (3.4) 

 + [BDTOP
i
i-1(X) / BDTOPSPDCM] – [BDTOP

i
i-1(X) / SPDCM]. 

 

Integrating all three adjustment factors with the basic time for the place change element of 

CCTi(X) gives the following: 

 MOVE
i
i-1(X)=[TD

i
i-1(X)/SPDCM]+TCOR

i
i-1(X)+CH

i
i-1(X)+RDCON

i
i-1(X). (3.5) 

 

Production element.  The production element of cut-cycle time has two components – 

change-out time and loading time – and is expressed mathematically as: 

 PRODi(X) = COTi(X) + LTi(X) (3.6) 

 

where COTi(X) = change out time for stage i given state X,  

and LTi(X) = loading time for stage i given state X. 

 Change-out time.  Change-out time (COT) is the time required to move loaded cars away 

from the face and empty cars to the face.  Because entries and crosscuts are not wide enough to 

allow haulage units to pass, loaded haulage units must exit the face area before empty haulage 
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units can enter the face area.  The intersection where loaded and empty haulage units cross paths 

is called the change-out point (COP).  It is illustrated in Figure 3.8.  The distance between the 

face and the COP is change-out distance (COD), as shown in Figure 3.8.  This is not a true COD 

as haulage units travel to and from the back of the CM, not the face; however the back of the CM 

is a moving point.  Production models account for haulage unit and CM lengths in calculating 

adjusted change-out and haul distances.  That level of accuracy is beyond the scope of this cut 

sequence algorithm that would essentially be a subroutine of the broader production model.   

  

 

 

Figure 3.8.   Illustration of change-out point and change-out distance. 

 

 

 COD is a measurable parameter based on mining geometry.  Haulage unit tram speed 

provided in equipment specifications by vendors may be used until time study data are collected.  

Total COT for a cut depends on the number of haulage units being operated, their capacity, and 

cut volume.  Two conditional adjustments are also required. 

Mathematically, the basic incremental value for COT is expressed as [CODi(X) / SPDHU].  

Total unadjusted COT is found as follows: 
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 COTi(X) = {[CODi(X)/SPDHU]*2*TRIPSi(X)} + [SWIN* TRIPSi(X)] (3.7) 

 

where  CODi(X) = change-out distance for stage i given state X (in feet). 

 SPDHU = haulage unit (HU) tram speed (in feet per minute), 

 TRIPSi(X) = number of haulage unit loads in stage i given state X 

and SWIN = time required to turn haulage unit at COP (in minutes). 

The number of haulage unit trips made for a given cut is a function of cut volume, 

haulage unit capacity, and how much of the haulage unit capacity is utilized.  Each trip requires 

traversing the distance between change-out point and face twice, once coming in empty and once 

going out loaded.  Theoretically, the first haulage unit trip in and the last haulage unit trip out 

should not be counted as they coincide with the CM tramming to and from the face, respectively, 

which is part of the CCT place change element.  This only happens in very efficient operations.  

Mathematically, TRIPSi(X) is expressed as follows: 

 TRIPSi(X) = ROUNDUP [CUTVOLi(X) / (PLDHU * FILL)],  (3.8) 

 

where ROUNDUP indicates the bracketed quantity is rounded up to the next integer; 

  CUTVOLi(X)= volume of coal in stage i given state X (in tons), 

  = DEPTHi(X) * WIDTHi(X) * HEIGHTi(X) * RCDENi(X); 

 DEPTHi(X) = depth of stage i given state X (in feet); 

 WIDTHi(X) = width of stage i given state X (in feet); 

 HEIGHTi(X) = mined height of stage i given state X (in feet);  

 RCDENi(X) = unit weight of raw coal for stage i given state X (in tons/ft
3
);  

  PLDHU = haulage unit capacity (in tons); 

and FILL = percentage of haulage unit capacity utilized (determined in time studies). 
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While width is typically constant for all cuts in a given mine, mined height and raw coal 

unit weight vary with seam thickness.  Seam thickness may be relatively constant across and 

along a mining section or it may vary widely from cut to cut.  There are two options to consider 

for mined height.  It can be maintained at a constant level in which case the amount of out-of-

seam dilution (OSD) varies as seam height varies, or it can be the seam height plus a fixed 

percent of OSD.  The option selected depends on the mining company’s operating philosophy 

and preference.  For both options, mined height is expressed as follows: 

 HEIGHTi(X) = SEAMi(X) * [1 + OSDi(X)],  (3.9) 

 

where SEAMi(X) = seam thickness of stage i given state X (in feet), 

and OSDi(X) = OSD mined in stage i given state X (% of seam thickness).    

Hence, RCDENi(X) is determined as follows: 

 RCDENi(X) = 
                                     

          
 (3.10) 

where COALDEN = unit weight of coal  

and OSDDEN =  unit weight of OSD. 

Values of 83 and 144 pounds per cubic foot (pcf) are used for COALDEN and OSDDEN, 

respectively, in functional testing of the model.   

WIDTHi(X), HEIGHTi(X), and RCDENi(X) can be combined into a single factor – tons 

per foot of cut depth or tons per foot of advance, TFAi(X), defined as follows: 

 TFAi(X) = WIDTHi(X) * HEIGHTi(X) * RCDENi(X) / (2,000 lb/ton). (3.11) 
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  Thus, Equation 3.8 becomes: 

 TRIPSi(X) = ROUNDUP [TFAi(X) * DEPTHi(X) / (PLDHU * FILL)].  (3.12) 

 

Change-out condition adjustment factor.  The presence of line curtain, corners, and/or 

poor road conditions in the change-out path prevents the haulage unit operator from negotiating 

the change-out path at normal speed.  Curtain and corners are a regular part of the mining 

process as shown in Figure 3.9.  Time studies conducted by the author measuring speeds for 

empty and loaded haulage units operating between the COP and the face and between the COP 

and the dump point show that haulage unit tram speed can be reduced by as much as 50% when 

the change-out path is restricted by curtain or includes corners.  Poor road conditions, while not a 

normal occurrence, have the same effect as curtain or corners.   

 

 

 

Figure 3.9.   Normal change-out conditions showing haulage restrictions with 

line curtain (left) and corner (right). 

 

 

The change-out condition adjustment factor, COCONi(X), is defined as: 
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 COCONi(X) = 1.0 if change-out path is not obstructed by line curtain, corners that must 

be negotiated, or poor road conditions, 

  = 1.5 if one of either line curtain, corners that must be negotiated, or poor 

road conditions obstruct the change-out path, 

 = 2.0 if two of either line curtain, corners that must be negotiated, or poor 

road conditions obstruct the change-out path. 

 

To include this adjustment, haulage unit tram speed, SPDHU, in Equation (3.7) is divided 

by COCONi(X), giving the following expression for COTi(X): 

 COTi(X) = {CODi(X) / [SPDHU / COCONi(X)]}*2*TRIPSi(X) (3.13) 

  + [SWIN* TRIPSi(X)] 

 

which can be simplified to: 

 COTi(X) = (2/ SPDHU)*[CODi(X)*COCONi(X)*TRIPSi(X)] (3.14) 

  + [SWIN* TRIPSi(X)]. 

 

 Some occasions require averaging two values for COCONi(X).  For example, during a 

cut that completes a crosscut curtain is obstructing the change-out path, but the moment the CM 

holes through, that curtain comes down.  Thus, half of the cut has COCONi(X) = 1.5 or 2.0 and 

the other half of the cut has COCONi(X) = 1.0 or 1.5, depending on whether negotiating corners 

is also involved.  For a cut that completes a crosscut that was turned, the haulage unit must 

negotiate a corner and stay clear of line curtain for most of a long change-out path until the hole 

is made and then it only has to deal with the corner.  COCONi(X) for this scenario is (2.0 + 

1.5)/2 = 1.75.  For a cut that completes a crosscut that was started head-on, the haulage unit 

typically has straight-line access to the CM at the face and only has to deal with line curtain till 

the hole is made.  COCONi(X) for this scenario is (1.5 + 1.0)/2 = 1.25. 
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Wait-no-car adjustment factor.  COT does not include any time that a haulage unit 

spends waiting at the COP, nor does it include any time that the CM spends waiting because 

there is not an empty haulage unit at the COP when a loaded haulage unit passes that point after 

leaving the face area.  The latter condition is, however, accounted for, as it must be, with a wait-

no-car adjustment factor.  WAITNOCARi(X) is the time per occurrence that a CM is not loading 

because there is no haulage unit at the COP when a loaded haulage unit leaving the face passes 

that point. The equation for determining WAITNOCARi(X) is taken from the SSP Model 

described in Chapter 2, and is written as follows:   

 WAITNOCARi(X) = HDi(X)/SPDHU(CP-D) + HDi(X)/SPDHU(D-CP)  

 + PLDHU/DRHU + SWIN (3.15) 

 – [NCARSi(X) – 1] * [PLDHU/LRCM + CODi(X)/SPDHU(CP-F) 

 + CODi(X)/SPDHU(F-CP) + SWOUT], 

 

where CP = change-out point, 

 D = dump point, 

 F = face, 

 HDi(X) = distance from the change-out point for stage i given state X to the dump 

point (in feet), 

 NCARSi(X) = number of haulage units in operation for stage i given state X, 

 SWIN = time required to turn haulage unit at CP (in minutes), 

 SWOUT = time required to turn haulage unit other than at CP (in minutes),  

  DRHU = haulage unit dumping rate (in tons per minute), 

and LRCM = CM loading rate (in tons per minute). 

Data collected in time studies are used to designate values for all of the above variables. 
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For simplicity, uniform SPDHU for all haulage segments in Equation 3.15 (CP-D, D-CP, 

CP-F, and F-CP) is assumed.  Additionally, SWIN = SWOUT is assumed.  These assumptions 

have been validated with time study data collected by the author at several mines.  Based on 

these assumptions, Equation 3.15 can be simplified to Equation 3.16: 

 WAITNOCARi(X) = 2*HDi(X)/SPDHU – [NCARSi(X) – 1]*2*CODi(X)/SPDHU  

 + PLD/DRHU*[3 – 2*NCARSi(X)]  (3.16) 

 + SWIN*[2 – NCARSi(X)]. 

  

 Since WAITNOCARi(X) is per occurrence, it must be multiplied by the number of 

occurrences to obtain a total wait-no-car adjustment factor.  Thus, the wait-no-car adjustment 

factor, WOCi(X), is defined as follows: 

 WOCi(X) = {(2/SPDHU)*{HDi(X) – [NCARSi(X) – 1]*CODi(X)}  

 + {PLD/DRHU*[3 – 2*NCARSi(X)]}  (3.17) 

 + {SWIN*[2 – NCARSi(X)]}} 
 *TRUNC[TRIPSi(X)/NCARS]. 

 

where TRUNC indicates the bracketed quantity is truncated to an integer by removing the 

decimal or fractional part of the number. 

Incorporating the wait-no-car adjustment factor, WOCi(X), into Equation 3.14 gives the 

following mathematical expression for the change-out time element of the production component 

of CCT found in Equation 3.6: 

 COTi(X) = (2/ SPDHU)*[CODi(X)*COCONi(X)*TRIPSi(X)] (3.18) 

  + [SWIN* TRIPSi(X)] + WOCi(X). 
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Loading time.  The second element of the production component is a function of the CM 

loading rate, as measured in time studies, and the cut volume of stage i, which is expressed 

mathematically as follows: 

 LTi(X) = CUTVOLi(X) / LRCM. (3.19) 

 

CUTVOLi(X) was previously defined as TFAi(X) * DEPTHi(X), which gives: 

 LTi(X) = {[TFAi(X) * DEPTHi(X)] / LRCM}. (3.20) 

 

Most mining geometries are designed to have cuts of uniform depth, which is usually the 

maximum mining depth allowed in the mine’s roof control plan approved by regulatory agencies.  

Cuts of uniform depth can be achieved for the most part when mining in entries.  Where cuts of 

varying depth occur is during mining of crosscuts, which cannot be started or completed until the 

two entries connected by the crosscut have been mined deep enough.  Crosscuts typically consist 

of one or more cuts that are shorter than the standard (or maximum) mining depth.  These shorter 

cuts are the first and/or last cut made in a crosscut.  To the extent uniform cut depth is achieved, 

loading time becomes a constant; however, because shorter cuts are associated with completing 

crosscuts in a timely fashion, either by starting or finishing them, loading time is a crucial part of 

the basic optimal value function, which cannot be ignored. 

Clean-up adjustment factor.  At the end of each cut, the CM backs out of the cut, then 

makes a clean-up pass down both sides gathering loose material in the pan of the CM which is 

loaded into the last haulage unit for that cut.  Since this material will all fit into one car, the last 

car stays in the face area while the CM repositions from one side to the other during the clean-up 

process; however, the haulage unit must also reposition.  The time required for the haulage unit 
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to reposition is identified as RESETHU, which is measured in the time study process.  Including 

this adjustment gives the following equation for LTi(X): 

 LTi(X) = {[TFAi(X) * DEPTHi(X)] / LRCM}+ RESETHU. (3.21) 

Substituting Equations 3.12, 3.18, and 3.21 into Equation 3.6 gives the following 

complete mathematical expression for the production element of CCTi(X) in Equation 3.1: 

 PRODi(X) = {(2/ SPDHU)*[CODi(X)*COCONi(X)] + SWIN} 

 * ROUNDUP[TFAi(X)*DEPTHi(X)/(PLDHU*FILL)] (3.22) 

 + WOCi(X) + RESETHU 

 + {[TFAi(X) * DEPTHi(X)] / LRCM}. 

 

 

3.4  Recurrence Relation 

CCTi(X) is a DP algorithm.  With it defined, a DP OMS model is developed using the 

recurrence relation or recursion formula, which is: 

 fi(X) = minimum [CCTi(X) + fi-1(X – Xi)] (3.23) 

 

where  fi-1(X – Xi)  = total cut-cycle time that results from following an optimal policy up to 

and including stage i-1. 

 

This recursion relation defines a local optimum for a single stage i given the existing state 

X; however, a sequence of local optimums does not guarantee on optimum overall sequence.  

The goal is to optimize the sequence of cuts for a given period of time such as a shift or a day, or 

for a complete cut cycle of two or more crosscuts of advance, usually the amount of advance 

between conveyor belt and power system moves.  Therefore, all paths must be considered and 

the path that yields the overall optimum for the specified time period is the one that is selected. 
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For a conventional room-and-pillar mining section, the number of possible paths can be 

very large.  To keep the task at a manageable level, only those options within a specified range of 

the local minimum CCTi(X) are pursued.  This boundary condition is defined by the difference 

in time, MOVDIF
ia

ib(X), for tramming the CM from stage i-1 to cuts ia or ib at equivalent depths 

in adjacent entries, as shown in Figure 3.4.  Mathematically, this is expressed as: 

 MOVDIF
ia

ib(X) = [TD
ia

i-1(X) / SPDCM] – [TD
ib

i-1(X) / SPDCM] (3.24) 

 

where TD
ia

i-1(X) is the distance from cut i-1 to cut ia, TD
ib

i-1(X) is the distance from cut i-1 to cut 

ib, and SPDCM is the tram speed of the CM.  Simply stated, it is the time it takes the CM to tram 

the entry spacing distance.  For example, if entry spacing is 80 feet and the CM tram speed is 30 

feet per minute, MOVDIF
ia

ib(X) = 80/30 = 2.7 minutes.  Thus, any path within 2.7 minutes of the 

local minimum CCTi(X) is evaluated further. 

 

3.5  Constraints 

Constraints affecting the determination of a CM cut sequence are described in the 

constraint matrix shown in Table 3.1.  A legal or regulatory constraint prohibits mining specific 

cuts given the existence of certain conditions defined in mining regulations, or if mining a cut 

would violate approved roof control (bolting) and ventilation plans.  For example, a cut in an 

entry cannot be mined if the previously mined cut in the same entry has not been bolted.  An 

operational constraint is based on those guiding policies and practices listed previously.  

Operational constraints establish priorities for mining cuts as well as place some restrictions on 

which feasible cuts can be selected.  For example, cuts that start or end a crosscut may be 

expedited, entry development beyond the point where crosscut development can occur may be 
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restricted, and preference may be given to starting crosscuts head-on and mining in the same 

direction as ventilation air flow. 

 

 

Table 3.1.   Constraint matrix. 

 

 Bolting Ventilation 

Regulatory 

 Travel inby unsupported top is 
not allowed 

 Crosscuts may not be turned 
from certain designated entries 

 Mined area must be bolted 
within a specified time period 

 Time-weighted average dust 
exposure limits must not be 
exceeded 

 Roof bolter can be downwind of 
CM for only a designated 
amount of time per shift 

Operational 

 Maintain a buffer between 
bolting and mining functions 

 Mining cannot occur when 
bolter blocks haulage path 

 Mine crosscuts in the direction 
of ventilation airflow 

 Start crosscuts head-on 

 No turning to the blind side (or 
scrubber side) of CM 

 

 

Every mine is required to submit roof control and ventilation plans to MSHA for 

approval before any mining can take place.  MSHA policies are constantly evolving and vary 

from district to district.  In Table 3.1, the second bullet in the regulatory-bolting quadrant and the 

second bullet in the regulatory-ventilation quadrant are relatively new policies adopted by 

MSHA.  In Illinois, roof control plans are constraining mine operators from turning crosscuts out 

of entries containing critical infrastructure to minimize intersection diagonals and reduce the 

probability of roof falls.  Nationwide, ventilation plans are restricting the amount of time that 
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roof bolter operators can be downwind of the CM while it is producing coal to reduce their dust 

exposure levels. 

Constraints are used to help insure and maintain a healthy environment and safe working 

conditions for coal miners.  To illustrate how this can be done for the DP OMS model, the 

optimal value function, fi(X) = minimum CCTi(X), is subject to the following two constraints: 

 Bi(X) < PRODSTD(X), and (3.25) 

 Vi(X) ≤ DELV, (3.26) 

where Bi(X)  = bolting constraint for stage i given state X;  

  Vi(X) = ventilation constraint for stage i given state X; 

  PRODSTD(X) = unadjusted production time for a standard-sized cut in state X, 

and DELV = dust exposure limit value, e.g. MSHA standard of 2.0 mg/m
3
. 

A standard-sized cut for a given state X is defined by the following parameters: 

 WIDTHSTD(X) = width of opening (in feet), 

 DEPTHSTD(X) = depth of cut (in feet), 

 SEAMSTD(X) = seam height (in feet),  

and OSDSTD(X) =  mined OSD thickness (in % seam thickness). 

From these parameters, the unadjusted production time for a standard-sized cut given 

state X is determined based on Equation 3.22 as follows: 

 PRODSTD(X) = (2/SPDHU)*[TRIPSSTD(X)* CODMIN(X)] 

 +{[TFASTD*DEPTHSTD(X)]/LRCM}, 

 

where CODMIN(X) = minimum COD for all stages of state X (in feet), 
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   = LENGTHCM + [WIDTHSTD(X) / 2]; (3.27) 

and LENGTHCM = length of CM (in feet). 

Equations 3.11 and 3.12 are used to find TFASTD(X) and TRIPSSTD(X) as follows: 

TFASTD = WIDTHSTD(X)*{SEAMSTD(X)*[COALDEN+OSDSTD(X)*OSDDEN]}/2,000, 

TRIPSSTD(X) = ROUNDUP [TFASTD * DEPTHSTD(X) / PLDHU]. 

Bolting or roof control constraint.  To be considered feasible, a cut must be accessible 

through previously mined cuts that have been bolted.  This constraint prevents the CM operator 

from working near unsupported roof.  This constraint can also be used to maintain a buffer 

between mining and bolting functions limiting instances where the CM and the roof bolter cross 

paths.  To do so, this constraint prevents the CM from returning to a previously mined cut before 

mining two or more cuts in other entries and crosscuts.  A bolting or roof control constraint 

designed to maintain a buffer between mining and bolting functions may be defined as follows: 

Bi(X)  = ∞ (i.e. prohibited) if any of the following conditions apply: 

 

 cut i is not feasible, i.e., access cuts have not been mined,  

 cut i is inby stage i-1 and in the same entry or crosscut (see Figure 3.10), 

 cut i is in an entry and inby the first cut in a crosscut mined from that entry or the 

last cut in a crosscut mined into that entry, either of which is stage i-1 (see Figure 

3.11), 

 cut i is the first cut in a crosscut that is adjacent to the first or last cut in an 

adjoining crosscut that is stage i-1 (see Figure 3.12); 

 

 otherwise, Bi(X)  = {[DEPTHi-n(X) * BOLTTM] / n}, (3.28) 

 

where DEPTHi-n(X) = depth of stage i-n through which cut i is accessed given state X (in 

feet); 

  n = number of stages previous to stage i, (i.e., 2, 3, 4, etc.); 

and BOLTTM  = bolting time per foot of cut depth. 
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Time studies are used to determine BOLTTM by measuring the amount of time required 

to install one row of bolts and move to the next row.  Consider an example where BOLTTM of 

1.625 minutes is observed.  Assuming 32-ft depth for all cuts gives [DEPTHi-n(X) * BOLTTM] = 

52 minutes, leading to the following bolting constraint values: 

 Bi(X) = 26.0 minutes if cut i is accessed through stage i-2 of standard cut depth, 

 Bi(X) = 17.3 minutes if cut i is accessed through stage i-3 of standard cut depth, and

 Bi(X) = 13.0 minutes if cut i is accessed through stage i-4 of standard cut depth. 

These constraint values are compared to the unadjusted production time for a cut of 

standard depth, which, for the ongoing example assuming SEAMSTD = 7.0 feet, OSDSTD = 10%, 

and haulage units with 300 feet per minute tram speed and 10-ton capacity requiring 45 seconds 

for a 32-foot long CM to load, is determined as follows: 

TFASTD = WIDTHSTD(X)*{SEAMSTD(X) 

 *[COALDEN+OSDSTD(X)*OSDDEN]}/2,000, 

 = 18*{7*[83+0.10*144]}/2000, 

 = 6.14 tons/foot of advance; 

 TRIPSSTD(X) = ROUNDUP [TFASTD * DEPTHSTD(X) / PLDHU], 

 = ROUNDUP [6.14*32/10], 

 = 20 trips;  

and  PRODSTD(X) = [CODMIN(X) / SPDHU]*{2 * [TRIPSSTD(X) – 1]} 

  + {[TFASTD * DEPTHSTD(X)] / LRCM}, 

 = {[32+(18/2)] / 300}*{2*(20 – 1)} + [(6.14*32)/(10/0.75)], 

 = 21.2 minutes. 

 

Since Bi(X) is less than PRODSTD(X) for all cases except n = 2, the CM is not constrained 

from tramming to stage i accessed through stage i-n, where n > 2. 
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Figure 3.10.   Cut i inby stage i-1 and in the same entry or crosscut. 

 

 

Figure 3.11.  Cut i in an entry inby stage i-1, which is the first or last cut in a 

crosscut mined from or into that entry, respectively. 

 

 

Figure 3.12.   Cut i is the first cut in a crosscut adjacent to an adjoining crosscut 

with stage i-1 as first or last cut. 
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Ventilation or dust control constraint. Federal regulations limit miners’ exposure to 

respirable dust.  The standard currently enforced is a time-weighted average of 2.0 mg/m
3
, but 

the Mine Safety and Health Administration (MSHA) has proposed lowering that to 1.0 mg/m
3
.  

The ventilation or dust control constraint is designed to protect the CM operator and others from 

exposures to respirable dust that would be out of compliance.  This may be accomplished by 

estimating a production-weighted average of cumulative dust exposure at each stage of a cut 

sequence and constraining the CM from pursuing a sequence that might result in over exposure 

at any point in the sequence. 

As mining progresses in a room-and-pillar mechanized mining unit (MMU), a number of 

different types of cuts will be made as defined by CM positioning at the start and/or end of the 

cut. A summary of primary cut types is given in Table 3.2.  A dust exposure level is associated 

with each cut type based on the difficulty of getting intake air to the working face.   

 

 

Table 3.2.   Primary cut types with their associated relative level of dust 

exposure. 

 

Description of Cut Type 
Dust 
Exposure 
Level 

 

Entry with initial face < LENGTHCM from LOXC low 

Entry with LENGTHCM < initial face < 2*LENGTHCM from LOXC  medium 

Entry with 2*LENGTHCM < initial face < 3*LENGTHCM from LOXC high 

Entry with 3*LENGTHCM < initial face from LOXC very high 

1st cut in crosscut turned to operator side (side opposite CM scrubber) high 

1st cut in crosscut turned to blind side (same side as CM scrubber) very high 

1st cut in crosscut started head-on and mined with the air low 

1st cut in crosscut started head-on and mined against the air medium 

Cut in crosscut (not 1st or last) mined with the air medium 

Cut in crosscut (not 1st or last) mined against the air medium 

Cut that completes crosscut mined with the air low 

Cut that completes crosscut mined against the air high 
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Dust sampling programs have been and continue to be conducted by researchers in the 

field of dust control to quantify the dust exposure of CM operators, haulage unit operators, roof 

bolters, and other personnel for each cut type as well as dust levels in the return entry of each 

MMU. (Chugh, 2006a; Chugh 2012).  Work is ongoing to develop a dust exposure index that 

may be factored into ventilation or dust control constraints on the DP OMS model.  With that 

concept in mind, a ventilation or dust control constraint may be defined as follows: 

 Vi(X) = ∞ if situations prohibited by ventilation and roof control plans exist, such as: 

 

 cut i turns a crosscut from the belt, power, or travel entries, 

 cut i turns a crosscut in a row of crosscuts where two have already been turned; 

 

 otherwise,  

 

 Vi(X) = [c=i-n
i
DUSTc(X) * CUTVOLc(X)] / [c=i-n

i
CUTVOLc(X)], (3.29) 

where DUSTc(X) = dust exposure index value for cut c given state X (in mg/m
3
), 

and n = the number of cuts made since the beginning of the sequence. 

Standard dust sampling and monitoring processes are used to determine a time-weighted 

average dust exposure index, DUSTc(X), corresponding to the dust exposure levels identified in 

Table 3.2.  Continuing with the same example established for the bolting constraint and 

assuming constant seam thickness and 10% OSD for all cuts, hypothetical dust exposure index 

values corresponding to low, medium, high, and very high levels of dust exposure are found to 

be 0.5, 2.0, 3.5, and 5.0 mg/m
3
, respectively.  For the sequence shown in Figure 3.13, Cuts 1-3 

have low levels of dust exposure, Cuts 4-6 have medium levels of dust exposure, and Cuts 7-9 

have high levels of dust exposure.   
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Figure 3.13.   Example cut sequence. 

 

 

Using Equation 3.29, Vi(X) is determined for each stage as follows: 

 V1(X) = [c=1-0
1DUSTc(X) * CUTVOLc(X)] / [c=1-0

1CUTVOLc(X)], 

 = [0.5*(32*6.14)] / (32*6.14)  

 = 0.5; 

 V2(X) = [c=2-1
2DUSTc(X) * CUTVOLc(X)] / [c=2-1

2CUTVOLc(X)], 

  = [2*0.5*(32*6.14)] / [2*(32*6.14)],  

  = 0.5; 

 V3(X) = [c=3-2
3DUSTc(X) * CUTVOLc(X)] / [c=3-2

3CUTVOLc(X)], 

  = [3*0.5*(32*6.14)] / [3*(32*6.14)],  

  = 0.5; 

 V4(X) = [c=4-3
4DUSTc(X) * CUTVOLc(X)] / [c=4-3

4CUTVOLc(X)], 

  = [3*0.5*(32*6.14) + 2.0*(32*6.14)] / [4*(32*6.14)], 

  = 0.875; 

 V5(X) = [c=5-4
5DUSTc(X) * CUTVOLc(X)] / [c=5-4

5CUTVOLc(X)], 

  = [3*0.5*(32*6.14) + 2*2.0*(32*6.14)] / [5*(32*6.14)], 

  = 1.1; 

 V6(X) = [c=6-5
6DUSTc(X) * CUTVOLc(X)] / [c=6-5

6CUTVOLc(X)], 

10c 10f 10i

10a 2 1 3 10k

10j10b

9

10d 10e 10g

8 7

5 4 6
10h
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  = [3*0.5*(32*6.14) + 3*2.0*(32*6.14)] / [6*(32*6.14)], 

  = 1.25; 

 V7(X) = [c=7-6
7DUSTc(X) * CUTVOLc(X)] / [c=7-6

7CUTVOLc(X)], 

  = [3*0.5*(32*6.14) + 3*2.0*(32*6.14) + 3.5*(32*6.14)] / [7*(32*6.14)], 

  = 1.5714; 

 V8(X) = [c=8-7
8DUSTc(X) * CUTVOLc(X)] / [c=8-7

8CUTVOLc(X)], 

  = [3*0.5*(32*6.14)+3*2.0*(32*6.14)+2*3.5*(32*6.14)]/[8*(32*6.14)], 

  = 1.8125; 

 V9(X) = [c=9-8
9DUSTc(X) * CUTVOLc(X)] / [c=9-8

9CUTVOLc(X)], 

  = [3*0.5*(32*6.14)+3*2.0*(32*6.14)+3*3.5*(32*6.14)]/[9*(32*6.14)], 

  = 2.0; 

 

There are eleven options for the tenth cut, but Cuts 10b-d and 10h-j would be constrained 

by any reasonable bolting constraint.  Assuming right to left ventilation, Cut 10e is a turn to the 

blind side of the CM with a very high dust exposure level, Cut 10f is a deep cut and Cut 10g is a 

turn to the operator side of the CM both with high dust exposure levels, and Cuts 10a and 10k are 

initial cuts in an entry with low dust exposure levels.  Cuts 10a, 10f, and 10k are the standard 32 

feet in depth, but Cuts 10e and 10g are turned cuts of only 25 feet in depth.   

Again using Equation 3.29, Vi(X) is found for Cuts 10a, 10e, 10f, 10g, and 10k.  For Cuts 

10a and 10k: 

 V10(X) = [c=10-9
10DUSTc(X) * CUTVOLc(X)] / [c=10-9

10CUTVOLc(X)], 

  = [4*0.5*(32*6.14)+3*2.0*(32*6.14)+3*3.5*(32*6.14)]/[10*(32*6.14)], 

  = 1.85. 

 

For Cuts 10e and 10f: 

 V10(X) = [c=10-9
10DUSTc(X) * CUTVOLc(X)] / [c=10-9

10CUTVOLc(X)], 

  = [(3*0.5*32*6.14)+(3*2.0*32*6.14)+(3*3.5*32*6.14)+(5.0*25*6.14)] / 

[(9*32*6.14) + (25*6.14)], 

  = 2.24. 
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For Cut 10g: 

 V10(X) = [c=10-9
10DUSTc(X) * CUTVOLc(X)] / [c=10-9

10CUTVOLc(X)], 

  = [(3*0.5*32*6.14)+(3*2.0*32*6.14)+(3*3.5*32*6.14)+(3.5*25*6.14)] / 

[(9*32*6.14) + (25*6.14)], 

  = 2.12. 

 

Applying the current MSHA standard of 2.0 mg/m
3
 for DELV, only Cuts 10a and 10k 

satisfy the ventilation constraint of Vi(X) ≤ DELV and the CM is constrained from taking any 

other path for stage i = 10. 

 

3.6  Chapter Summary 

 With the objective of satisfying six guiding policies or practices designed to 

achieve uniform advancement of a mining section by expediting the mining of crosscuts without 

jeopardizing miner health and safety, an algorithm was developed as the basis for a DP model 

that will identify optimal mining sequences for a CM production system.  The algorithm consists 

of an optimal value function that seeks to minimize cut-cycle time.  Minimizing cut-cycle time 

was selected over maximizing production for the optimal value function as it relies on time study 

data, which is easier to obtain than production data. 

Minimizing cycle time can also be interpreted as maximizing CM utilization, which 

refers to the time the CM spends actually producing or loading coal.  Moving the CM from cut to 

cut is a necessary part of the mining cycle; however, since coal is not produced during place 

changing, it is not considered as CM utilization.  Nor is the change-out period during which time 

the CM is also not loading coal considered as CM utilization.  Since most cuts in a standard mine 

plan are of uniform volume, seeking to minimize non-producing place change and change-out 

functions while maintaining a near constant loading function allows the DP algorithm to select 



87 
 

 

 

cuts with minimum cut-cycle times, which are analogous to cuts that achieve maximum CM 

utilization. 

The optimal value function of the DP algorithm has two primary components – a 

production cycle time and a place change cycle time.  The production cycle time consists of 

multiple incremental times for haulage unit loading and change-out functions.  Adjustments are 

made for change-out conditions, waiting on haulage units at the change-out point, and 

repositioning the haulage unit during clean-up passes at the end of each cut.  The place change 

cycle time consists of one basic time element based on the distance trammed between cuts and 

the CM tram speed.  It is adjusted for extra time required to maneuver around corners and cable 

handling. 

A recurrence relation incorporates the algorithm into a DP model, which defines a local 

optimum for a single stage.  In addition to the local optimum, other near-optimal stages that 

satisfy specified boundary conditions are evaluated further in search of a globally optimized 

mining sequence. 

Constraints may be imposed on the DP model to insure and maintain a healthy 

environment and safe working conditions for coal miners.  Constraints are designed for 

compliance with regulations as well as to establish standard operating procedures. 

Finally, it should be noted that the algorithm described in this chapter was fine-tuned 

through an extensive validation process that is the subject of Chapter 4.  That fine tuning 

included revising the wait-no-car adjustment factor associated with the change-out time element 

and adding the clean-up adjustment factor associated with the loading time element. 
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CHAPTER 4 

VALIDATION OF THE ALGORITHM 

 

4.1  Introduction 

 The DP algorithm described in Chapter 3 is the product of a development process through 

which the basic initial concept of an optimized mining sequence (OMS) model was enhanced 

with additional components and adjustment factors based on experience gained in attempted field 

applications (Chugh, 2006a; Chugh 2007).  The final stage of development was a two-step 

validation process.  This chapter describes each step in detail as well as how the validation 

process led to fine tuning the algorithm of which the DP model is constituted. 

In the first step of the validation process, industrial engineering studies measured all 

pertinent operational parameters on a room-and-pillar mining section as well as production and 

place change cycle times for two-thirds of a nine-hour shift.  Measured parameter values were 

incorporated into the main algorithm of the DP model generating cycle time predictions for each 

component of the cut cycle, which were compared with measured cycle times.  In this 

comparison, consistently occurring and uniformly valued differences observed in loading and 

change-out cycles led to a revision of the wait-no-car adjustment factor and the addition of the 

haulage unit reset component of the loading cycle.  This fine tuning has resulted in model 

predictions that were extremely well-matched with measured cycle times. 

The second step of the validation process expanded the predicted versus actual 

comparison from one to twenty-four shifts.  Production reports provided actual cycle time data 

for this step.  Despite production report data being accurate to only ± 2.5 minutes, this validation 

step showed that production cycle times predicted when modeling the actual mining sequence 

closely matched cycle times reported by the mine operator.  Place change cycle times were not as 
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closely matched, which is attributed to a “human factor.” This factor is defined and presented as 

an efficiency improvement training opportunity. 

Description of cooperating mine.  Algorithm validation requires showing that output 

from the DP model using the algorithm matches actual results given the same operational 

conditions and circumstances.  Actual results are obtained from industrial engineering time 

studies and mine production reports, time studies being more accurate and dependable due to the 

purpose for which data is collected.  Production reports are generated to satisfy customer, 

shareholder, and regulatory requirements.  Time studies are performed to identify efficiency 

improvement opportunities.  For researchers who need such data, both require the cooperation of 

an operating underground coal mine.   

The mine cooperating with this study is a new facility in southern Illinois.  The company 

operating the mine has no other operations allowing engineers and operations managers to 

establish their own policies and procedures instead of having to follow broad mandates from a 

large organization with several mines trying to maintain uniform standards across a wide variety 

of mining conditions.  This setting provided an ideal opportunity for both validation and 

application of the DP model and its algorithm.   

The mine operates with a non-union workforce in the No. 6 seam of the Illinois Basin at 

an approximate depth of 250 feet.  It is strictly a room-and-pillar operation with no plans for 

longwall mining during its forecasted 30-year lifetime.  Mine-specific geologic data pertinent to 

DP algorithm parameters are listed in Table 4.1 in order of variability from least variable to most 

variable.  The term “standard” in the table describes normal conditions, that being a thin (less 

than two feet) layer of shale overlain by competent limestone in the immediate roof.  When such 

conditions exist, the CM can make 32-ft deep cuts and roof rock or out-of-seam dilution (OSD) 
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will not fall before being bolted.  When limestone thins or disappears, shale thickness increases 

and, due to its structural weakness, it falls during mining.  This is typical for the No. 6 coal seam 

throughout the Illinois Basin.  When limestone thins, cut depth is shortened to as little as ten feet 

in an effort to minimize unsupported top and expedite bolting.  Time study data were collected 

on an 11-entry super-section developing a main entry system.  Entries are identified with 

sequential numbering (#1 through #11) from left to right across the section and crosscuts are 

identified by distance from the main slope.   

 

 

Table 4.1. Mine-specific geologic data pertinent to the DP algorithm. 

 
DP Algorithm 

Variable Description 
Unit of 

Measure Value 
 

COALDEN Unit Weight of Coal lb/ft3 83 

OSDDEN Unit Weight of Rock lb/ft3 144 

n/a Entry/Crosscut Spacing feet 80 

WIDTHSTD(X) Standard Entry Width feet 18 

SEAMSTD(X) Standard Seam Height feet 7.5 

OSDSTD(X) 
Standard Out-of-Seam 

Dilution Thickness 
feet 0.5 

HEIGHTSTD(X) Standard Mining Height feet 8 

DEPTHSTD(X) Standard Cut Depth feet 32 

 

 

At the time this validation study was being conducted, all equipment at the mine was 

relatively new, having been in full production for less than one year.  Battery-powered ramcars 

provided haulage with six units typically assigned to the section, usually split equally with three 

on each side.  The mining section had three roof bolters with the left-side bolter working in 

Entries #1, #2, and #3; the middle bolter working in Entries #5, #6, and #7; the right-side bolter 
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working in Entries #9, #10, and #11; and the middle bolter sharing Entry #4 with the left-side 

bolter and Entry #8 with the right-side bolter. Equipment specifications pertinent to the DP 

algorithm are given in Table 4.2.   

 

 

Table 4.2. Equipment specifications pertinent to the DP algorithm. 

 
DP Algorithm 

Variable Description 
Unit of 

Measure Value 
 

PLDHU Haulage Unit Capacity tons 12 

LENGTHCM CM Length feet 32 

LENGTHBLTR Bolter Length feet 32 

 

 

Description of time studies.  Time study data were collected by three observers for 

seven cuts made by the right-side CM.  One observer was stationed alongside the CM operator to 

capture start and stop times for CM loading and place change cycles using the template shown in 

Table 4.3.  Depending on cut configuration, this observer may or may not be able to see the 

change-out point and record arrival times of loaded and empty haulage units at that point.  A 

second observer was stationed at the haulage unit dump point to capture start and stop times for 

haulage unit unloading using the template shown in Table 4.4.  Typically, “ARRIVE @ FACE” 

is the loading cycle start time or change-out cycle stop time, “LEAVE FACE LOADED” is the 

loading cycle stop time or change-out cycle start time, “START DUMPING” is loaded haul 

cycle stop time, and “LEAVE FEEDER” is the empty haul cycle start time.  The third observer is 

able to roam about the section capturing haulage unit arrival times at the change-out point if the 

first observer is unable to see that spot, or otherwise watching for delays such as haulage units 

leaving their rotation to change batteries.  
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Table 4.3. Time study template for CM operator observer. 
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Table 4.4. Time study template for dump point observer. 
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 Time study data collected for seven cuts made by the right-side CM were compiled to determine 

and define each of the DP algorithm operational parameters as shown in Table 4.5. 

 

 

Table 4.5. Equipment-specific average time study data for the DP algorithm. 

 
DP Algorithm 

Variable Description 
Unit of 

Measure Value 
 

FILL Haulage Unit Fill Factor % 78 

SPDHU Haulage Unit Speed feet/minute 392 

RESETHU Haulage Unit Reset Time minutes 1.37 

PLD/DRHU Haulage Unit Dump Time minutes 0.32 

SWIN 
Haulage Unit Switch 

In/Out Time 
minutes 0.20 

 

SPDCM CM Tram Speed feet/minute 74.23 

LRCM Normal CM Loading Rate tons/minute 10.9 

LRCM 
CM Loading Rate when 

Turning Crosscut 
tons/minute 7.0 

CORTMCM 
Time Required for CM to 

Go Around a Corner 
minutes 0.66 

DRCHTMCM 
Time Required when CM 

Changes Directions 
minutes 1.38 

HANGTMCM or 
HANDTMCM 

Time Required to Hang or 
Handle CM Cable 

minutes 2.00 

HOOKTMCM 
Time Required to Hook or 

Unhook Cable Loop on CM 
minutes 0.22 

 

n/a Bolt Spacing feet 4 

SPDBLTR Bolting Speed minutes/foot 1.59 

 

 

4.2  Step 1 – Validation with Time Study Data 

Fine tuning.  The purpose of model validation is to verify that model outputs or 

predictions are accurate, and if not, to identify sources of inaccuracies and make revisions to 

model parameters or algorithms that will improve model accuracy.  The amount of difference 

between model outputs or predictions and actual or measured values defines the degree of model 

validity with zero difference being the desired target.   
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With operational parameters defined, all seven cuts observed in the time study were 

modeled using the DP algorithm as it was defined at the time.  Model inputs included not only 

measured and collected data shown in Tables 4.1, 4.2 and 4.5, but also actual observations and 

measurements of parameters specific to each cut, such as number of haulage units in rotation, 

haulage unit fill factor, CM loading rate, and OSD removed.  Loading, change-out, and place 

change cycle times predicted by the model were compared with cycle times measured during the 

time study.  The initial comparison clearly revealed that the DP algorithm, as it was defined at 

the beginning of the validation process, was consistently undervaluing both components of 

production cycle time as well as the place change cycle time.  This revelation led to a more in-

depth analysis of time study data including examining each individual haulage unit’s cycle times, 

which brought about the realization that the biggest change-out cycle time discrepancies 

occurred when less than the normal quota of three haulage units were in the haulage rotation, and 

particularly when  only one haulage unit was in use, as occurred twice during the time study 

period.  The initial “wait-no-car” adjustment factor, defined as a ratio haul distance, HDi(X), to 

change-out distance, CODi(X), multiplied by the reciprocal of [NCARSi(X) – 1], which became 

undefined with NCARSi(X) = 1.  Consequently, using the SSP Model described in Chapter 2 as a 

guide, WOCi(X) was redefined to the form described in Chapter 3.  A further inspection of time 

study data found that the last haulage unit loaded during each cut had to reset when the CM made 

clean-up passes on both sides of the cut, which had not been accounted for in loading time.  

Thus, the haulage unit reset factor, RESETHU, was added to the loading time algorithm.   

Reconciling differences between modeled and actual place change times was a bigger 

challenge as these differences were considerably larger than production time differences.  The 

production time element consists of multiple incremental segments, each of which is frequently 
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repeated and easily measured by normal time study practices.  On the other hand, the place 

change time element is essentially one event that is often interrupted by unrelated events, such as 

breaks for food and water, communications with supervision and co-workers, CM inspections 

and upkeep, establishing and maintaining ventilation controls, and crossing paths with the roof 

bolter.  These “human factors” occur intermittently but when they do occur, the amount of time 

added to the place change is significant.  Incremental times for human factors can be quantified 

during the time study process, but developing a “human factor adjustment” and including it in 

every place change would unfavorably skew place change cycle times predicted by the model for 

the many cuts where they do not occur.  Rather, while acknowledging that human factors do 

exist, the author recommends allowing the DP model to predict optimal place change cycle times 

that may be used as the focus of productivity improvement training.  

Validation of individual parameters and components.  The seven cuts for which time 

study data were collected are described by drawings made at the time of study and shown in 

Figures 4.1 through 4.7.  Tables 4.6 through 4.12 compare cycle times measured during the time 

study and cycle times produced by the DP model.  Although cut depth and OSD thickness are 

input parameters, they are included in the following tables to provide a frame of reference. 

Reported data for each cut is also shown in the right-hand column to provide an indication of the 

accuracy level of reported data, which is an important factor in Step 2 of the validation process.   

Values in the “Difference” column of Tables 4.6 through 4.12 are the measure of model 

validity with differences approaching zero being indicative of greater accuracy.  A production 

time difference of less than one minute for each of the seven cuts indicates that the DP model 

with the fine-tuned algorithm is valid. 
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Figure 4.1. Depiction of mine conditions for 1
st
 cut of time study. 

 

 

Table 4.6. Time study/DP model comparison for 1
st
 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) n/a n/a n/a 13 

 Depth (ft) 10 10 0 10 

 OSD (in) 20 20 0 adverse 

Cars  9 9 0 
not 

reported 
 Loading Time (minutes) 8.5 9.6 1.1 

 Change-out Time (minutes) 19.8 18.4 -1.4 

Production Time (minutes) 28.3 27.7 -0.3 27 
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Figure 4.2. Depiction of mine conditions for 2
nd

 cut of time study. 

 

 

Table 4.7. Time study/DP model comparison for 2
nd

 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) 14.8 9.8 -5.0 15 

 Depth (ft) 23 23 0 20 

 OSD (in) 6 6 0 good 

Cars  17 17 0 
not 

reported 
 Loading Time (minutes) 21.3 21.8 0.5 

 Change-out Time (minutes) 21.6 21.1 -0.5 

Production Time (minutes) 42.9 42.9 0.0 40 
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Figure 4.3. Depiction of mine conditions for 3
rd

 cut of time study. 

 

 

Table 4.8. Time study/DP model comparison for 3
rd

 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) 7.9 8.0 0.1 8 

 Depth (ft) 32 32 0 32 

 OSD (in) 6 6 0 good 

Cars  18 18 0 
not 

reported 
 Loading Time (minutes) 13.0 13.6 0.6 

 Change-out Time (minutes) 34.7 34.9 0.2 

Production Time (minutes) 47.7 48.5 0.8 50 
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Figure 4.4. Depiction of mine conditions for 4
th

 cut of time study. 

 

 

Table 4.9. Time study/DP model comparison for 4
th

 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) 6.3 5.0 -1.3 13 

 Depth (ft) 20 20 0 20 

 OSD (in) 4 4 0 good 

Cars  17 17 0 
not 

reported 
 Loading Time (minutes) 18.1 18.5 0.4 

 Change-out Time (minutes) 26.5 26.4 -0.1 

Production Time (minutes) 44.6 44.9 0.3 42 
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Figure 4.5. Depiction of mine conditions for 5
th

 cut of time study. 

 

 

Table 4.10. Time study/DP model comparison for 5
th

 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) 13.8 6.9 -6.9 11 

 Depth (ft) 10 10 0 10 

 OSD (in) 27 27 0 adverse 

Cars  9 9 0 
not 

reported 
 Loading Time (minutes) 7.3 8.4 1.1 

 Change-out Time (minutes) 9.0 8.4 -0.6 

Production Time (minutes) 16.3 16.8 0.5 16 
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Figure 4.6. Depiction of mine conditions for 6
th

 cut of time study. 

 

 

Table 4.11. Time study/DP model comparison for 6
th

 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) 12.1 4.9 -7.2 13 

 Depth (ft) 25 25 0 25 

 OSD (in) 8 8 0 adverse 

Cars  17 17 0 
not 

reported 
 Loading Time (minutes) 11.0 16.2 5.2 

 Change-out Time (minutes) 22.5 17.5 -5.0 

Production Time (minutes) 33.5 33.7 0.2 43 
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Figure 4.7. Depiction of mine conditions for 7
th

 cut of time study. 

 

 

Table 4.12. Time study/DP model comparison for 7
th

 cut of time study. 

 

 
Time Study 

(TS) 
Model  
(DP) 

Difference 
(DP – TS) 

 

Shift 
Report 

Place Change Time (minutes) 17.2 11.8 -5.4 10 

 Depth (ft) 27 27 0 n/a 

 OSD (in) 7 7 0 good 

Cars  17 17 0 
not 

reported 
 Loading Time (minutes) 17.3 17.2 -0.1 

 Change-out Time (minutes) 28.9 29.2 0.3 

Production Time (minutes) 46.2 46.4 0.2 n/a 
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4.3  Step 2 – Validation with Shift Report Data 

 Shift reports for two weeks from December 5, 2012 through December 19, 2012 were 

obtained from the cooperating mine.  This data encompassed 24 shifts and 331 cuts and included 

place change and production cycle times as reported by mine foremen, who typically report 

times in 5-minute increments, or with an accuracy of ±2.5 minutes (see the sample shift report 

provided in Appendix A).   

Each cut was charted on a sequence map to document the actual mining sequence.  This 

sequence including each individual cut depth was modeled with the DP aglorithm.  Cycle times 

predicted by the algorithm were compared with reported cycle times with the degree of matching 

used as a measure of the validity of the algorithm.  This comparison was done separately for 

production and place change elements. 

Production element.  For the production element comparison, cuts were divided into 

four categories based on cut depth and change-out distance (COD) as follows: 

1) Cuts greater than 28 feet in depth (160 cuts), 

2) Cut 16 to 28 feet in depth with COD less than 110 feet (66 cuts), 

3) Cuts 16 to 28 feet in depth with COD greater than 110 feet (34 cuts), and 

4) Cuts less than 15 feet in depth (71 cuts). 

Histograms of production cycle time frequency distributions predicted by the DP model versus 

those reported by mine foremen are shown in Figures 4.8 through 4.11.  A smooth curve is fitted 

to each frequency distribution in Figures 4.12 through 4.15.  Table 4.13 shows the closeness of 

the match between mean ( ) and standard deviation (s) for each category of cuts.  Consistently 

uniform coefficients of variation (cv) between 17% and 29% indicate that the production element 

of the DP algorithm is valid. 
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Figure 4.8.  Frequency distribution of production cycle times for cuts greater 

than 28 feet in depth. 

 

 

  

Figure 4.9. Frequency distribution of production cycle times for cuts 16 to 28 

feet in depth with change-out distance greater than 110 feet. 

 

Sample size:  160 cuts 

Sample size:  34 cuts 
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Figure 4.10. Frequency distribution of production cycle times for cuts 16 to 28 

feet in depth with change-out distances less than 110 feet. 

 

  

Figure 4.11.   Frequency distribution of production cycle times for cuts 15 feet or 

less in depth. 

 

Sample size:  66 cuts 

Sample size:  71 cuts 
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Figure 4.12.   Smoothed curve fit to frequency distribution of Figure 4.8. 
 

 

Figure 4.13.   Smoothed curve fit to frequency distribution of Figure 4.9. 
 

Sample size:  160 cuts 
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Figure 4.14.   Smoothed curve fit to frequency distribution of Figure 4.10. 

 

 

 

Figure 4.15.   Smoothed curve fit to frequency distribution of Figure 4.11. 
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Table 4.13.   Mean and variance comparison for production element of cycle 

time (in minutes). 

 

Category of Cut 
DP Model Data Shift Report Data 

  s cv   s cv 
 

> 28’ Cuts 49.75 8.41 17% 50.03 9.39 19% 

16-28’ Cuts, COD > 110’ 48.18 9.35 19% 48.68 10.52 22% 

16-28’ Cuts, COD < 110’ 36.19 7.71 22% 36.14 7.93 22% 

0-15’ Cuts 26.22 7.68 29% 26.28 7.74 29% 

 

 

Place change element.  Place change cycle times were reported for 292 cuts.  For the 

place change element comparison, cuts were divided into four categories as follows: 

1) Moves greater than 400 feet in length (40 moves), 

2) Moves between 240 and 400 feet in length (118 moves),  

3) Moves less than 240 feet in length that are not double cut moves (86 moves), and  

4) Moves where a second (double) cut is made without having to move to a different entry 

than the one used to access the cut the CM is moving from (48 moves). 

Histograms of place change cycle time frequency distributions predicted by the DP model versus 

those reported by mine foremen are shown in Figures 4.16 through 4.19.  Fitting a smooth curve 

to each frequency distribution, as depicted in Figures 4.20 through 4.23, provides a clearer 

indication of how closely DP model output matches reported place change cycle times. Unlike 

production cycle time, model predictions and shift report times for place change cycle time are 

not closely matched.  Table 4.14 shows the difference between ( ) and standard deviation (s)  

values for the place change element of cycle time as predicted by the DP model and as reported 

by the mine foremen for each category of move.  The average difference between modeled and 

reported place change times for all 292 moves is 6.83 minutes with a standard deviation of 5.49 

minutes.  
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Figure 4.16.   Frequency distribution of place change cycle times for moves 

greater than 400 feet long. 

 

 

Figure 4.17.   Frequency distribution of place change cycle times for moves 

between 240 and 400 feet long. 

 

Sample size:  40 cuts 

Sample size:  118 cuts 
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Figure 4.18.   Frequency distribution of place change cycle times for moves less 

than 240 feet long excluding double cuts. 

 

 

Figure 4.19.   Frequency distribution of place change cycle times for double cut 

moves. 

 

Sample size:  86 cuts 

Sample size:  48 cuts 
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Figure 4.20.   Smoothed curve fit to frequency distribution of Figure 4.16. 

 

 

 

Figure 4.21.   Smoothed curve fit to frequency distribution of Figure 4.17. 
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Figure 4.22.   Smoothed curve fit to frequency distribution of Figure 4.18. 

 

 

 

Figure 4.23.   Smoothed curve fit to frequency distribution of Figure 4.19. 
 



114 
 

 
 

Table 4.14.   Mean and variance comparison for place change element of cycle 

time (in minutes). 

 

Category of Move 
DP Model Data Shift Report Data Difference 

in Means   s   s 
 

Move > 400’ 13.48 2.03 19.20 4.83 5.72 

240’ < Move < 400’ 8.95 1.68 14.57 4.01 5.62 

Move < 240’ (not Double) 6.01 1.40 12.13 4.02 6.12 

Double Cut Move 3.88 0.53 11.10 4.78 7.23 

 

 

 Part of this difference was accounted for by examining differences between predicted and 

reported place change times as a function of tram distance.  First, moves were categorized 

according to the type of cut being moved to, with eight possibilities defined as follows: 

1) “Standard cut” is in an entry or straight where the distance from the last completed 

crosscut to the face is less than the crosscut spacing (71 moves), 

2) “Deep cut” is in an entry where the distance from the last completed crosscut to the face 

is more than the crosscut spacing (41 moves), 

3) First cut in a crosscut that is “turned” from an entry (15 moves), 

4) First cut in a crosscut that is started “head-on” (23 moves), 

5) Cut that advances a “crosscut” without completing it (24 moves), 

6) “Hole through” cut that completes a crosscut (40 moves), 

7) “Double cut” made in the entry from which the previous cut in a crosscut was accessed 

(48 moves), and 

8) Cut made in the intake entry farthest from the outermost return entry immediately 

following a cut made in that outermost return entry requiring “rerouting” of the CM cable 

across the entire mining section (15 moves). 
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Next, moves within each category are grouped according to their respective reported 

place change time, i.e. groups with 5-, 10-, 15-, 20-, 25-, and 30-minute place change times.  

Within these groups, moves are further subdivided based on how many times the DP model 

indicated that the CM cable had to be handled or hung during the move.   This parameter, 

NUMHAND in the DP algorithm, is rarely reported by mine foremen, but it is an important 

factor in the place change element of the DP algorithm.  For modeling purposes, NUMHAND 

values for each move should be specified by an experienced miner familiar with CM production 

systems.  The author’s mining experience qualifies him to do that for this study. 

With moves categorized, grouped, and subdivided, the difference between reported place 

change time and place change time predicted by the place change algorithm of the DP model was 

determined for each move.   A continuous function plot of this difference versus distance 

trammed by the CM for each move of a given category, group, and subdivision describes the 

time variability of the place change component in the DP model’s output.  Continuous function 

plots for moves to each type of cut are provided in Figures 4.24 through 4.31.  For these figures, 

markers of different shapes and colors distinguish between groups for each type of cut, and 

darker shading is used to distinguish between group subdivisions.  For a given reported placed 

change time, e.g. 15 minutes, the shape and color of markers identifying it will be the same for 

all figures.  Each figure shows linear regression trend lines and associated equations, where 

applicable, for each type of move.  These were determined using the method of least squares.  

Some figures contain black “X” markers.  These are moves with reported place change times that 

were not a multiple of five minutes, of which there were fourteen.  
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Figure 4.24.   Continuous function plot for moves to “standard cuts.” 

 

 

Figure 4.25.   Continuous function plot for moves to “deep cuts.” 
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Figure 4.26.   Continuous function plot for moves to “turn cuts.” 

 

 

Figure 4.27.   Continuous function plot for moves to “head-on cuts.” 
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Figure 4.28.   Continuous function plot for moves to “crosscut cuts.” 

 

 

Figure 4.29.   Continuous function plot for moves to “hole through cuts.” 
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Figure 4.30.   Continuous function plot for moves to “double cuts.” 

 

 

Figure 4.31.   Continuous function plot for “reroute” moves. 
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 Trend lines in each of the above plots confirm the importance of tram distance, TD
i
i-1(X), 

and CM tram speed, SPDCM, in validating the place change element of cycle time.  The DP 

algorithm is capable of predicting move times to within seconds, whereas move times used to 

validate the model were reported in 5-minute increments (or to within ± 2.5-minute accuracy).  

Given this arrangement and assuming no cornering, cable handling, or any other adjustments for 

“human factors” are required, a continuous function plot with a slope of -1/SPDCM (-0.013 for 

SPDCM = 74.23 feet per minute from Table 4.5) would result.  Slopes of trend lines shown in 

Figures 4.24 through 4.31 vary slightly from that due to adjustments made for cornering and 

cable handling; however, given that the variance is slight and that most of the trends on any one 

figure and even between figures exhibit a parallel relationship, it is reasonable to conclude that 

the place change component of the DP algorithm has validity. 

 Because double cutting moves require the least amount of adjustment, Figure 4.30 

provides the most uniform set of trend lines.  The average slope of the four trend lines shown in 

that figure is -0.0155.  Applying that slope to the range of tram distances for the four categories 

of moves described in Table 4.14, accounts for as much as half of the variance between predicted 

and reported move times, as shown in Table 4.15. 

 

 

Table 4.15.   Mean and variance comparison for place change element. 

 

Category of Move 
TD Range  

(feet) 
Time 

Difference 
(minutes) 

Mean 
Difference 
(minutes) 

Variance 
Due to TD 

Min Max 
 

Move > 400’ 401 602 2.71 5.72 47% 

240 < Move < 400’ 241 400 2.14 5.62 38% 

Move < 240’ (not Double) 54 240 2.51 6.12 41% 

Double Cut Move 44 161 1.58 7.23 22% 
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4.4  Chapter Summary 

 In the initial time study phase of model validation, one model parameter had to be 

redefined and one new parameter was added.  First, the wait-no-car adjustment factor, WOCi(X), 

was changed from a haul distance/change-out distance ratio, which did not allow for instances 

when only one haulage unit was in use, to the more accurate mathematical expression for “wait-

no-car” used in the SSP Model.  Second, the clean-up car adjustment factor was added to the 

loading time element to account for the haulage unit that takes the last load from a cut having to 

reset when the CM makes clean-up passes on both sides of the cut.  With those corrections made, 

it was possible to validate that the DP algorithm provides an accurate assessment of production 

and place change elements of the CM coal production system. 

 The need for a “human factor adjustment” to the place change element is suggested by 

the significant variance between DP model predictions and reported values.  Human factors 

contributing to place change time include but are not limited to breaks for food and water, 

communications with supervision and co-workers, CM inspection and upkeep, establishing and 

maintaining ventilation controls, and crossing paths with the roof bolter.  These factors occur 

intermittently but when they do occur, the amount of time added to a place change is significant.  

Including a human factor would skew predicted place change times for the many cuts where they 

do not occur.  Time study data can quantify human factors allowing mine operators to develop 

management controls for minimizing their effect on productivity. 
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CHAPTER 5 

CASE STUDY APPLICATION OF THE DP MODEL 

 

5.1  Introduction 

The concluding task of this study is a case study application of the developed DP model.  

Optimal sequences generated by the model are compared with actual mining sequences 

completed on a CM super-section at the cooperating mine from which validation data was 

collected.  Number of cuts, feet of advance, and cut-cycle time are the productivity measures 

evaluated in this comparison.   

The application case study was completed in two parts.  First, the DP model was used to 

identify optimal mining sequences for the first and last days of the two-week study period.  Four 

different scenarios (left and right side of the super-section constitute different scenarios) are 

examined by comparing optimal mining sequences (OMS) predicted by the DP model with 

actual mining sequences (AMS) completed by the mine.  Second, the DP model was used to 

identify an optimal mining sequence for advancing the entire section by three crosscuts, which is 

compared with the actual mining sequence followed.  Three crosscuts of advance is the amount 

required to complete belt and power moves, which are also a natural cycle in underground room-

and-pillar coal mining. 

 

5.2  One-Day, Two-Shift Analysis 

Mine characteristics for DP model set-up.  The mining section at the cooperating mine 

is an 11-entry super-section with left- and right-side operations as shown in Figure 5.1.  Three 

intake entries (#7, #8, and #9) bring fresh ventilation air to the face where it is channeled into 
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Entry #7 at the last open crosscut (LOXC) using tight curtains in Entries #8 and #9.  There the 

intake air splits into two streams, one for each side of the super-section.  Intake air on the left 

side moves right to left from Entry #6 to Entry #11.  Intake air on the right side moves left to 

right from Entry #7 to Entry #11.  After sweeping the face area, ventilation air exits the section 

in return entries on either side (Entries #1, #2, and #3 on the left side; Entries #10 and #11 on the 

right side).  Two travel entries (Entries #4 and #5) provide access to the face for mobile mining 

equipment.   

The left-side CM (LSCM) is configured with the scrubber on the left side of the machine 

requiring ventilation air to be supplied from the right side of the machine.  Thus, the LSCM 

mines Entry #1 through Entry #6 and crosscuts connecting those entries.  The right-side CM 

(RSCM) is configured with the scrubber on the right side of the machine requiring ventilation air 

to be supplied from the left side of the machine.  Thus, the RSCM mines Entry #7 through Entry 

#11 and crosscuts connecting those entries.  The RSCM also mines crosscuts connecting Entry 

#6 and Entry #7.  While flexibility exists for CMs to go beyond these boundaries, they are 

maintained constant during this study. 

Three haulage units are assigned to each side of the super-section.  They discharge onto 

the same conveyor belt, which is located in the center entry (#6) of the super-section.  Because 

battery-powered ramcars are used for haulage, operators have the flexibility of moving from side 

to side as needed to enhance productivity.  For example, cuts with a long haul distance (HD) and 

a short change-out distance (COD) have greater “wait-no-car” delays (as defined in Chapter 3), 

which can be reduced or eliminated by adding haulage units into the haulage cycle.  During this 

case study, the number of haulage units on each side is maintained at a constant level of three. 
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Figure 5.1. Face locations for Day 1 scenario with left-side section consisting of Entries 1-6 and right-side section 

consisting of Entries 7-11. 

KEY 

        Conveyor Feeder    CM Location at Start of Shift 80  Entry Spacing 53+03  Crosscut Number 

 Stopping     R   Return Entry B  Conveyor Belt Entry  T   Travel Entry    I  Intake Entry  
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For the case study, a primary and two secondary constraints were applied to the DP 

algorithm.  The primary constraint is a regulatory bolting constraint (see constraint matrix in 

Table 3.1) imposed by federal safety regulations and enforced by the Mine Safety and Health 

Administration (MSHA).  It prohibits any cut inby unsupported roof from being mined.  

Examples include a cut that can only be accessed through the previous cut just completed and not 

yet bolted, a cut in an entry inby the first cut in a crosscut started from that entry or the last cut in 

a crosscut holed into that entry, either of which was the previous cut just completed and not yet 

bolted.  Secondary constraints are operational and can be either ventilation or bolting constraints.  

The secondary ventilation constraint prohibits mining a cut if it is in an entry that is deep enough 

to start or complete a crosscut.  This gives preference to starting and finishing crosscuts as soon 

as it becomes possible to mine them in keeping with the guiding policies described in Chapter 3.  

The secondary bolting constraint prohibits mining a cut that was constrained by the primary 

bolting constraint on the previous cut.  This maintains a buffer between CM and roof bolter 

minimizing congestion in the face area and delays due to the CM having to wait on the roof 

bolter to support an area before a cut can be mined.  Both secondary constraints are used at the 

author’s discretion and should not be assumed to be standard operating procedure at the mine. 

Day 1 scenario.  Face positions on the first day of the study period (Day 1) are shown in 

Figure 5.1.  The section conveyor belt had just been extended such that the belt feeder (indicated 

by the inverted triangle) was within two crosscuts of the face or two crosscuts outby the LOXC.  

Mine geology and equipment data identified by time studies and used in the validation task as 

described in Tables 4.1, 4.2, and 4.5 also pertain to the case study application.   

Running the DP model consists of a series of iterations using a spreadsheet format as 

depicted in Table 5.1, which shows the first two iterations for the LSCM on Day 1.  During each 
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iteration, the cut with the minimum value for cut-cycle time (CCT), the optimal value function 

defined in Chapter 3, is selected for mining as indicated by cells with bold borders in Table 5.1.  

The DP model is not meant to be concerned with delays, expected or unexpected, due to 

equipment or infrastructure breakdowns, safety issues, or other downtime.  Thus, the target 

recursion value is the total time for two nine-hour shifts (with one-hour overlap) less travel time 

to the face for the first shift and from the face for the second shift as well as all delays that 

interrupted production and were accounted for on shift reports.  This value is considered to be 

the time available for production and is the total cut-cycle time for a one-day scenario.  Iterations 

continue until the recursion value reaches the total cut-cycle time achieved by the mine on the 

day being examined and selection of cuts forms an optimal path or sequence for the CM to 

follow.  This sequence can be used for strategic planning tool by entering it as input to any of the 

production models described in Chapter 2.  It can also be a tactical tool for use by the mine 

foreman as a daily operations plan. 

As described in Section 3.4, CCT values within an upper limit of the minimum are also 

evaluated as separate branches of a globally optimal sequence.  That upper limit, MOVEDIF, is 

the time it takes the CM to tram the entry spacing distance.  Most often these separate paths 

converge into the same sequence at which point, only the path with the lowest recursion value at 

the point of convergence is evaluated further.  Alternate paths for the LSCM on Day 1 showing 

CCT and recursion values for each iteration are illustrated in Table 5.2.  Only the optimal path is 

pursued after the twelfth iteration because five of the eight paths had converged.  Cycle times 

(from the validation study) and footages mined following actual mining sequences (AMS) are 

compared with the same data for optimal mining sequences (OMS) predicted by the DP model in 

Tables 5.3 and 5.4 for LSCM and RSCM, respectively. 
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Table 5.1. DP model 1
st
 iteration for the LSCM and Day 1 scenario. 
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Table 5.2. Paths evaluated for LSCM and Day 1 scenario. 
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Table 5.3. Productivity comparison of AMS and OMS for LSCM on Day 1. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 276 252 -24 

Cuts Mined 17 18 +1 

Cumulative Cycle Time (minutes) 590 596 +6 

Cumulative Loading Time (minutes) 232 219 -13 

Cumulative Change-out Time (minutes) 239 209 -30 

Cumulative Place Change Time (minutes) 120 168 +48 

 

 

Table 5.4. Productivity comparison of AMS and OMS for RSCM on Day 1. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 314 348 +34 

Cuts Mined 12 14 +2 

Cumulative Cycle Time (minutes) 544 556 +12 

Cumulative Loading Time (minutes) 216 235 +19 

Cumulative Change-out Time (minutes) 245 225 -20 

Cumulative Place Change Time (minutes) 82 97 +15 

 

 

At the cooperating mine, limestone in the immediate roof strata provides a stable mine 

opening that is easily supported.  When the limestone thins or disappears, there is a 

corresponding increase in thickness of the immediate roof rock known as Energy shale, which is 

a very weak formation that typically falls before it can be supported.  When such conditions are 

encountered, the mine plan is to make shorter cuts than the standard 32-ft cut.  Shorter cuts vary 

from as little as 5-ft depth to as much as 25-ft depth with the majority being 10 feet deep.  On 

Day 1, the LSCM encountered challenging mining conditions due to no limestone in the 

immediate roof strata.  Since the DP model gives preference to short cut with their inherently 

shorter production cycle times resulting from fewer change-outs due to fewer haulage units 

loaded, the OMS predicted by the DP model for LSCM on Day 1 focuses on short cuts.  As seen 
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in Table 5.3, the OMS has one more cut than the AMS, but mined footage was less.  Pursuing 

shorter cuts leads to greater place change times and smaller change-out times.  For the RSCM, 

conditions were good except for Entry #7, which improved during the course of the day, and the 

DP model predicts an OMS that provides greater productivity than the AMS.  The OMS included 

two additional cuts and an additional 34 feet in the same amount of cycle time. 

Both AMS and OMS were entered as input in the SSP Model described in Chapter 2 with 

results compared in Tables 5.5 and 5.6.  Figures 5.2 and 5.3 provide a visual comparison of 

actual and optimal mining sequences for the Day 1 scenario. 

 

 

Table 5.5. LSCM SSP Model output for Day 1 AMS and OMS. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 276 252 -24 

Cumulative Cycle Time (minutes) 494 474 -20 

Cumulative Loading Time (minutes) 209 191 -18 

Cumulative Change-out Time (minutes) 124 103 -21 

Expected Mining Rate (tons/minute) 3.49 3.32  

 

 

Table 5.6. RSCM SSP Model output for Day 1 AMS and OMS. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 314 348 +34 

Cumulative Cycle Time (minutes) 501 539 +38 

Cumulative Loading Time (minutes) 201 249 +48 

Cumulative Change-out Time (minutes) 193 161 -32 

Expected Mining Rate (tons/minute) 3.92 4.04  
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Figure 5.2. Actual mining sequence for Day 1 scenario with left-side section consisting of Entries 1-6 and right-side 

section consisting of Entries 7-11. 
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Figure 5.3. Optimal mining sequence suggested by DP model for Day 1 scenario with left-side section consisting of 

Entries 1-6 and right-side section consisting of Entries 7-11. 
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Day 12 scenario.  Time study data collected on Day 12 provides the most accurate 

information for comparison.  Mining conditions included both good and bad, as was the case for 

every day of the study.  On Day 12, the LSCM faced poor roof conditions in Entries #1 and #4; 

the RSCM faced poor roof conditions in Entry #10. 

Cycle times and footages mined following the actual mining sequences are compared 

with the same data for optimal mining sequences in Tables 5.7 and 5.8 for LSCM and RSCM, 

respectively.  SSP Model results of AMS and OMS for both sides are compared in Tables 5.9 

and 5.10 for LSCM and RSCM, respectively.  Figures 5.4 and 5.5 provide a visual comparison of 

actual and optimal mining sequences for the Day 12 scenario. 

Day 12 results are similar to Day 1 results in that the DP model once again showed 

preference for shorter cuts leading to an OMS for the LSCM that appears to be suboptimal when 

compared with the AMS; however, differences between OMS and AMS productivity measures 

are less than 5%, which confirms validation efforts described in Chapter 4.  The author was 

present with the RSCM crew for the first half of Day 12 and offered suggestions on the mining 

sequence to be followed that day, which may explain why there is little difference between the 

AMS and the OMS for the RSCM. 

 

Table 5.7. Productivity comparison of AMS and OMS for LSCM on Day 12. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 371 357 -14 

Cuts Mined 15 16 +1 

Cumulative Cycle Time (minutes) 653 653 0 

Cumulative Loading Time (minutes) 252 255 3 

Cumulative Change-out Time (minutes) 282 286 4 

Cumulative Place Change Time (minutes) 119 112 -7 
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Table 5.8. Productivity comparison of AMS and OMS for RSCM on Day 12. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 370 376 +6 

Cuts Mined 16 16 0 

Cumulative Cycle Time (minutes) 696 687 -9 

Cumulative Loading Time (minutes) 253 259 +6 

Cumulative Change-out Time (minutes) 326 313 -13 

Cumulative Place Change Time (minutes) 116 115 -1 

 

 

Table 5.9. LSCM SSP Model output for Day 12 AMS and OMS. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 371 357 -14 

Cumulative Cycle Time (minutes) 589 572 -17 

Cumulative Loading Time (minutes) 260 257 -3 

Cumulative Change-out Time (minutes) 184 171 -13 

Expected Mining Rate (tons/minute) 3.94 3.9  

 

 

Table 5.10. RSCM SSP Model output for Day 12 AMS and OMS. 

 

 AMS OMS Difference 
 

Cumulative Distance Mined (feet) 370 376 +6 

Cumulative Cycle Time (minutes) 631 641 +10 

Cumulative Loading Time (minutes) 264 282 18 

Cumulative Change-out Time (minutes) 225 212 -13 

Expected Mining Rate (tons/minute) 3.66 3.67  
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Figure 5.4. Actual mining sequence for Day 12 scenario with left-side section consisting of Entries 1-6 and right-

side section consisting of Entries 7-11. 
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Figure 5.5. Optimal mining sequence suggested by DP model for Day 12 scenario with left-side section consisting 

of Entries 1-6 and right-side section consisting of Entries 7-11. 
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5.3  Seven-Day, Three-Crosscut Analysis 

 Identifying an OMS for one day or one shift is a tactical application of the DP model.  

The model can also be used for strategic planning.  One such opportunity is to identify an OMS 

between belt and power moves.  As room-and-pillar mining sections advance, infrastructure must 

be moved to support mining.  This includes the section conveyor belt.  Conveyor belt is typically 

packaged in 500-ft lengths.  Since there is a carrying and return side to the conveyor, a 500-ft roll 

will advance the belt by 250 feet.  With crosscuts mined on 80-ft centers, the conveyor has to be 

advanced every three crosscuts.  Advancing the section conveyor is called a “belt move.”  Day 1 

of the mine study was the first production day immediately following a belt move.  The conveyor 

belt was advanced again after Day 7 of the study.  Thus, the DP model was used to determine an 

OMS for seven days of mining. 

 Because of challenging roof conditions already described, the standard cut depth of 32 

feet could not be uniformly followed throughout the section.  To provide an accurate comparison 

between AMS and OMS, a cut depth for every cut to be made during three crosscuts of advance 

was determined using shift report data.  Thus, each cut in the OMS, no matter when it was 

mined, had the same depth as that cut in the AMS.   

The mine operates with two production shifts and an idle shift.  “Hot seat” shift changes, 

where the afternoon shift crew arrives at the working place before the day shift crew leaves, 

enable mining to continue with little interruption during shift change; however, during the idle 

night shift, CMs are often used to load out gob or grade road bottoms.  The night shift crew then 

“spots” the CM at a cut for the beginning of day shift.  DP modeling did not incorporate such an 

option but rather progressed without interruption from start to finish.   

Results for the seven-day, three-crosscut analysis are shown in Tables 5.11 and 5.12 for 



138 
 

 

 

the LSCM and RSCM, respectively, with color coding to match the modeled AMS and the 

predicted OMS shown on Figures 5.6 and 5.7, respectively. 

 

 

Table 5.11. Productivity comparison of AMS and OMS for LSCM during three 

crosscuts of advance over seven days. 

 

Day 

AMS OMS Difference 

Cuts 
Feet 

Mined 
CCT 
(min) 

Cuts 
Feet 

Mined 
CCT 
(min) 

Cuts 
Feet 

Mined 
CCT 
(min) 

 

1 17 276 590 18 252 596 +1 -24 +6 

2 15 221 508 17 229 503 +2 +8 -5 

3 17 292 521 14 285 538 -3 -7 +17 

4 15 375 662 15 384 624 0 +9 -38 

5 12 343 600 12 375 598 0 +32 -2 

6 13 384 612 13 357 610 0 -27 -2 

7 13 394 651 14 402 675 +1 +8 +24 

Totals 102 2285 4144 103 2284 4144 +1 -1 0 

 

 

Table 5.12. Productivity comparison of AMS and OMS for RSCM during 

three crosscuts of advance over seven days. 

 

Day 

AMS OMS Difference 

Cuts 
Feet 

Mined 
CCT 
(min) 

Cuts 
Feet 

Mined 
CCT 
(min) 

Cuts 
Feet 

Mined 
CCT 
(min) 

 

1 12 314 544 14 348 556 +2 +34 +12 

2 13 353 601 13 365 606 0 +12 +5 

3 12 336 554 12 297 533 0 -39 -21 

4 14 329 638 13 355 635 -1 +26 -3 

5 9 245 419 8 214 415 -1 -31 -4 

6 12 292 544 12 282 552 0 -10 +8 

7 15 273 590 15 255 590 0 -18 0 

Totals 87 2142 3890 87 2116 3887 0 -26 -3 
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Figure 5.6. Actual mining sequence for three crosscuts of advance with left-side section consisting of Entries 1-6 

and right-side section consisting of Entries 7-11. 
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Figure 5.7. Mining sequence predicted by DP model for three crosscuts of advance with left-side section consisting 

of Entries 1-6 and right-side section consisting of Entries 7-11. 

 



141 
 

 

 

 Productivity differences between AMS and OMS are related to the number of short cuts 

made on a given day.  On Day 1, in the AMS mined by the LSCM included one 32-ft cut (L5) 

and 16 shorter cuts of varying depths while the DP model suggested a cut sequence composed 

entirely of short cuts resulting in OMS having one more cut but mining 24 feet less.  On Day 2, 

both the AMS and the OMS were composed entirely of short cuts; however, the OMS stayed 

within the three center entries while the AMS was spread out across the section resulting in a 

favorable OMS with two more cuts and eight more feet mined in five less minutes than the AMS.  

On Day 4, the AMS mined by the LSCM included four short cuts in the 12 cuts mined that day 

whereas the DP model predicted an OMS that included only two short cuts resulting in a 

difference between the two sequences of 32 feet with the OMS being more favorable.  The 

situation was reversed on Day 5.  For the RSCM, total feet mined by the OMS were less than the 

AMS because the OMS, with its tendency to give preference to short cuts, became confined to 

Entries #10 and #11 where poor roof conditions prevailed. 

 If the OMS for three crosscuts of advance is examined from the perspective of two of the 

guiding policies and practices described in Chapter 3, it can be observed that the predicted OMS 

provided no improvements in the number of crosscuts holed through against the ventilation air 

current while it did incorporate more double cuts.  The OMS did reveal that crosscuts that are 

turned do not have to always be the same crosscut.  The mine consistently turns the crosscut 

between Entries #3 and #4 but the OMS showed where that crosscut could be mined head-on 

(see Cuts L56 and L59 in Figure 5.7)  The OMS included two more double cuts than the AMS 

for the LSCM while the number of double cuts was the same for the RSCM.  
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5.4  Chapter Summary 

Overall, results of the case study application described in this chapter appear to provide a 

second confirmation of the validation effort described in Chapter 4 suggesting that the DP 

algorithm accurately describes the CM production system in mathematical terms.  It was hoped 

that the DP model would predict OMS options that bettered in every respect the AMS that was 

reported and observed.  While this did not happen, the DP model does provide a tool for 

identifying reasonable cut sequences for use in production modeling.  It also provides a means 

for evaluating productivity improvement potential for cut sequence scheduling. 

The case study application was a time consuming, tedious process of manipulating 

spreadsheet data in an iterative process all done “by hand.”  For the model to see any real 

application in the industry, the ability to use it in a time effective fashion requires creating 

computer programming to integrate data input, modeling calculations, and sensitivity analysis 

opportunities. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

6.1  Research Summary and Specific Accomplishments 

The underground coal mine is an atypical yet fascinating laboratory.  The industry has a 

storied past that underscores its continued relevance as a critical global energy supplier.  The 

continuous miner (CM) is the centerpiece of the most prevalent production system used in 

underground coal mines in the US.  Their introduction more than half a century ago spurred a 

concentrated industrial engineering effort in the mining engineering community producing 

several production models and other engineering tools that contributed to tremendous growth in 

mine productivity as was shown in Figure 1.1.  With a reverse in mine productivity trends during 

the past decade, there is renewed interest in reapplying proven methods and developing new 

techniques for enhancing mine productivity.  This research study is only part of a greater effort 

being conducted by Southern Illinois University (SIU) research teams working on productivity 

optimization concepts as well as mine safety and health improvements for underground coal 

mines in the Illinois Basin that can be obviously extended to the industry worldwide. 

The CM production system follows a mining sequence composed of multiple repetitive 

cycles.  The mining sequence itself is routinely repeated and, due to the tremendous flexibility of 

the system providing numerous sequencing options, it is easy to become complacent with 

mediocre results without making a conscientious effort toward optimization.  Without diligently 

focusing on keeping the CM at the face cutting and loading coal, productivity can be needlessly 

sacrificed.  To assist mine operators with maintaining that focus, the overall objective of this 
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dissertation was to utilize a known dynamic programming (DP) optimization technique to 

develop an algorithm for identifying optimal mining sequences for room-and-pillar mining. 

To accomplish this objective, the first step was developing a mathematical description of 

the production process for use as an algorithm in a DP model.  In cooperation with industry 

professionals, six priority policies and practices were identified to guide development.  The 

algorithm developed to satisfy these guiding policies predicts cycle times for feasible cuts which 

are evaluated based on a selection criterion to minimize cut-cycle time.  This time-based optimal 

value function was selected over what might be considered the more attractive option of 

production output because it relies on time study data, which is easier to obtain and more 

accurate than production data for individual mining sections.  The optimal value function 

developed in this study is comprised of production and place change time elements with the 

production element being separated into loading and change-out time components.  As an 

application of the DP concept, the algorithm developed in this study is unique in that it is based 

on both path-specific and state-specific parameters rather than just state-specific parameters.  To 

the best of the author’s knowledge, it is the first known application of DP to underground room-

and-pillar mining sequence optimization. 

The reasonableness and accuracy of the mathematical model were verified by modeling 

an actual mining sequence completed over a two-week period of study and comparing model 

output with cycle times measured by means of time studies conducted at a cooperating mine as 

well as with cycle times reported by mine foremen at the same mine.  The validity of the model 

was shown by charting frequency distributions of production cycle times for more than 300 cuts 

classified by cut depth and change-out distance and by developing continuous function plots of 

place change cycle times for a similar number of moves between cuts.  Those parameters for 
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which mine-specific data must be collected in order to use the DP model were identified in the 

time study process.  In addition to verifying the reasonableness and accuracy of the DP model, 

the validation effort also led to some fine-tuning of the mathematical model.  

Finally, in a case study application of the DP model, it was used to predict one-day and 

seven-day sequences for the same two-week time period that was studied at the cooperating 

mine.  These predicted sequences were evaluated for optimality by comparison with actual 

mining sequences followed.  The case study application attempted to demonstrate the usefulness 

of the DP model as both a strategic planning tool for identifying optimal sequencing patterns that 

may be used to specify standard operating procedures and a tactical planning tool for providing a 

day-to-day plan to assist mine foremen with decision making. 

 

6.2  Conclusions 

The following conclusions can be made regarding results and outcomes of this study: 

1) Production cycle times (ranging from 26 minutes for cuts less than 15 feet to 50 minutes 

for cuts greater than 28 feet) predicted by the DP model are within 30 seconds of reported 

data for all categories of cuts.  Coefficient of variation values are consistently uniform at 

about 20% indicating that the model provides an accurate mathematical description of the 

production element of total cut-cycle time for all categories of cuts based on cut depth. 

2) Place change cycle times predicted by the DP model (ranging from four minutes for 

double cut moves to 13 minutes for moves greater than 400 feet) portray much greater 

consistency than reported place change cycle times (ranging from 11 minutes for double 

cut moves to 19 minutes for moves greater than 400 feet).  Taking into account tram 

distance accounts for as much as half of the difference between predicted and reported 
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values.  It is hypothesized that the influence of human factors accounts for the remainder 

of the variability observed when comparing model output with reported data for the place 

change element of total cut-cycle time. 

3) For each cut, the overall production cycle time consists of a number of repetitive loading 

and change-out cycles.  The ability to separate the production cycle time element into 

these components increases accuracy and decreases variability. The place change element 

is subject to greater variability because it is difficult to break it down into smaller 

components.   

4) While operating under much more constrained conditions for ventilation and bolting, the 

DP model predicted mining sequences with as good as or better productivity than that 

reported for sequences actually followed by mine operators during the two-week time 

period of this study.   

5) The DP model in its present state shows a clear preference for shorter cuts.  This is 

because shorter cuts require fewer haulage units to be loaded meaning fewer change-outs 

occur.   

6) Changing conditions at the mine cooperating with this study presented the challenge of 

having cuts of various depths, which made it difficult to tactically predict optimal mining 

sequences for a single shift; however, over longer time periods of a full day or a period of 

days such as between belt moves, the DP model did provide reasonable predictions for 

mining sequences that were as productive as the actual mining sequence followed during 

the study period. 

7) Perhaps the greatest value of the DP optimization technique for identifying CM 

production system mining sequences is as an educational and training tool.  The DP 
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model presented in this study is simple and provides a concise and accurate mathematical 

representation of the production process that can aid the user in identifying, quantifying, 

and manipulating critical parameters that affect mine productivity. 

 

6.3  Recommendations for Future Work 

Interest from industry shown during the course of developing the DP algorithm and 

model has motivated the author to continue this work.  The effort was born out of industry 

recommendations to eliminate the heuristic nature of cut sequence evaluation and streamline the 

process of entering cut sequences as input to production models.  Such a model has been 

developed but in its current form as a spreadsheet requiring tedious manipulation, it would be of 

little use to the typical mine engineer.  For it to become an effective tool, a person skilled in 

Excel
®
 programming will have to build an optimal mining sequence (OMS) module for 

integration with the SSP Model or some other production modeling software. 

The case study application exercise identified the DP model’s sensitivity to cut depth.  

When cut depth is a function of mining conditions, with shorter cuts required to maintain the 

integrity of mine openings in areas where poor geology is encountered, there is some merit to the 

argument that selecting shorter cuts is an optimal policy because it promotes advancing through 

the difficult area as quickly as possible.  This is difficult to quantify with typical productivity 

measures such as feet of advance, number of cuts, and cycle time.  The author believes that 

additional research is needed to refine the DP algorithm such that it is less dependent on any 

single parameter. 

The real value of mine production modeling is that it requires thinking through the 

process as part of model development.  This is particularly true when it comes to the problem of 
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mining sequences.  While it is hoped that the optimization tool presented in this study will be 

developed further to a more useful state, the author advocates that users of the DP model take the 

time to understand the mathematics of the model and how the algorithm works.  Doing so will 

help to insure that strategic or tactical planning information generated by the model is applied 

properly. 



149 

 

REFERENCES 

 

Bellman, R.E., 1957.  Dynamic Programming. Princeton University Press, Princeton, NJ. 

Bise, C.J. and E.K. Albert, 1984.  “Comparison of Model and Simulation Techniques for 

Production Analysis in Underground Coal Mines.”  Transactions of the Society of 

Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum 

Engineers, Inc., New York, NY, Vol. 276, pp. 1878-1884. 

Bronson, R. and G. Naadimuthu, 1997.  Operations Research. 2
nd

 Ed., McGraw-Hill, USA, pp. 

342-368. 

Brezovec, D., 1982.  “Operators Fight Face Haulage Delays.” Coal Age Equipment Guide.  

McGraw-Hill, Inc., New York, NY, pp. 180-188. 

Caccetta, L. and L. Giannini, 1986.  “Optimization Techniques for the Open Pit Problem.”  

Bulletin and Proceedings of the Australasian Institute of Mining and Metallurgy, Vol. 

291, No. 8, Dec., pp. 57-63. 

Campbell, J.A.L., D.J. Moynihan, W.D. Roper, J.C. Bennett, T.S. Wellman, and D.C. Hall, 1978.  

“Peabody Resolves Dust Emissions at Camp II.”  Paper presented at the American 

Mining Congress International Mining Show, Las Vegas, NV, Oct. 

Campbell, J.A.L., D.J. Moynihan, W.D. Roper, and E.C. Willis, 1983.  “Dust Control System 

and Method of Operation.”  US Patent 4,380,353. 

Chugh, Y.P., 2001a.  “Identification of Cost Cutting Strategies for Underground Mines in 

Illinois.”  Final Technical Report, Illinois Clean Coal Institute Project #00-1/1.1A-1. 



150 

 

Chugh, Y.P., 2001b.  “Coal Tech/Wabash Project: Increasing Productivity and Pillar Stability at 

Cyprus-Amax Wabash Mine.”  Final Technical Report, Illinois Department of Commerce 

and Community Affairs Project #99-48330. 

Chugh, Y.P., 2003.  “Reduced Underground Production Costs Through Enhanced Face 

Productivity.”  Final Technical Report, Illinois Clean Coal Institute Project #02-1/1.1A-1. 

Chugh, Y.P., 2006a.  “Development and Demonstration of Alternate Room-and-Pillar Mining 

Geometry in Illinois.”  Final Technical Report, Illinois Clean Coal Institute Project 

#DEV05-11. 

Chugh, Y.P., 2006b.  “A Field Demonstration of a Joy Wet-Head Miner in Illinois.”  Final 

Technical Report, Illinois Clean Coal Institute Project #04-1/US-2. 

Chugh, Y.P., 2007.  “Development and Demonstration of Alternate Room-and-Pillar Mining 

Geometry in Illinois – Phase 2.”  Final Technical Report, Illinois Clean Coal Institute 

Project #06-1/1.1A-3. 

Chugh, Y.P., 2009.  “Development of Improved Roof Support Systems for Illinois Underground 

Mines.”  Final Technical Report, Illinois Clean Coal Institute Project #07-1/3.1B-2. 

Chugh, Y.P., 2012.  “Demonstration of an Innovative Spray System for Continuous Miners for 

Dust Control.”  Final Technical Report, Illinois Clean Coal Institute Project #10DEV-4. 

Chugh, Y.P., W.M. Pytel, and O. Pula, 1990.  “A Modified Approach for Design of Coal Pillars 

for Weak Floor Strata Conditions.”  In proceedings of the 3
rd

 Conference on Ground 

Control Problems in the Illinois Basin, Y.P. Chugh, ed., Aug. 8-10, pp. 111-124. 

Chugh, Y.P. and Q.-W. Hao, 1992.  Design of Coal Pillars.”  Software developed at Southern 

Illinois University Carbondale. 



151 

 

Chugh, Y.P. and W.M. Pytel, 1992.  “Design of Partial Extraction Coal Mine Layouts for Weak 

Floor Strata Conditions.”  US Bureau of Mines Information Circular 9315, pp. 32-49. 

Chugh, Y.P., A. Moharana, and A. Patwardhan, 2005.  “Development of Simple Production 

Modeling Software for Continuous Miner Production System.” In proceedings of the 14
th

 

Mine Planning and Equipment Selection Symposium, Banff, Canada, Oct. 31-Nov. 3, pp. 

1513-1527. 

Coal Age Editorial Staff, 2003.  “New Transfer Simplifies Continuous Haulage.” Coal Age, Vol. 

108, No. 6, pp. 24-27. 

Colinet, J.F., J.P. Rider, J.A. Organiscak, J. Listak, and G. Chekan, 2010.  “A Summary of 

USBM/NIOSH Respirable Dust Control Research for Coal Mining.”  Extracting the 

Science: A Century of Mining Research, J.F. Brune, ed., Society for Mining, Metallurgy 

and Exploration, Inc., Littleton, CO, pp. 432-441. 

Combs, T.H., 1993.  “Report on Increased Productivity Utilizing a Surge Car.”  Prepared for 

Stamler Corporation by Trigg H. Combs Mining Consultants, Inc., Lexington, KY. 

Darmstadter, J., 1997.  “Productivity Change in US Coal Mining.”  Resources for the Future 

(RFF) Discussion Paper 97-40, pp. 13-20. 

Davis, J.J., 1980.  “Industrial Engineering Advice – Get More From Continuous Miners.”  Coal 

Age Second Operating Handbook of Underground Mining.  N.P. Chironis, ed., McGraw-

Hill, Inc., New York, NY, pp. 26-29. 

Department of Energy (DOE), 2009.  “Energy and Environmental Profile of the US Mining 

Industry, Chapter 2 – Coal.”  Text version update: Jul. 25, p. 5, 

http://www.netl.doe.gov/KeyIssues/mining/coal.pdf (accessed 01/17/2012). 



152 

 

Douglas, W.J., 1980.  Production Systems Analysis in Underground Coal Mines. McGraw-Hill, 

Inc., New York, NY. 

Douglas, W.J., J.T. Urie, and R.D. Metz, 1983.  “Application of Computers to Production 

Planning in Underground Mines.”  In proceedings of the 1
st
 Conference on Use of 

Computers in the Coal Industry, Morgantown, WV, Aug. 1-3, pp. 670-689. 

Dowd, P.A., 1976.  “Application of Dynamic and Stochastic Programming to Optimize Cutoff 

Grades and Production Rates.”  Transactions of the Institution of Mining and Metallurgy, 

Section A: Mining Industry, Vol. 85, pp. A22-A31. 

Dowd, P.A., 1980.  “Role of Certain Taxation Systems in the Management of Mineral 

Resources.”  In proceedings of the National and International Management of Mineral 

Resources Joint Meeting, M.J. Jones, ed., London, England, pp. 329-335. 

Dowd, P.A. and L. Elvan, 1987.  “Dynamic Programming Applied to Grade Control in Sub-level 

Open Stoping.”  Transactions of the Institution of Mining and Metallurgy, Section A, 

Vol. 96, Oct., pp. A171-A178. 

Energy Information Administration, 1995.  “Longwall Mining.”  DOE/EIA-TR-0588, pp. 38-44, 

http://eia.gov/FTPROOT/coal/tr0588.pdf (accessed 01/17/2012). 

Energy Information Administration, 2011a.  Annual Energy Review 2010.  DOE/EIA-

0384(2010), Released for printing: Oct. 19, GPO Stock No. 061-003-01158-6, pp. 6-7 

and 224-225, http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf (accessed 

01/17/2012). 

Energy Information Administration, 2011b.  Annual Coal Report.  Release date: Nov. 30, Table 

3, http://www.eia.gov/coal/annual/ (accessed 01/17/2012). 



153 

 

Evans, R.J. and W.D. Mayercheck, 1988.  “Coal Extraction, Transport, and Logistics 

Technology for Underground Mining.”  US Bureau of Mines Information Circular 9181. 

Evans, R.J., W.D. Mayercheck, and J.L. Saliunas, 1988.  “Surface Testing and Evaluation of the 

Hopper-Feeder-Bolter.”  US Bureau of Mines Information Circular 9171. 

Fiscor, S., 2011.  “US Longwall Census: The Most Productive Underground Coal Mining 

Method Takes a Hit.”  Coal Age, Vol. 116, No. 2, pp. 28-34. 

Freme, F., 2010.  “U.S. Coal Supply and Demand: 2009 Review.” U.S. Energy Information 

Administration, Report released: Apr., p. 8, 

http://www.eia.gov/cneaf/coal/page/special/article_dc.pdf (accessed 01/17/2012). 

Grayson, R.L., 1989.  “Dynamic Programming Solution for the Optimal Allocation of Mine 

Manpower to Multiple Work Activities.”  Mining and Science Technology, Vol. 8, 

Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 65-71. 

Grayson, R.L., 2002.  Class Notes for University of Missouri-Rolla Mining Engineering 400: 

Optimization Applications in Mining I. 

Gunderman, R.J., 1979.  “Underground Trials of a Diesel-Powered Face Haulage Vehicle.”  US 

Department of Energy Final Technical Report, Contract No. FC01-79ET10020. 

Hanslovan, J.J. and R.G. Visovsky, 1984.  Logistics of Underground Coal Mining. Noyes 

Publications, Park Ridge, NJ, pp. 1-80. 

Hanson, B. and A. Selim, 1975.  “Probabilistic Simulation of Underground Production Systems.”  

Transactions of the Society of Mining Engineers of the American Institute of Mining, 

Metallurgical, and Petroleum Engineers, Inc., New York, NY, Vol. 258, No. 1, pp. 19-24.  



154 

 

Harrold, R., 1980.  “Continuous Miner Manufacturers: Each Offers Something Special.” Coal 

Age Second Operating Handbook of Underground Mining.  N.P. Chironis, ed., McGraw-

Hill, Inc., New York, NY, pp. 14-21. 

Haynes, M.J., 1975.  Continuous Haulage Systems in Underground Coal Mines in the United 

States.  M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA. 

Hirschi, J.C., M. McGolden, T. Cushman, and Y.P. Chugh, 2004.  “Optimizing Unit Shift 

Productivity of Continuous Miner Coal Production Systems.”  In Proceedings of the 29
th

 

International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, 

FL, Apr. 18-22, Paper #138, pp. 1323-1334. 

Hirschi, J.C., 2007.  “Review of Computer Modeling in Underground Coal Mining and Its 

Application in Optimizing Continuous Miner Production Systems.”  Transactions of the 

Society for Mining, Metallurgy and Exploration, Inc., Littleton, CO, Vol. 320, Sec. 3, pp. 

142-148. 

Hoek, E. and E.T. Brown, 1980.  “Empirical Strength Criterion for Rock Masses.”  Journal of 

the Geotechnical Engineering Division, American Society of Civil Engineers, Vol. 106, 

GT9, pp. 1013-1035. 

Holland, C.T., 1964.  “The Strength of Coal Pillars.”  In proceedings of the 6
th

 US Symposium 

on Rock Mechanics, University of Missouri, Rolla, MO, pp. 450-466. 

Holland, C.T., 1973.  “Mine Pillar Design.”  SME Mining Engineering Handbook, Vol. 1, 

Section 13.8, A.B. Cummins and I.A. Givens, eds., Society of Mining Engineers of the 

American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., New York, 

NY, pp. 13-96 to 13-118. 



155 

 

Johnson T. B. and W.R. Sharp, 1971.  “A Three-Dimensional Dynamic Programming Method 

for Optimal Ultimate Open Pit Design.”  US Bureau of Mines Report of Investigations 

7553. 

Johnson, W. and M.L. McGolden, 2004.  “Design, Development and Demonstration of a Surge 

Car for Energy-Efficient Underground Continuous Mining Operations.”  Proposal 

submitted in response to the US DOE Grand Challenge Technology Concepts for the 

Mining Industry, Announcement #DE-PS26-04NT42064-01.  

Keystone, 1981.  1981 Keystone Coal Industry Manual.  G.F. Nielson, ed., McGraw-Hill, Inc., 

New York, NY. 

King, R.H. and S.C. Suboleski, 1991.  “Opportunities for Continuous Mining Productivity 

Improvements.”  Mining Engineering, Vol. 43, No. 10, pp. 1226-1231. 

Kroeger, E.B., 2004.  “Industrial Engineering Applications for Enhancing Underground Coal 

Mining Productivity,”  Final Technical Report, Illinois Clean Coal Institute Project #02-

1/1.1A-3. 

Kroeger, E.B., 2006.  “Enhancing Underground Coal Productivity through a Miner Training 

Program.”  Final Technical Report, Illinois Clean Coal Institute Project #04-1/1.1D-1. 

Leemis, L.M., 1995.  Reliability: Probabilistic Models and Statistical Methods.  Prentice-Hall, 

Upper Saddle River, NJ. 

Lerchs, H. and I.F. Grossmann, 1965.  “Optimum Design of Open-Pit Mines.”  CIM Bulletin,  

Vol. 58, Jan., pp. 47-54. 

Mark, C. and T.M. Barczak, 2010.  “The Impact of Ground Control Research on the Safety of 

Underground Coal Miners: 1910-2010.”  Extracting the Science: A Century of Mining 



156 

 

Research, J.F. Brune, ed., Society for Mining, Metallurgy and Exploration, Inc., Littleton, 

CO, pp. 177-188.  

Mayercheck, W.D., 1988.  “An Overview of Selected Surface and Underground Mining Systems 

R&D Sponsored by the US Bureau of Mines.”  In proceedings of the 1
st
 International 

Symposium on Mine Planning and Equipment Selection, Calgary, Alberta, Canada, Nov. 

3-4, pp. 199-205. 

McGolden, M.L., 2003.  “Industrial Engineering Study of a Face Haulage System Involving a 

Surge Car.”  Personal correspondence. 

McWhorter, P.L., 2004.  Personal correspondence. 

Moharana, A., 2004.  Development and Application of a User-Friendly Production and Cost 

Planning Model for Room-and-Pillar Coal Mining.  M.S. Thesis, Southern Illinois 

University, Carbondale, IL. 

Moore, M.R., 2001.  “Data Summary – Continuous Miner Comparison Study.”  Report prepared 

under subcontract from SIUC for Illinois Clean Coal Institute Project #00-1/1.1A-1. 

National Mining Association (NMA), 2003.  “Facts about Coal.”  Received in personal 

correspondence with L. Coleman, NMA Statistical Services, on Aug. 18, Available on 

the internet at: http://www.nma.org/statistics/coal.asp (access limited to NMA members). 

Obert, L. and W.I. Duvall, 1973.  “Design and Stability of Excavations in Rock – Subsurface.”  

SME Mining Engineering Handbook, Vol. 1, Section 7.2, A.B. Cummins and I.A. 

Givens, eds., Society of Mining Engineers of the American Institute of Mining, 

Metallurgical, and Petroleum Engineers, Inc., New York, NY, pp. 7-10 to 7-49. 

Pavlovic, V., 1989.  Continuous Mining Reliability: Design and Operation of Mechanized 

Systems.  Ellis Harwood Limited, Chichester, England, p. 3. 



157 

 

Peng, S.S. and G.L. Finfinger, 2001.  “Geology Roof Control and Mine Design – Underground 

Mining – Coal/Rock as an Engineering Construction Material.”  Coal Age, Vol. 106, No. 

12, pp. 29-31. 

Potts, J.D., W.R. Reed, and J.F. Colinet, 2011.  “Evaluation of Face Dust Concentrations at 

Mines Using Deep-Cutting Practices.”  US Department of Health and Human Services, 

Centers for Disease Control and Prevention, National Institute for Occupational Safety 

and Health, Office of Mine Safety and Health Research, Report of Investigations 9680. 

Prelaz, L.J., P.T. Sironko, E.P. Bucklen, and J.R. Lucas, 1964.  “Optimization of Underground 

Mining.”  Vols. 1, 2, and 3, R&D Report No. 6, Office of Coal Research, US Department 

of the Interior, Washington, DC. 

Prelaz, L.J., E.P. Bucklen, S.C. Suboleski, and J.R. Lucas, 1968.  “Computer Applications in 

Underground Mining Systems.”  Vol. 1, R&D Report No. 37, Office of Coal Research, 

US Department of the Interior, Washington, DC. 

Ramani, R.V., J.M. Mutmansky, and R.W. Barbaro, 1983.  “A Review of the Computer 

Revolution and Computer Applications in Mining at Penn State.”  In proceedings of the 

1
st
 Conference on Use of Computers in the Coal Industry, Morgantown, WV, Aug. 1-3, 

pp. 60-64. 

Ribeiro, L.T., 1982.  “Dynamic Programming Applied to the Mining Sequence Optimization in a 

Sublevel Stoping Exploitation.”  In proceedings of the 17
th

 APCOM Symposium, T.B. 

Johnson and R.J. Barnes, eds., American Institute of Mining, Metallurgical, and 

Petroleum Engineers, Inc., New York, NY, pp. 494-499. 

Sanda, A.P., 1998.  “Haulage 1998: Underground.”  Coal Age, Vol. 103, No. 9, pp. 51-58. 



158 

 

Sanford, R.L. and C.B. Manula, 1969.  “A Complete Coal Mining Simulator.”  Special Research 

Report SR-75, Coal Research Station, The Pennsylvania State University, University 

Park, PA. 

Skinner, A., 2003.  “On the Road to Fossil Fuels.”  Coal People, Vol. 26, No. 10, pp. 14-22. 

Smith, J.W. and R.L. Blohm, 1978.  “Haulage Technology Increases Low-Seam Output by 

50%.”  Coal Mining and Processing, Feb., pp. 52-55 and 88-89. 

Sprouls, M.W., 1998.  “Continuous Mining on the Cutting Edge.”  Coal Age, Vol. 103, No. 9, 

pp. 59-61. 

Stefanko, R., 1983.  Coal Mining Technology: Theory and Practice.  Society of Mining 

Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 

Inc., New York, NY, p. 45. 

Sturgul, J.R., 1995.  “History and Annotated Bibliography of Mine System Simulation.”  2
nd

 

printing of a personal publication. 

Sturgul, J.R., 2000.  “Using Animations of Mining Operations as Presentation Models.”  In 

proceedings of the 9
th

 International Symposium on Mine Planning and Equipment 

Selection, Athens, Greece, Nov. 6-9, pp. 847-850. 

Suboleski, S.C., 1975.  “Boost Your Productivity by Adding Continuous Miners”.  Coal Age, 

Vol. 80, No. 3, pp. 78-80. 

Suboleski, S.C., 2002.  “coalopsexample.xls.”  Personal correspondence. 

Suboleski, S.C., 2004.  Personal correspondence. 

Suboleski, S.C., 2005.  Personal correspondence. 

Suboleski, S.C., 2011.  Personal correspondence. 



159 

 

Suboleski, S.C. and J.G. Donovan, 2000.  “Super Sections Prove Worthy.”  Coal Age, Vol. 105, 

No. 8, pp. 32-36. 

Thatavarthy, K.K., 2003.  Development of Modified Continuous Miner Wet Scrubber for 

Improved Dust Control.  M.S. Thesis, Southern Illinois University, Carbondale, IL, p. 6. 

Thomas, L., 2002.  Coal Geology.  John Wiley & Sons, Ltd., Chichester, England, pp. 234-247. 

Topuz, E. and E. Nasuf, 1985.  “CONSIM: An Interactive Micro-computer Program for 

Continuous Mining Systems.”  In proceedings of the 2
nd

 Conference on the Use of 

Computers in the Coal Industry, Tuscaloosa, AL, Apr. 15-17, pp. 183-192. 

Topuz, E. and C. Duan, 1989.  “A Survey of Operations Research Applications in the Mining 

Industry.”  CIM Bulletin, Vol. 82, No. 925, May, pp. 48-50. 

Vesic, A.S., 1975.  “Bearing Capacity of Shallow Foundations.”  Foundation Engineering 

Handbook, H.F. Winterkorn and H. Fang, eds., Van Nostrand Reinhold, New York, NY, 

pp. 121-147. 

Wang, Q. and Z. Huang, 1997.  “Application of Dynamic Programming to Open-pit Planning 

with Phase-Mining.”  Journal of Northeastern University Natural Science Department, 

Shenyang, China, pp. 95-100. 

White, J.W. and J.P. Olsen, 1986.  “Computer-Based Despatching in Mines with Concurrent 

Operating Objectives.”  Mining Engineering, Vol. 38, No. 11, pp. 1045-1054. 



 

 

APPENDICES



160 

 

APPENDIX A  

SAMPLE SHIFT REPORT 

 

xxxxxxxx indicates information withheld to protect company identity 

 

Daily Mine Summary 

12-19-11 

Everyone worked safe today 

Production: 7-4 Shift 831’ 

 3-12 Shift 765’ 

 Daily Total 1596’ 

7-4 Shift 

Mine Manager: xxxxxxxxxxx 

Manpower: Safety xxx 

 Maintenance xxx 

 Operations xxx 

 

Safety: Everyone worked safe this shift 

 No accidents or injuries reported 

 

Safety Observation: xxxxxxxxxxx 

Safety Observation: xxxxxxxxxxx 

Safety Observation: xxxxxxxxxxx 

 

Inspectors: xxxxxxxxxxx 
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Section #1: xxxxxxxxxxx 

 

L/S Report  

Foreman: xxxxxxxxxxx 

 

Time Period Location Cut Depth Line Curtain Air Description  

(7:35-7:50)    Pre-ops 

7:50-8:45 #6 33’ 8116 cfm  

(8:45-9:00)    knot in water line, move to E5 

9:00-9:45 #5 32’ 8062 cfm  

10:00-10:45 #2L 32’ 48710 cfm  

11:00-11:35 #4 17’ 8566 cfm 

11:45-12:10 #3R 5’ 9202 cfm 

12:25-1:10 #2L 30’ 8018 cfm 

1:25-2:05 #2 32’ 9254 cfm 

2:30-3:15 #6 32’ 8180 cfm 

(3:15-EOS)    move to #4, work on ventilation 

 

Miscellaneous: 

Put up 2 boards 

Watered roads at 12:00 

 

Start Footages:   End Footages: 

#6: 58+30 

#5: 58+72   59+05 

#4: 58+35   58+52 

#2: 58+12   58+44 

 

Bolted: #6, #2L, #5, #4, #2L 

Unbolted: #2, #3R, #6 
 

Downtime: 

(7:35-7:50) Pre-ops 

(8:45-9:00) Knot in water line, move to E5 



162 

 

Section #1: xxxxxxxxxxx 

 

R/S Report  

Foreman: xxxxxxxxxxx 

 

Time Period Location Cut Depth Line Curtain Air Description  

(7:30-7:40)    Pre-ops, walk & hang cable, put up sights 

7:40-8:10 #10R 25’ 8652 cfm 

8:23-8:50 #10 10’ 12250 cfm  

9:05-9:45 #8L 20’ 8410 cfm  

9:53-10:43 #9 32’ 8718 cfm 

10:56-11:38 #9L 20’ 8520 cfm 

11:49-12:05 #10 10’ 9160 cfm 

12:18-1:10 #11 25’ 12650 cfm 

1:20-2:15 #8L 32’  (1 RC) 

(2:15-2:30)    WOB, pushing gob, dusting 

2:40-3:25 #9L 20’ 8250 

  

 

Miscellaneous: 

Moved 3 cars of gob to EN7 

Changed battery and serviced RC301 twice 

Change battery on RC 302, 303, 304 

Started building stopping @56+23 – ¾ sealed 

Put up 6 boards 

Watered roads twice 

Pushed feeder at EOS 

 

Start Footages:   End Footages: 

#7: 59+03   59+39 

#8: 58+99    

#9: 58+79   59+13 

#10: 57+93   58+32 

#11: 58+03 

 

Bolted: #10, #10R, #7L, #8L, #10, #8L 

Unbolted: #11 – 25’, #9L – 30’, #8L – 10’ 
 

Downtime: 

(7:30-7:40) Pre-ops, walk & hang cable, put up sights 

(2:15-2:30) WOB, pushing gob, dusting 
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Section Summary: 
 

Equipment: 
L/S: CM203, RB402, RB403, RC303, RC305, RC306, CS505 

R/S: CM204, RB404, RC301, RC303, RC304, CS503, Minitrac 701 

 

Geology: 
L/S: losing 2’-3’ of rock in #4, all other areas good, floor good 

R/S: top adverse in #10 & #11, floor good 

 

Air Readings: 

L/S:  Intake  31612 Return  50370 

R/S:  Intake  28910 Return  37250 

 

L/S: Coal Cut:  214’ Bolted:  145’ Unbolted:  69’ 

RS: Coal Cut:  204’ Bolted:  159’ Unbolted:  65’ 
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APPENDIX B 

 

JOY MINING MACHINERY (“JOY”) 

 

Multi-Media Property Use License 

 (Third Party Use of Joy Mining Machinery Name, Logo, Still Photographs, 

 Videos, Animations, 3D Models or Other Copyrighted or Trademarked Multi-Media Material) 

 

 

Name of Licensee: Joseph Hirschi 

Address of Licensee: 
5776 Coal Drive, Suite 200,  

Carterville, IL 62918 

Name of Licensee Contact Person: Joseph Hirschi 

Contact Person’s E-mail Address: jhirschi@icci.org 

Contact Person’s Office Telephone and Fax: 618-985-3500, fax 618-985-6166 

 

 

LICENSED PROPERTY  

 

List of Joy proprietary property that 

Licensee is given permission to use in 

accordance with the terms of this License (the 

“Licensed Property”) (Licensed Property 

must be specifically listed - e.g., Joy name, Joy 

logo, still photograph of a Joy  continuous 

miner, still photograph of a Joy longwall 

shearer, etc.): 

 

 

 

 

 

Still photograph of Joy continuous miner 

(downloaded from www.joy.com) 

 

Still photograph of Joy shuttle car (GPL3323) 

 

Still photograph of Joy battery hauler (?) 

 

Still photograph of Joy flexible conveyor train 

(downloaded from www.joy.com) 

PERMITTED PURPOSE 

 

Purpose for which Licensee is permitted to 

use Licensed Property (“Permitted 

Purpose”) (Permitted Purpose must be 

specifically identified – e.g., inclusion of a still 

photograph of a Joy continuous miner in an 

article being published in a specified journal):   

 

Inclusion of still photographs of Joy 

continuous miner, shuttle car, battery hauler, 

and continuous haulage system in a 

dissertation being submitted to the Southern 

Illinois University at Carbondale. 
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Joy and Licensee agree to the following in connection with Licensee’s use of the property of Joy: 

 

1. Grant of Right to Use Licensed Property for Permitted Purpose.  Joy hereby grants to 

Licensee, the non-exclusive right to use the Licensed Property for the Permitted Purpose.  

This License does not confer on Licensee any right to use any property of Joy that is not 

Licensed Property, or any right to use Licensed Property for any purpose other than the 

Permitted Purpose. 

   

2. No Grant of Ownership Rights in Licensed Property.  Joy does not grant to Licensee any 

ownership rights in the Licensed Property.  All ownership rights in the Licensed Property 

remain with Joy.  Licensee’s right to use the Licensed Property is subject to Licensee’s 

compliance with the terms of this License.  If Licensee fails to comply with any term of 

this License in any manner, Joy shall have the right, upon written notice to Licensee, to 

immediately revoke this License and immediately terminate Licensee’s rights to use the 

Licensed Property.  

 

3. Conditions of Use of Licensed Property.  Licensee will comply with the following in 

connection with Licensee’s use of all Licensed Property: 

  

a. Copyrights.  Any Licensed Property which is copyrighted by Joy, including 

without limitation, any Joy still photograph, video, animation, or 3D model, and 

that is provided to Licensee in a form that contains a Joy copyright legend 

(“Copyright Legend”), shall be reproduced by Licensee only in a form that does 

not obscure or alter the Copyright Legend.  Licensee shall not remove or alter the 

Copyright Legend, or publish, or allow the publishing of, any Licensed Property 

in any manner that does not accurately reflect the Copyright Legend.   

 

b. Trademarks.  Any Licensed Property which is a trademark of Joy, or contains 

trademarks of Joy, and that is provided to Licensee in a form that contains the 

symbols “™” or “®”, shall be reproduced by Licensee only in a form that (i) 

preserves such trademark symbols, and (ii) clearly indicates that the trademarks 

are the property of Joy.  Licensee shall not remove or alter any trademark symbol, 

or publish, or allow the publishing of, any Licensed Property in any manner that 

does not (x) accurately reflect all trademark symbols in the form provided by Joy 

to Licensee and (y) clearly state that the trademarks are the property of Joy.  

 

c. “Provided Courtesy of Joy” Legend.  Each showing or publication of a Joy still 

photograph, video, animation, 3D model, or other Licensed Property must be 

accompanied by the following statement: “Photo [or video, animation, 3D model 

etc.] provided courtesy of Joy Mining Machinery.”  

 

d. Joy’s Right to Terminate In Event of Inappropriate Use.  Joy reserves the right to 

terminate Licensee’s right to use some or all of the Licensed Property if Joy 

determines, in its sole discretion, that Licensee’s use of any Licensed Property is 

inappropriate. 
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e. No Changes or Alterations of Licensed Property.  Licensee shall not make, nor 

permit the making of, any changes or alterations of any nature to any Licensed 

Property.  Still photographs may be cropped to fit Licensee’s space requirements 

provided that:  (i) the Copyright Legend is not removed or altered and (ii) the 

cropping does not make any Joy still photograph misleading. 

 

4. No Endorsement.  Joy’s agreement to Licensee’s use of the Licensed Property for the 

Permitted Purpose does not imply any endorsement of Licensee’s products or services.  

[Note to Joy:  Do we want to require that the Licensee include this language as a 

legend in connection with its use of Licensed Property?] 

 

5. No Amendments Except in Writing.  This License may not be modified or amended 

except in a written agreement signed by both Licensee and Joy.   

 

 

Executed by Joy and Licensee as of the last date written below, with the intent to be legally 

bound. 

 

If Licensee is an individual:     

 

 
 

If Licensee is a corporation or other entity: 

 

Full Legal Name of Company: _____________________________________ 

 

 

By: __________________________________________________________ 

Name Printed: _________________________________________________ 

Title: ________________________________________________________ 

Date: ________________________________________________________ 

 

 

JOY TECHNOLOGIES INC., D/B/A JOY MINING MACHINERY 
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Graduate School 
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Joseph Christian Hirschi 

jhirschi@icci.org 

 

University of Utah 
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Sequences for Continuous Miner Coal Production Systems 

Major Professor: Yoginder Paul Chugh 

 



168 

 

Special Honors and Awards: 

Outstanding Graduate Student, 2001-2002, Department of Mining and Mineral Resources 

Engineering, Southern Illinois University at Carbondale. 

 

Related Publications:  

Hirschi, J.C., Y.P. Chugh, A. Saha, and M. Mohanty, 2002.  “Evaluating the Use of Surfactants 

to Enhance Dust Control Efficiency of Wet Scrubbers for Illinois Coal Seams.”  Mine 

Ventilation, Proceedings of the 9
th

 North America/US Mine Ventilation Symposium, E. 

DeSouza, ed., A.A. Balkema Publishers, Lisse, The Netherlands, pp. 601-606. 

Hirschi, J.C., M. McGolden, T. Cushman, and Y.P. Chugh, 2004.  “Optimizing Unit Shift 

Productivity of Continuous Miner Coal Production Systems.”  In Proceedings of the 29
th

 

International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, 

FL, Apr. 18-22, Paper #138, pp. 1323-1334. 

Hirschi, J.C., Y.P. Chugh, and A. Moharana, 2006.  “Development of Alternate Mining 

Geometry Concepts for Increased Extraction, Ground Stability and Productivity at a 

Shallow Depth Illinois Coal Mine.”  In Proceedings of the 2006 International Symposium 

on Mine Planning and Equipment Selection, M. Cardu, R. Ciccu, and E. Michelotti, eds., 

pp. 1118-1123. 

Hirschi, J.C., 2007.  “Review of Computer Modeling in Underground Coal Mining and Its 

Application in Optimizing Continuous Miner Production Systems.”  Transactions of the 

Society for Mining, Metallurgy and Exploration, Inc., Littleton, CO, Vol. 320, Sec. 3, pp. 

142-148. 

 

Related Presentations: 

Hirschi, J.C., Y.P. Chugh, A. Saha, and M. Mohanty, 2002.  “Evaluating the Use of Surfactants 

to Enhance Dust Control Efficiency of Wet Scrubbers for Illinois Coal Seams.”  9
th

 North 

America/US Mine Ventilation Symposium, Kingston, Ontario, Canada, Jun. 8-12. 

Hirschi, J.C., M. McGolden, T. Cushman, and Y.P. Chugh, 2004.  “Optimizing Unit Shift 

Productivity of Continuous Miner Coal Production Systems.”  29
th

 International 

Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL, Apr. 18-22. 

Hirschi, J.C., 2005.  “A Review of Computer Modeling in Underground Coal Mining and Its 

Application in Optimizing Continuous Miner Production Systems.”  Annual Meeting of 

the Society for Mining, Metallurgy, and Exploration, Salt Lake City, UT, Feb. 28-Mar. 2. 



169 

 

Hirschi, J.C., 2006.  “Optimizing Continuous Miner Production Systems: Increasing Reserve 

Recovery and Mine Productivity.”  Annual Meeting of the Society for Mining, 

Metallurgy, and Exploration, St. Louis, MO, Mar. 26-29. 

Hirschi, J.C., 2011.  “Optimizing Continuous Miner Cut Sequences for Improved Productivity 

and Worker Health and Safety.”  Annual Meeting of the Illinois Mining Institute, Marion, 

IL, August 31. 

Hirschi, J.C. and Y.P. Chugh, 2012.  “Optimizing Continuous Miner Cut Sequences for 

Improved Productivity and Worker Health and Safety.”  Annual Meeting of the Society 

for Mining, Metallurgy, and Exploration, Seattle, WA, Feb. 19-22. 

 

 


	Southern Illinois University Carbondale
	OpenSIUC
	8-1-2012

	A Dynamic Programming Approach to Identifying Optimal Mining Sequences for Continuous Miner Coal Production Systems
	Joseph Christian Hirschi
	Recommended Citation


	Front Matter 2012-05-03
	Chapter 1 Introduction 2012-04-27
	Chapter 2 Literature Review 2012-04-27
	Chapter 3 DP Algorithm 2012-04-27
	Chapter 4 Validation 2012-04-30
	Chapter 5 Application 2012-05-03
	Chapter 6 Conclusions 2012-04-27
	References 2012-04-27
	Appendix Vita 2012-05-03

