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Abstract 

 Approximate computing has emerged as a new computing paradigm capable of reducing 

the power requirements for or accelerating some workloads. Due to cascading error and the nature 

of binary arithmetic, it is difficult to predict the exact effects that approximation may have on an 

error tolerant workload. In this work, we implemented configurable levels of approximation into 

a Coarse Grained Reconfigurable Architecture (CGRA) to study the effects of error tolerant 

algorithms on an approximate CGRA. We will use the CGRA Compilation Framework which 

simulates a CGRA using gem5, and we will implement the approximate hardware using multiple 

different approximate arithmetic modules included in Low Power Approximate Computing 

Library. Finally, we will perform a hardware level simulation on approximate modules to estimate 

the reduction in power from using approximate hardware. 
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Introduction 

Ever since we hit the power wall, advancements in computing have been restricted by three 

main factors. Specifically, hardware can have two of the following three: performance, efficiency, 

and generality. In order to achieve all three of these, a new computing paradigm, approximate 

computing, has emerged. Approximate computing introduces a fourth dimension, accuracy, thus 

expanding the level of control programmers have. By reducing the requirements for data to be 

completely accurate, energy efficiency can be increased, while also accelerating algorithms [1]. 

Approximate computing is a very wide field, with solutions that exist at the software and 

hardware level. Approximate computing is mostly geared towards accelerating data heavy 

algorithms are not required to be fully accurate in order to function. This includes algorithms that 

fall under recognition, mining, and synthesis (RMS) applications. Although approximate 

computing can be used to accelerate many algorithms, it is not a definite solution for developing 

faster and more efficient algorithms, and as such it will likely never replace traditional exact 

computing. Instead, approximate computing allows the acceleration of a program [2]. There are 

multiple different ways to implement approximate computing, which includes solutions at the 

software level, and the hardware level. At the software level, iterative algorithms can reduce their 

iterations, thus reducing the accuracy and saving compute power. At the hardware level, arithmetic 

functions can drop some of the low significance bits to speed up their frequency or reduce their 

power consumption [2]. 

 Coarse Grained Reconfigurable Architectures (CGRAs) are programmable computer 

hardware devices that use a large number of functional units which share data with adjacent 

functional units very quickly. Each of these functional units has all the aspects of a traditional 

information processor, including an Arithmetic Logic Unit (ALU) and registers. 
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Figure 1: CGRA Architecture [3] 

        This project has the goal of allowing the programmer to choose an approximation tolerance 

of his or her application. The application can then accelerate data processing by using the 

approximate CGRA to meet the tolerable approximation level, as previous work in approximate 

computing has shown that even marginal decreases in accuracy can have significant impact on 

efficiency and speed at which the software runs [3 4].  

        We accomplish this by dedicating functional units in the CGRA to process data at a specific 

accuracy level and processing the data on functional units of varying accuracy. Data processing 

can reach a configurable accuracy level stated by the programmer by using a specific number of 

each approximation level functional unit. 

Motivation 

 Research into Approximate CGRAs has two primary motivation. The first is to develop a 

low powered, general processor, and the second is to devise a method to accelerate error tolerant 

algorithms. An approximate CGRA has the potential to accomplish either of these, the choice 

would ultimately be up to a hardware designer to design the device to fit a power profile. 
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 The Internet of Things (IoT) is a growing system, which utilizes many different low power 

distributed computers. Due to the remoteness of the device, many IoT devices run off of battery 

power. The Approximate CGRA aims to reduce the power requirements of processing data, 

allowing IoT devices powered by a battery to be powered for a significantly longer time off a 

single charge. This increases the usefulness of the device, while still being capable of retaining 

primary functionality. Furthermore, many IoT devices utilize sensors, which are already error 

tolerant, meaning that approximate computing can easily be integrated into their functionality. 

 Another motivation of the approximate CGRA is its ability to accelerate error tolerant 

algorithms in many systems. In particular, we are considering algorithms that fall into the RMS 

category. Approximate computing has already been shown to increase the data throughput of error 

tolerant algorithms [4].  

It is important to understand that this project does not seek to replace exact computing. 

There are numerous tasks and algorithms that cannot be approximated, as approximation would 

result in crashes or otherwise errant behavior. Exact computing will always remain an important 

aspect of computing, while approximate computing seeks to supplement exact computing by 

accelerating error tolerant algorithms. 

Methods 

 Our method involved implementing approximate hardware into the functional unit of a 

CGRA. This included the adder and multiplier circuit inside the ALU of each functional unit. We 

also allowed both the adder and multiplier circuit inside the ALU to be configured to approximate 

a configurable number of bits, allowing for a high level of control when utilizing approximate 

computing.  
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Tools 

 We used a number of existing tools to implement our design, both for the design of 

approximate computing modules and the simulation of the CGRA.  

 Low Power Approximate Computing Library (lpAClib) from the Chair for Embedded 

Systems in the Karlsruhe Institute of Technology was used to implement our approximate 

computing modules. lpAClib includes a total of three different approximate adders, and two 

different approximate multipliers. lpAClib allows for the users to specify the total number of bits 

to be approximated, which allows for more control over the level of approximation of the output. 

This proved to be very useful for achieving an optimal level of approximation in an algorithm. 

lpAClib also allows for the multiplier to use any of the implemented adders. This feature could be 

useful in the future to create an adder that has a high precision, and a multiplier that has a low 

precision, or vice versa. Given the application dependent results of using approximate computing, 

this feature is highly desirable. While we were working to implement approximate computing with 

the CGRA, we decided to rewrite the lpAClib library using the bitset type instead of the char type. 

We did this for two reasons. First of all, we found that lpAClib has a memory leak, which we were 

not able to identify, and second of all, using bitsets makes the problem use far less memory than 

the original implementation of lpAClib. Our implementation of lpAClib requires using a C++ 

compiler, whereas the original lpAClib is compatible with C [5].  

 For the simulation of the CGRA, we used the CGRA Compilation Framework (CCF) by 

Shail Dave in the Compiler Microarchitecture Lab at Arizona State University. CCF is built on 

gem5, an implementation level simulator. Gem5 is an open source system level simulator designed 

to simulate the functionality of hardware, however it does not simulate specific details like power 

and area. This allows us to rapidly test the outputs of many different configurations of the system, 
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however we are limited to the amount of data we can get out. Our output has the exact output that 

an approximate CGRA would have, however we do not have a proper power, timing, and area 

analysis of the CGRA [6].  

Results 

 We tested a total of two different algorithms using the approximate CGRA, both being 

actual applications. Applications tend to act differently than simple arithmetic, as particular 

operations will be favored over others, meaning some applications will see great improvement 

with few losses using approximation, while other applications may see little improvement with 

great losses. The use of applications gives a greater perspective on real results. The below summary 

of approximate arithmetic modules has highlighted functions to indicate that the output does not 

match its corresponding accurate module. 

 

Figure 2: Accurate Adder Circuit [7] 

 

Figure 3: Impact Zero Approximate Adder Circuit [7] 
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Figure 4: Impact First Approximate Adder Circuit [8] 

 

Figure 5: Impact Third Approximate Adder Circuit [8] 

Accurate Add 

A B Cin Sum Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
Table 1: Accurate Adder Truth Table 
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Impact Zero Approximate Add 

A B Cin Sum Cout 

0 0 0 1 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 0 1 
Table 2: Impact Zero Approximate Adder Truth Table 

Impact First Approximate Add 

A B Cin Sum Cout 

0 0 0 1 0 

0 0 1 1 0 

0 1 0 0 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 0 1 
Table 3: Impact First Approximate Adder Truth Table 

Impact Third Approximate Add 

A B Cin Sum Cout 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 1 1 

1 1 1 1 1 
Table 4: Impact Third Approximate Adder Truth Table 
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Figure 6: Accurate Multiplier Circuit [9] 

 

Figure 7: Impact Zero Approximate Multiplier [9] 

 

Figure 8: Impact First Approximate Multiplier [5 9] 
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Exact Multiply 

 00 01 10 11 

00 0000 0000 0000 0000 

01 0000 0001 0010 0011 

10 0000 0010 0100 0110 

11 0000 0011 0110 1001 

Table 5: Exact Multiplier Truth Table 

Impact Zero Approximate Multiply 

 00 01 10 11 

00 0000 0000 0000 0000 

01 0000 0001 0010 0011 

10 0000 0010 0100 0110 

11 0000 0011 0110 0111 

Table 6: Impact Zero Approximate Multiplier Truth Table 

Impact First Approximate Multiply 

 00 01 10 11 

00 0000 0000 0000 0000 

01 0000 0000 0010 0010 

10 0000 0010 0100 0110 

11 0000 0010 0110 1000 

Table 7: Impact First Approximate Multiplier Truth Table 

 The first application we tested using the CGRA was the isqrt function included in the 

MiBench benchmarking tool. The isqrt function computes the square root of the input, using 

almost entirely bit shifting operators, and exclusively integer arithmetic. This makes the isqrt 

function fast on a wide array of systems, and easy to implement on the approximate CGRA. We 

tested the isqrt function with all three approximate adders at four, eight, twelve, and sixteen bits 

approximated. We compared the effects on percent error that the number of bits approximated has 

for each adder, as well as a comparison of the percent error of each adder. 
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Figure 9: Zero Approximation Comparison 

 In this application, the percent error of the adder follows a pattern of decreasing before 

suddenly spiking. Increasing the number of bits approximated reduces the average error, as well 

as increases the frequency that the percent error follows this pattern. 

 

Figure 10: First Approximation Comparison 
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 The output of the Impact First Approximation was found to be exactly the same as the 

Impact Zero Approximation. This becomes more apparent when comparing Impact Zero and 

Impact First Approximate adders directly to each other. As Impact First Approximate adder 

functions the same as Impact Zero Approximate adder, it is likely that this application never has 

an addition where A is zero, B is one, and Cin is zero, as this is the only difference case between 

Impact Zero and Impact First approximate adders. 

 

Figure 11: Third Approximation Comparison 

 Impact Third Approximate adder follows an almost identical pattern as Impact Zero and 

Impact First Approximate adders. The difference here is the percent error gradually increases to a 

peak, instead of spiking. The second half of the pattern is exactly the same as the Impact Zero and 

Impact First Approximate adders. The frequency of the pattern is also the same as the Impact Zero 

and Impact First Approximate Adders 
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Figure 12: Approximate Adder Comparison 

 By comparing the percent error from each approximate adder, we can find which adder 

performed best at this application. We find that Impact Third Approximation performed equally 

or better than the other two approximate adders, with the exception of the second quarter of the 

first iteration of the repeating pattern, in this case between 1053 and 2025.  

The second application we tested was a Sobel edge detection algorithm on a test image. 

The Sobel edge detection functions on a greyscale image and detects areas that rapidly change 

from a dark shade to a light shade. This application is the most similar of the two that we tested to 

a real application that would be used in most scenarios. The issue with the Sobel edge detection is 

that the results are not quantifiable, meaning we cannot quantify how close the approximate 

solution is to the exact solution. In this case, we used an Impact Third Approximate Adder and an 

Impact First Approximate Multiple and approximated the 16 least significant bits. 
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Figure 13: Original Image (left) and Scaled Down Image (right) 

           

Figure 14: Exact Blur Image (left) and Exact Peaks Image (right) 

           

Figure 15: Approximate Blur Image (left) and Approximate Peaks Image (right) 
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We also did a transistor level simulation of the Approximate Adder circuits to determine 

some of the physical characteristics of an approximate computing module. vhdl code for the 

implementation of each approximate and exact arithmetic adder and multiple is included in 

lpAClib. These modules were simulated to find the area the circuit would take up on an integrated 

circuit. We also counted the transistors required to implement an approximate module. We use the 

number of transistors to estimate the power reduction for the approximate modules. 

  One 

Bit 

Percent 

Reduction 

(vs. exact) 

16 Bit Accurate 

16 Bit Approximated 

Percent 

Reduction 

(vs. exact) 

Exact Adder Area (um) 40.5 0 % 1784.5 0 % 

Transistors 24 0 % 768 0 % 

Impact Zero 

Approximate Adder 

Area (um) 24.8 38.8 % 1532.3 14.1 % 

Transistors 14 41.6 % 608 20.8 % 

Impact First 

Approximate Adder 

Area (um) 16.2 60 % 1392.5 22.0 % 

Transistors 16 33.3 % 640 16.7 % 

Impact Third 

Approximate Adder 

Area (um) 0.2 99.5 % 1132.3 36.6 % 

Transistors 0 100 % 384 50 % 
Table 8: Power and Area 

Steps for Replication 

 In order to replicate our work, modifications must be made to the CGRA Compilation 

Framework. When gem5 is compiled, it compiles using a static CGRA x dimension and y 

dimension. This means the definition of the x and y dimensions must be changed and gem5 

recompiled to simulate different sizes of CGRA. The x and y dimensions of the CGRA are defined 

in multiple places. All of these definitions must be changed to matching values in order for gem5 

to run properly.  

 There are also cases where the file path of certain files is hardcoded. In some cases, the file 

path can be left as is with reduced functionality, but in other cases the file path must be changed 

to function properly.  
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 In order to accelerate the process of changing the x and y dimension of the CGRA as well 

as fixing the file paths, we created a python script that handles all the modification automatically. 

This python script can be found in our private repository, which can be accessed by contacting Dr. 

Iraklis Anagnostopoulis. 

Conclusions 

 We can draw two different conclusions from this research project. We found that an 

algorithms actual percent error may vary from the percent error of the approximate arithmetic used, 

and we found that using approximate computing modules can reduce the size of a chip, and number 

of transistors to implement the circuit on a chip. 

 The isqrt function from MiBench showed that for most possible inputs, the Impact Third 

Approximate adder performed equal to or better than the other two adders when using the same 

number of bits approximated. The Impact Third Approximate adder is the most approximate adder, 

showing that the accuracy of the adder used does not always correlate to the accuracy of the output 

of an algorithm. Instead, some algorithms may benefit more from using a particular type of 

approximate hardware. 

 By comparing each approximate hardware circuit, we can see that using approximate 

hardware decreases both size of the circuit as well as transistors required to implement the circuit. 

Both imply that the approximate hardware uses less power than an accurate module. In turn, the 

operating frequency could be increased to maintain a similar power profile as accurate arithmetic 

units, but with increased processing power. 
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