
Southern Illinois University Carbondale
OpenSIUC

Honors Theses University Honors Program

5-8-2019

Approximate Computing in Coarse Grained
Reconfigurable Architecture
Lincoln Douglas Kinley
Southern Illinois University Carbondale, lincoln.kinley@siu.edu

Follow this and additional works at: https://opensiuc.lib.siu.edu/uhp_theses
I would like to thank Dr. Iraklis Anagnostopoulos and Ioannis Galanis for their support in developing
my researching abilities and helping me with this undergraduate research project. I would also like to
thank the SIUC Honors Program for their guidance and mentorship through my bachelor’s degree.
Finally, I would like to thank my friends and family for supporting me throughout my studies.

This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion
in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Kinley, Lincoln Douglas, "Approximate Computing in Coarse Grained Reconfigurable Architecture" (2019). Honors Theses. 460.
https://opensiuc.lib.siu.edu/uhp_theses/460

https://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/uhp_theses?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/uhp?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/uhp_theses?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opensiuc.lib.siu.edu/uhp_theses/460?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Approximate Computing in Coarse Grained Reconfigurable

Architecture

Lincoln Kinley

A thesis submitted to the University Honors Program

In partial fulfillment of the requirements for the

Honors Certificate with Thesis

Southern Illinois University

May 8, 2019

Kinley 1

Abstract

 Approximate computing has emerged as a new computing paradigm capable of reducing

the power requirements for or accelerating some workloads. Due to cascading error and the nature

of binary arithmetic, it is difficult to predict the exact effects that approximation may have on an

error tolerant workload. In this work, we implemented configurable levels of approximation into

a Coarse Grained Reconfigurable Architecture (CGRA) to study the effects of error tolerant

algorithms on an approximate CGRA. We will use the CGRA Compilation Framework which

simulates a CGRA using gem5, and we will implement the approximate hardware using multiple

different approximate arithmetic modules included in Low Power Approximate Computing

Library. Finally, we will perform a hardware level simulation on approximate modules to estimate

the reduction in power from using approximate hardware.

Kinley 2

Acknowledgements

I would like to thank Dr. Iraklis Anagnostopoulos and Ioannis Galanis for their support in

developing my researching abilities and helping me with this undergraduate research project. I

would also like to thank the SIUC Honors Program for their guidance and mentorship through my

bachelor’s degree. Finally, I would like to thank my friends and family for supporting me

throughout my studies.

Kinley 3

Table of Contents

Abstract 1

Acknowledgements 2

Table of Contents 3

Table of Figures 4

Introduction 6

Motivation 7

Methods 8

Tools 9

Results 10

Steps for Replication 19

Conclusions 20

References 21

Kinley 4

Table of Figures

Figure 1: CGRA Architecture 7

Figure 2: Accurate Adder Circuit 10

Figure 3: Impact Zero Approximate Adder Circuit 10

Figure 4: Impact First Approximate Adder Circuit 11

Figure 5: Impact Third Approximate Adder Circuit 11

Figure 6: Accurate Multiplier Circuit 13

Figure 7: Impact Zero Approximate Multiplier 13

Figure 8: Impact First Approximate Multiplier 13

Figure 9: Zero Approximation Comparison 15

Figure 10: First Approximation Comparison 15

Figure 11: Third Approximation Comparison 16

Figure 12: Approximate Adder Comparison 17

Figure 13: Original Image (left) and Scaled Down Image (right) 18

Figure 14: Exact Blur Image (left) and Exact Peaks Image (right) 18

Figure 15: Approximate Blur Image (left) and Approximate Peaks Image (right) 18

Kinley 5

Table of Tables

Table 1: Accurate Adder Truth Table 11

Table 2: Impact Zero Approximate Adder Truth Table 12

Table 3: Impact First Approximate Adder Truth Table 12

Table 4: Impact Third Approximate Adder Truth Table 12

Table 5: Exact Multiplier Truth Table 14

Table 6: Impact Zero Approximate Multiplier Truth Table 14

Table 7: Impact First Approximate Multiplier Truth Table 14

Table 8: Power and Area 19

Kinley 6

Introduction

Ever since we hit the power wall, advancements in computing have been restricted by three

main factors. Specifically, hardware can have two of the following three: performance, efficiency,

and generality. In order to achieve all three of these, a new computing paradigm, approximate

computing, has emerged. Approximate computing introduces a fourth dimension, accuracy, thus

expanding the level of control programmers have. By reducing the requirements for data to be

completely accurate, energy efficiency can be increased, while also accelerating algorithms [1].

Approximate computing is a very wide field, with solutions that exist at the software and

hardware level. Approximate computing is mostly geared towards accelerating data heavy

algorithms are not required to be fully accurate in order to function. This includes algorithms that

fall under recognition, mining, and synthesis (RMS) applications. Although approximate

computing can be used to accelerate many algorithms, it is not a definite solution for developing

faster and more efficient algorithms, and as such it will likely never replace traditional exact

computing. Instead, approximate computing allows the acceleration of a program [2]. There are

multiple different ways to implement approximate computing, which includes solutions at the

software level, and the hardware level. At the software level, iterative algorithms can reduce their

iterations, thus reducing the accuracy and saving compute power. At the hardware level, arithmetic

functions can drop some of the low significance bits to speed up their frequency or reduce their

power consumption [2].

 Coarse Grained Reconfigurable Architectures (CGRAs) are programmable computer

hardware devices that use a large number of functional units which share data with adjacent

functional units very quickly. Each of these functional units has all the aspects of a traditional

information processor, including an Arithmetic Logic Unit (ALU) and registers.

Kinley 7

Figure 1: CGRA Architecture [3]

 This project has the goal of allowing the programmer to choose an approximation tolerance

of his or her application. The application can then accelerate data processing by using the

approximate CGRA to meet the tolerable approximation level, as previous work in approximate

computing has shown that even marginal decreases in accuracy can have significant impact on

efficiency and speed at which the software runs [3 4].

 We accomplish this by dedicating functional units in the CGRA to process data at a specific

accuracy level and processing the data on functional units of varying accuracy. Data processing

can reach a configurable accuracy level stated by the programmer by using a specific number of

each approximation level functional unit.

Motivation

 Research into Approximate CGRAs has two primary motivation. The first is to develop a

low powered, general processor, and the second is to devise a method to accelerate error tolerant

algorithms. An approximate CGRA has the potential to accomplish either of these, the choice

would ultimately be up to a hardware designer to design the device to fit a power profile.

Kinley 8

 The Internet of Things (IoT) is a growing system, which utilizes many different low power

distributed computers. Due to the remoteness of the device, many IoT devices run off of battery

power. The Approximate CGRA aims to reduce the power requirements of processing data,

allowing IoT devices powered by a battery to be powered for a significantly longer time off a

single charge. This increases the usefulness of the device, while still being capable of retaining

primary functionality. Furthermore, many IoT devices utilize sensors, which are already error

tolerant, meaning that approximate computing can easily be integrated into their functionality.

 Another motivation of the approximate CGRA is its ability to accelerate error tolerant

algorithms in many systems. In particular, we are considering algorithms that fall into the RMS

category. Approximate computing has already been shown to increase the data throughput of error

tolerant algorithms [4].

It is important to understand that this project does not seek to replace exact computing.

There are numerous tasks and algorithms that cannot be approximated, as approximation would

result in crashes or otherwise errant behavior. Exact computing will always remain an important

aspect of computing, while approximate computing seeks to supplement exact computing by

accelerating error tolerant algorithms.

Methods

 Our method involved implementing approximate hardware into the functional unit of a

CGRA. This included the adder and multiplier circuit inside the ALU of each functional unit. We

also allowed both the adder and multiplier circuit inside the ALU to be configured to approximate

a configurable number of bits, allowing for a high level of control when utilizing approximate

computing.

Kinley 9

Tools

 We used a number of existing tools to implement our design, both for the design of

approximate computing modules and the simulation of the CGRA.

 Low Power Approximate Computing Library (lpAClib) from the Chair for Embedded

Systems in the Karlsruhe Institute of Technology was used to implement our approximate

computing modules. lpAClib includes a total of three different approximate adders, and two

different approximate multipliers. lpAClib allows for the users to specify the total number of bits

to be approximated, which allows for more control over the level of approximation of the output.

This proved to be very useful for achieving an optimal level of approximation in an algorithm.

lpAClib also allows for the multiplier to use any of the implemented adders. This feature could be

useful in the future to create an adder that has a high precision, and a multiplier that has a low

precision, or vice versa. Given the application dependent results of using approximate computing,

this feature is highly desirable. While we were working to implement approximate computing with

the CGRA, we decided to rewrite the lpAClib library using the bitset type instead of the char type.

We did this for two reasons. First of all, we found that lpAClib has a memory leak, which we were

not able to identify, and second of all, using bitsets makes the problem use far less memory than

the original implementation of lpAClib. Our implementation of lpAClib requires using a C++

compiler, whereas the original lpAClib is compatible with C [5].

 For the simulation of the CGRA, we used the CGRA Compilation Framework (CCF) by

Shail Dave in the Compiler Microarchitecture Lab at Arizona State University. CCF is built on

gem5, an implementation level simulator. Gem5 is an open source system level simulator designed

to simulate the functionality of hardware, however it does not simulate specific details like power

and area. This allows us to rapidly test the outputs of many different configurations of the system,

Kinley 10

however we are limited to the amount of data we can get out. Our output has the exact output that

an approximate CGRA would have, however we do not have a proper power, timing, and area

analysis of the CGRA [6].

Results

 We tested a total of two different algorithms using the approximate CGRA, both being

actual applications. Applications tend to act differently than simple arithmetic, as particular

operations will be favored over others, meaning some applications will see great improvement

with few losses using approximation, while other applications may see little improvement with

great losses. The use of applications gives a greater perspective on real results. The below summary

of approximate arithmetic modules has highlighted functions to indicate that the output does not

match its corresponding accurate module.

Figure 2: Accurate Adder Circuit [7]

Figure 3: Impact Zero Approximate Adder Circuit [7]

Kinley 11

Figure 4: Impact First Approximate Adder Circuit [8]

Figure 5: Impact Third Approximate Adder Circuit [8]

Accurate Add

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
Table 1: Accurate Adder Truth Table

Kinley 12

Impact Zero Approximate Add

A B Cin Sum Cout

0 0 0 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1
Table 2: Impact Zero Approximate Adder Truth Table

Impact First Approximate Add

A B Cin Sum Cout

0 0 0 1 0

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1
Table 3: Impact First Approximate Adder Truth Table

Impact Third Approximate Add

A B Cin Sum Cout

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1
Table 4: Impact Third Approximate Adder Truth Table

Kinley 13

Figure 6: Accurate Multiplier Circuit [9]

Figure 7: Impact Zero Approximate Multiplier [9]

Figure 8: Impact First Approximate Multiplier [5 9]

Kinley 14

Exact Multiply

 00 01 10 11

00 0000 0000 0000 0000

01 0000 0001 0010 0011

10 0000 0010 0100 0110

11 0000 0011 0110 1001

Table 5: Exact Multiplier Truth Table

Impact Zero Approximate Multiply

 00 01 10 11

00 0000 0000 0000 0000

01 0000 0001 0010 0011

10 0000 0010 0100 0110

11 0000 0011 0110 0111

Table 6: Impact Zero Approximate Multiplier Truth Table

Impact First Approximate Multiply

 00 01 10 11

00 0000 0000 0000 0000

01 0000 0000 0010 0010

10 0000 0010 0100 0110

11 0000 0010 0110 1000

Table 7: Impact First Approximate Multiplier Truth Table

 The first application we tested using the CGRA was the isqrt function included in the

MiBench benchmarking tool. The isqrt function computes the square root of the input, using

almost entirely bit shifting operators, and exclusively integer arithmetic. This makes the isqrt

function fast on a wide array of systems, and easy to implement on the approximate CGRA. We

tested the isqrt function with all three approximate adders at four, eight, twelve, and sixteen bits

approximated. We compared the effects on percent error that the number of bits approximated has

for each adder, as well as a comparison of the percent error of each adder.

Kinley 15

Figure 9: Zero Approximation Comparison

 In this application, the percent error of the adder follows a pattern of decreasing before

suddenly spiking. Increasing the number of bits approximated reduces the average error, as well

as increases the frequency that the percent error follows this pattern.

Figure 10: First Approximation Comparison

0.000%

0.000%

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

1000.000%

10000.000%

1
3

5
6

9
1

0
3

1
3

7
1

7
1

2
0

5
2

3
9

2
7

3
3

0
7

3
4

1
3

7
5

4
0

9
4

4
3

4
7

7
5

1
1

5
4

5
5

7
9

6
1

3
6

4
7

6
8

1
7

1
5

7
4

9
7

8
3

P
er

ce
n

t
Er

ro
r

Square Root Input (* 81)

Zero Approximation Compairson

4 Bits Approximate

8 Bits Approximate

12 Bits Approximate

16 Bits Approximate

0.000%

0.000%

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

1000.000%

10000.000%

1
3

1
6

1
9

1
1

2
1

1
5

1
1

8
1

2
1

1
2

4
1

2
7

1
3

0
1

3
3

1
3

6
1

3
9

1
4

2
1

4
5

1
4

8
1

5
1

1
5

4
1

5
7

1
6

0
1

6
3

1
6

6
1

6
9

1
7

2
1

7
5

1
7

8
1

P
er

ce
n

t
Er

ro
r

Square Root Input (* 81)

First Approximation Compairson

4 Bits Approximate

8 Bits Approximate

12 Bits Approximate

16 Bits Approximate

Kinley 16

 The output of the Impact First Approximation was found to be exactly the same as the

Impact Zero Approximation. This becomes more apparent when comparing Impact Zero and

Impact First Approximate adders directly to each other. As Impact First Approximate adder

functions the same as Impact Zero Approximate adder, it is likely that this application never has

an addition where A is zero, B is one, and Cin is zero, as this is the only difference case between

Impact Zero and Impact First approximate adders.

Figure 11: Third Approximation Comparison

 Impact Third Approximate adder follows an almost identical pattern as Impact Zero and

Impact First Approximate adders. The difference here is the percent error gradually increases to a

peak, instead of spiking. The second half of the pattern is exactly the same as the Impact Zero and

Impact First Approximate adders. The frequency of the pattern is also the same as the Impact Zero

and Impact First Approximate Adders

0.000%

0.000%

0.000%

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

5
7

9

6
1

3

6
4

7

6
8

1

7
1

5

7
4

9

7
8

3

P
er

ce
n

t
 E

rr
o

r

Square Root Input (* 81)

Third Approximation Compairson

4 Bits Approximate

8 Bits Approximate

12 Bits Approximate

16 Bits Approximate

Kinley 17

Figure 12: Approximate Adder Comparison

 By comparing the percent error from each approximate adder, we can find which adder

performed best at this application. We find that Impact Third Approximation performed equally

or better than the other two approximate adders, with the exception of the second quarter of the

first iteration of the repeating pattern, in this case between 1053 and 2025.

The second application we tested was a Sobel edge detection algorithm on a test image.

The Sobel edge detection functions on a greyscale image and detects areas that rapidly change

from a dark shade to a light shade. This application is the most similar of the two that we tested to

a real application that would be used in most scenarios. The issue with the Sobel edge detection is

that the results are not quantifiable, meaning we cannot quantify how close the approximate

solution is to the exact solution. In this case, we used an Impact Third Approximate Adder and an

Impact First Approximate Multiple and approximated the 16 least significant bits.

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

1000.000%

1
3

4

6
7

1
0

0
1

3
3

1
6

6

1
9

9
2

3
2

2
6

5
2

9
8

3
3

1
3

6
4

3
9

7
4

3
0

4
6

3
4

9
6

5
2

9
5

6
2

5
9

5
6

2
8

6
6

1
6

9
4

7
2

7

7
6

0

7
9

3

P
er

ce
n

t
Er

ro
r

Square Root Input (* 81)

Approximation Adder Compairson (12 Bits Approximated)

Zero Approximate

First Approximate

Third Approximate

Kinley 18

Figure 13: Original Image (left) and Scaled Down Image (right)

Figure 14: Exact Blur Image (left) and Exact Peaks Image (right)

Figure 15: Approximate Blur Image (left) and Approximate Peaks Image (right)

Kinley 19

We also did a transistor level simulation of the Approximate Adder circuits to determine

some of the physical characteristics of an approximate computing module. vhdl code for the

implementation of each approximate and exact arithmetic adder and multiple is included in

lpAClib. These modules were simulated to find the area the circuit would take up on an integrated

circuit. We also counted the transistors required to implement an approximate module. We use the

number of transistors to estimate the power reduction for the approximate modules.

 One

Bit

Percent

Reduction

(vs. exact)

16 Bit Accurate

16 Bit Approximated

Percent

Reduction

(vs. exact)

Exact Adder Area (um) 40.5 0 % 1784.5 0 %

Transistors 24 0 % 768 0 %

Impact Zero

Approximate Adder

Area (um) 24.8 38.8 % 1532.3 14.1 %

Transistors 14 41.6 % 608 20.8 %

Impact First

Approximate Adder

Area (um) 16.2 60 % 1392.5 22.0 %

Transistors 16 33.3 % 640 16.7 %

Impact Third

Approximate Adder

Area (um) 0.2 99.5 % 1132.3 36.6 %

Transistors 0 100 % 384 50 %
Table 8: Power and Area

Steps for Replication

 In order to replicate our work, modifications must be made to the CGRA Compilation

Framework. When gem5 is compiled, it compiles using a static CGRA x dimension and y

dimension. This means the definition of the x and y dimensions must be changed and gem5

recompiled to simulate different sizes of CGRA. The x and y dimensions of the CGRA are defined

in multiple places. All of these definitions must be changed to matching values in order for gem5

to run properly.

 There are also cases where the file path of certain files is hardcoded. In some cases, the file

path can be left as is with reduced functionality, but in other cases the file path must be changed

to function properly.

Kinley 20

 In order to accelerate the process of changing the x and y dimension of the CGRA as well

as fixing the file paths, we created a python script that handles all the modification automatically.

This python script can be found in our private repository, which can be accessed by contacting Dr.

Iraklis Anagnostopoulis.

Conclusions

 We can draw two different conclusions from this research project. We found that an

algorithms actual percent error may vary from the percent error of the approximate arithmetic used,

and we found that using approximate computing modules can reduce the size of a chip, and number

of transistors to implement the circuit on a chip.

 The isqrt function from MiBench showed that for most possible inputs, the Impact Third

Approximate adder performed equal to or better than the other two adders when using the same

number of bits approximated. The Impact Third Approximate adder is the most approximate adder,

showing that the accuracy of the adder used does not always correlate to the accuracy of the output

of an algorithm. Instead, some algorithms may benefit more from using a particular type of

approximate hardware.

 By comparing each approximate hardware circuit, we can see that using approximate

hardware decreases both size of the circuit as well as transistors required to implement the circuit.

Both imply that the approximate hardware uses less power than an accurate module. In turn, the

operating frequency could be increased to maintain a similar power profile as accurate arithmetic

units, but with increased processing power.

Kinley 21

References

[1] A. Lotfi, A. et al. "Grater: An Approximation Workflow for Exploiting Data-Level Parallelism

in FPGA Acceleration," 2016 Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, 2016, pp. 1279-1284.

[2] J. Han and M. Orshansky, "Approximate computing: An Emerging Paradigm for Energy-

Efficient Design," 2013 18th IEEE European Test Symposium (ETS), Avignon, 2013, pp. 1-6.

[3] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram and M. Shafique, "PX-CGRA:

Polymorphic approximate coarse-grained reconfigurable architecture," 2018 Design, Automation

& Test in Europe Conference & Exhibition (DATE), Dresden, 2018, pp. 413-418.

[4] Brandalero, M. et al. “Approximate On-The-Fly Coarse-Grained Reconfigurable Acceleration

for General-Purpose Applications,” 2018 55th Design Automation Conference (DAC), San

Francisco, 2018

[5] Muhammad Shafique, Rehan Hafiz, Semeen Rehman, Walaa El-Harouni, Jörg Henkel, "A Low

Latency Generic Accuracy Configurable Adder", in 53nd ACM/EDAC/IEEE Design Automation

Conference & Exhibition (DAC), 2016.

[6] Dave, Shail, Mahesh Balasubramanian, and Aviral Shrivastava. "RAMP: resource-aware

mapping for CGRAs." 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).

IEEE, 2018.

[7] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, "Low-Power Digital Signal

Processing Using Approximate Adders," in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-137, Jan. 2013.

[8] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy, "IMPACT: IMPrecise

adders for low-power approximate computing," IEEE/ACM International Symposium on Low

Power Electronics and Design, Fukuoka, 2011, pp. 409-414.

 [9] P. Kulkarni, P. Gupta and M. Ercegovac, "Trading Accuracy for Power with an

Underdesigned Multiplier Architecture," 2011 24th Internatioal Conference on VLSI Design,

Chennai, 2011, pp. 346-351.

	Southern Illinois University Carbondale
	OpenSIUC
	5-8-2019

	Approximate Computing in Coarse Grained Reconfigurable Architecture
	Lincoln Douglas Kinley
	Recommended Citation

	tmp.1557412363.pdf._6a3D

