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Abstract 

Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has 

emerged in recent years as one of the most powerful tools available for characterizing the 

molecules involved in the biochemistry of life.  Metal oxide laser ionization (MOLI) is a recently 

described variation on MALDI in which a metal oxide, rather than an organic acid, is utilized as 

the matrix. Unlike other metal oxides, Cerium(IV) Oxide (CeO2) demonstrates a unique property 

of laser induced catalytic side chain cleavage of fatty acids when applied to phospholipids and 

energized by standard lasers found in MALDI-TOF-MS instruments.   

In previous work, a technique for CeO2 deposition on mouse brain tissue was developed 

that allows fatty acyl catalysis directly from tissue for possible bacterial identification.  Although 

MOLI using CeO2 was shown to be promising for this application, the mechanism of fatty acyl 

catalysis remains poorly understood. In the current studies, a negative ion mode calibration 

mixture is first optimized to ensure mass-to-charge (m/z) assignments are accurate thereby 

allowing structural assignments to be confirmed.  This calibrant mixture is then used in the 

analysis of a phospholipid standard used in previous work; palmitoyl-2-oleoyl-glycero-3-

phosphocholine (POPC).  This work ensures that the mouse brain imaging results obtained 

earlier can be replicated on the Bruker MicroFlex MALDI-TOF-MS.  With this assurance, 

structural variants of POPC are studied to determine how slight variations in structure affect the 

catalytic cleavage with a goal to gain insight into the cleavage mechanism.  Additionally, 

computational studies are performed to gain insight into the structural and electronic properties 

of phospholipids and their derivatives. 
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Chapter 1 : Introduction 

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) has 

emerged in recent years as one of the most powerful tools available for characterizing the 

molecules involved in the biochemistry of life.  In recent years, MALDI-MS has been found to 

be a valuable tool in a number of different fields such as molecular biology, biotechnology, and 

biomedicine.1-5  MALDI coupled with Mass Spectrometry Imaging (MSI) is an emerging and 

powerful analytical technique which allows the spatially resolved characterization of a wide 

range of analytes within biological specimens.6  In contrast to commonly used imaging 

techniques, such as immunohistochemistry (IHC), MALDI-MSI allows for the untargeted 

analysis of tissue sections.7  Although many of the original applications of MALDI-MSI focused 

on protein analyses,8 there has been significant progress in utilization of this technique to 

characterize drugs9-11 and lipids12 in tissue specimens.   

Metal oxide laser ionization (MOLI) is a recently described variation on MALDI in 

which a metal oxide, rather than an organic acid, is utilized as the matrix.13  Like MALDI, MOLI 

utilizes laser energy to generate ions that are measured by a mass spectrometer, most commonly 

a time of flight (TOF) mass spectrometer.  Compared with MALDI, one of the central 

advantages of MOLI is the absence of matrix ion peaks, which can obscure ions from the 

biological specimen in the small molecule range (m/z < 1000).  Most commonly, when MOLI 

MS is used, analyte ionization of lipids occurs by protonation, or sodiation, due to interactions 

with the Lewis acid/base sites on the metal oxide.  However, as studies have continued, it has 

been found that the ionization mechanism can vary between metal oxides.14 

For certain metal oxides, such as nickel (II) oxide (NiO), the method of ionization is 

thought to involve Lewis acid/base interactions between the cation/anion pairs of the metal oxide 
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and the analyte, resulting in the protonation from one surface-bound analyte to another without 

involving solvent or surface-absorbed water.15  For others, such as calcium oxide (CaO), analyte 

ionization occurs due to interactions with Lewis acid/base sites on the metal oxide, and results in 

a calcium adduct of a fatty acid carboxylate.16  More recently, cerium(IV) oxide (CeO2), a rare 

earth lanthanide, has also been utilized in MOLI-MS.  However, unlike the other metal oxides, 

CeO2 demonstrates a unique property of laser induced catalysis of fatty acyl cleavage when 

applied to phospholipids and energized by standard lasers found in commonly used and 

commercially-available MALDI-TOF-MS instruments, as seen in Figure 1.15  Furthermore, 

instead of forming a protonated or sodiated ion, as observed with the other metal oxides, CeO2 

generates negative ions exclusively.14,16,18,19,20 
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Figure 1.  Mass spectra of lipid standards with respective molecular structures.19 

This property of laser-induced catalytic cleavage by CeO2 provides a unique opportunity 

in various biological and clinical applications in which fatty acid profiling may be needed.15,16  

Beyond clinical applications, CeO2-based materials also have a variety of applications as a 

catalytic system in fuel cells, for thermochemical water-splitting, in various organic reactions, 

and for photocatalysis.17  Because of this involvement of CeO2 in a variety of fields, and the 

potential it has to impact future technologies, further investigations of the biological catalysis 

properties of this compound are warranted. 
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Figure 2. MOLI MSI of control mouse brain tissue.  Coronal sections (12 µm thickness) of 

frozen mouse spotted with a solution of CeO2 in isopropanol, acquired using 100 µm pixel 

resolution.19 

Until recently, however, MOLI with CeO2 had not been used in conjunction with 

MALDI-MSI.  This oversight was addressed during summer 2018 through studies performed at 

the Harvard Medical School in the Agar group.  In these studies a method was developed and 

optimized for CeO2 deposition on biological tissue for subsequent MOLI-MSI characterization 

with direct on-tissue fatty acyl catalysis.  An example of the results of these investigations is 

shown in Figure 2 and further details are included in a manuscript recently accepted for 

publication.19   

Although MOLI-MSI using CeO2 shows considerable promise, the mechanism of fatty 

acyl catalysis is still unknown.  As stated above, with other metal oxides analyte ionization of 

phospholipids typically occurs by protonation, or sodiation, due to interactions with the Lewis 
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acid/base sites on the metal oxide.  However, neither protonated or sodiated lipid fragments are 

present with CeO2-induced catalysis, indicating that the mechanism of cleavage is unique.  It is 

postulated that much of the catalytic activity of CeO2 arises from oxygen vacancy defects in the 

surface which occur at MALDI-like conditions (high temperature, low pressure).20 

Furthermore, previous research in the use of CeO2 as a matrix for MOLI-MS, focused on 

bacterial lipid extracts for strain-level identification.  As a result, individual phospholipids were 

not analyzed, and only complex mixtures derived from bacteria were characterized.  From these 

studies, bacteria were identified based on the mass spectral fingerprint generated for each strain 

of bacteria studied.18,20  In order to aid in the understanding of the catalytic properties of CeO2, 

single phospholipids must be analyzed in order to study the impact of small structural differences 

not yet observed with CeO2 MOLI-MS.   

Previous studies of individual phospholipids have been performed by conventional 

MALDI-MS which give some insight into the ions that are formed from these compounds and 

their relevance to compound identification.  Specifically, in order to fully identify a 

phospholipid, the fatty acyl chain located at each position on the glycerol backbone must be 

identified.  In the typical two-chain phospholipid, these positions are identified as the sn-1 and 

sn-2 positions, as shown in figure 3.21  In positive ion MALDI-MS studies using 2,5-

dihydroxybenzoic acid (DHB) as the matrix phospholipids will form two main adducts resulting 

from proton attachment and lithium attachment.  Experimental results show that selective loss of 

the fatty acyl chain occurs at the sn-2 position for protonated ions, while loss at the sn-1 position 

occurs for lithium adducts.21  Since there is a differentiation in adduct formation depending on 

the adduct formed, it is important to note if the sn-1 or sn-2 has any effect on catalysis of the 

fatty acyl chains when CeO2 is utilized.   
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Figure 3. Labeled sn-1 and sn-2 positions on the glycerol backbone21 

In the present research, experimental and computational studies are performed to answer 

a number of questions about the catalytic nature of CeO2.   First, experimental studies are 

performed to determine if the orientation of the phospholipid, as well as the functional group 

connecting the fatty acid chain, affects cleavage.  In addition, computational studies are 

performed to confirm that the head group, as well as the orientation of the phospholipid, has no 

impact on the efficiency of cleavage of the fatty acid chains.  This is done by examining the 

Mulliken charges, bond angles, and bond lengths.   
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Chapter 2: Materials and Methods 

Materials 

1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), 1-O-hexadecyl-2-oleoyl-sn-

glycerol-3-phosphocholine (HOPC), 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) 

were obtained from Avanti Polar Lipids (Alabaster, AL).   Cerium (IV) oxide (CeO2) (<5 µm, 

99.9% purity), L-ascorbic acid (99% purity), sinapic acid (99%), methanol (MeOH), and 

chloroform (CHCl3) were purchased from Sigma-Aldrich (St. Louis, MO, USA).  L-glutamic 

acid was purchased from Aldrich Chem. Co. (Milwaukee, WI).   

Methods 

Creation of Calibration Mixture 

A calibration mixture was prepared for negative ion mode using a 9:1 ratio of  

matrix:analyte.  The matrix used was sinapic acid; prepared at a concentration of 10 mM in 

methanol.  The analyte was a 1:1 glutamic:ascorbic acid mixture.  Glutamic and ascorbic acid 

were prepared at a concentration of 10 mM in DI water.  For analysis, 0.5 µL was deposited on 

the stainless steel MALDI target.  Mass spectra of these prepared MALDI samples were then 

obtained using a commercial Bruker Microflex time-of-flight mass spectrometer operating at 

337nm.  The instrument was operated in linear, negative ion mode and the detector used is a 

microchannel plate detector; where the detection range was set from 20 to 1900 m/z. 

Analysis of Phospholipid Standards 

Phospholipid standards were prepared at concentrations of 0.329 M in a 2:1 (v/v) solution 

of chloroform:methanol and stored at -20 C.  Cerium(IV) Oxide was prepared by suspending 100 
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mg of CeO2 in 1 mL of isopropanol.  For analysis by MALDI-MS, 0.5 µL of CeO2 was deposited 

on the stainless steel MALDI target plate and allowed to dry.  Next, 0.5 µL of the lipid standard 

was deposited directly on top of the CeO2.  Mass Spectra was collected under the same 

conditions as the calibration mixture.   

Computational Studies 

The Gaussian 16 Density Functional Theory (DFT) package was utilized for 

computational studies with B3LYP functionals and the 6-31g+(d,p) basis set.  A solvent model 

CPCM (implicit model) was included using chloroform as the solvent.  Computational studies 

were used to find the bond length, bond angle, and the Mulliken charges around the suspected 

cleavage site.  The Mulliken charge is the partial atomic charge attributed to a particular atom 

within a molecule.   
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Chapter 3: Results and Discussion 

Experimental Studies 

Figure 4. Mass spectra of phospholipid standards HOPC, OPPC, POPC, and calibration mixture 

in negative ion mode 
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Figure 4 shows representative mass spectra of the three different phospholipid standards 

tested in this experiment.  The phospholipid standards tested were variants on POPC.  In POPC, 

the C16:0 fatty acid chain is present in the sn-1 position and the C18:1 Chain is in the sn-2 

position.  For OPPC, this order is reversed, as seen in figure 5.  From the spectra collected, it 

appears that cleavage of the sn-2 position is favored.  As a result, C18:1 is cleaved with more 

efficiency than C16:0 for POPC but the situation is reversed for OPPC.   

Figure 5. Lipid structure of A) HOPC and B) OPPC C) POPC 

The efficiency of cleavage of the fatty acid chains is affected even more by a change in 

the functional group connecting the fatty acid chain to the phospholipid head.  In HOPC, the 

functional group connecting the C16:0 chain is changed from a carboxyl group to an ether group.  

From the resulting mass spectrum of HOPC, it is seen that when the functional group is changed, 

no cleavage occurs.  The expected fragment, if cleavage occurred at the oxygen, would be 

A 

B 

C 
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242.261 m/z.  However, this is not present in the mass spectrum, suggesting no fragment is 

formed from the ether functional group.   

 

Computational Studies 

Table 1.  Bond distance and bond angle values for phospholipids from computational studies. 

 

  

HOPC POPC POPS POPE 

atoms bond distance (Å) atoms bond distance (Å) atoms bond distance (Å) atoms bond distance (Å) 

1-2 1.52595 1-2 1.44566 1-2 1.44311 1-2 1.44566 

2-3 1.41996 2-3 1.35147 2-3 1.35393 2-3 1.35147 

4-5 1.4534725 4-5 1.45552 4-5 1.45158 4-5 1.45552 

5-6 1.34725 5-6 1.35026 5-6 1.35443 5-6 1.35026 

atoms angle (º) atoms angle (º) atoms angle (º) atoms angle (º) 

1-2-3 108.83686 1-2-3 116.66947 1-2-3 116.5455 1-2-3 116.66947 

4-5-6 121.87937 4-5-6 121.62714 4-5-6 121.34574 4-5-6 121.62714 
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Table 2.  Mulliken charges for phospholipids from computational studies. 

 

 

HOPC POPC POPS POPE 

atom 

mulliken 

charge (au) 

atom 

mulliken  

charge (au) 

atom 

mulliken 

charge(au)  

atom 

mulliken 

charge(au) 

1 -0.359 1 -0.413 1 -0.101 1 -0.419 

2 -0.306 2 -0.305 2 -0.708 2 -0.357 

3 0.535 3 0.529 3 0.905 3 0.045 

4 0.420 4 0.422 4 0.025 4 0.608 

4 -0.187 4 -0.188 4 -0.701 4 -0.200 

5 -0.117 5 -0.085 5 0.930 5 -0.068 

6 -0.359 6 -0.413 6 -0.101 6 -0.419 
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Figure 6. Gaussian generated optimized structures of phospholipids and their Mulliken charges 

for A) POPC, B) POPS, C)HOPC, and D) POPE 
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For the computational studies, the bond distance, angle, and Mulliken charges were 

compared for the four phospholipids tested.  Calculations were performed using a truncated fatty 

acid chain, because no cleavage was observed to occur in that region.  When comparing 

molecules of different head groups, little variation in the bond distances and bond angles 

occurred (figure 5, table 1).  However, in HOPC, when the functional group is changed from a 

carboxyl to an ether, the geometry of the lipid is greatly affected.  There is an increase in bond 

distance between atoms 2 and 3, which is the location of expected cleavage.  Also, the bond 

angle of the ether group is much smaller than that of the corresponding carboxyl group in POPC.  

These differences may impact why cleavage does not occur experimentally at this site.   

Mulliken charges are way to study the charges on individual atoms in a molecule.   

Atoms with a larger charge difference are expected to have a stronger bond, based on Coulomb’s 

law.  From the computational studies performed, for POPC, POPS, and HOPC, there is a larger 

charge difference in the sn-2 position than in the sn-1 position.  This would suggest that cleavage 

of the sn-1 position would be favored over the sn-2.  However, this is not observed 

experimentally.  Further computational studies need to be performed to investigate these 

phenomena.  
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Conclusion & Future Directions 

In this study, we demonstrate, for the first time, the use of MOLI-MS to discriminate 

between phospholipids with the same fatty acid side chains, but varied functional groups or 

spatial orientation.  Future studies need to be done experimentally and computationally to further 

elucidate the cleavage mechanism of CeO2.  Computationally, studies need to be completed to 

calculate the bond energy at the sites of expected cleavage.  This will give more accurate 

information than the Mulliken charges.  Additionally, modeling the CeO2 surface and allowing 

the phospholipids to interact with the surface to which energy is applied will better simulate 

MALDI conditions than the current calculations.  Experimentally, more standards need to be 

tested in order to examine how more differences in structure affects cleavage.  This would 

include lipids with different head groups, different functional group modifications, and different 

fatty acid chains.  
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