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AN ABSTRACT OF THE DISSERTATION OF 

Song Gao, for the Doctor of Philosophy degree in Educational Statistics and Measurement, 

presented on 21, October 2011, at the Southern Illinois University Carbondale. 

TITLE: THE EXPLORATION OF THE RELATIONSHIP BETWEEN GUESSING AND 

LATENT ABILITY IN IRT MODELS 

MAJOR PROFESSOR: Dr. Todd Headrick 

This study explored the relationship between successful guessing and latent ability in 

dichotomous IRT models. Two new IRT models, the  Rasch-Guessing model and the 2PL-

Guessing model were developed with guessing functions integrating probability of guessing 

an item correctly with the examinee’s ability and the item parameters. The conventional 3PL 

IRT model was compared with the new 2PL-Guessing model on parameter estimation using 

the Monte Carlo method. SAS program was used to implement the data simulation and the 

maximum likelihood estimation.  

Compared with the traditional 3PL model, the new model should reflect: a) the maximum 

probability of guessing should not be more than 0.5, even for the highest ability examinees; b) 

different ability of examinees should have different probability of successful guessing 

because a basic assumption for the new models is that higher ability examinees have a higher 

probability of successful guessing than lower ability examinees; c) smaller standard error in 

estimating parameters; d) better AIC for goodness of fit; and e) faster running time. Three 

criteria were used to compare parameter estimates: correlation, RMSD (root mean squared 
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deviation), and bias. 

Two item response data sets on 20 items from 100, 200, 500, and 1000 examinees using the 

3PL model and the 2PL-Guessing model with 10 replications were simulated. Each data set 

was used by both models to recover parameters to compare the accuracy of parameter 

recovery between these two models in terms of three aforementioned criteria. 

The new 2PL-Guessing model can control the probability of the successful guessing between 

the probability of random guessing and 0.5 by applying logistic function to the successful 

guessing probability, successfully reflecting different probability of successful guessing with 

different ability. The parameter estimate results illustrated that the new 2PL-Guessing model 

produced higher correlations between true parameter values and estimated parameter values, 

smaller RMSD, smaller bias, and better AIC for goodness of fit using the dataset generated 

by the new model. When using the dataset generated by the conventional 3PL model, the 

new model produced better results for ability and discrimination parameter estimates and 

smaller average AIC indices across all sample sizes compared than the 3PL model, but the 

3PL model produced better difficulty parameter estimates.  
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CHAPTER ONE 
 

INTRODUCTION 
 

Guessing and Multiple Choice Tests 

      Multiple-choice format questions are most frequently used in educational testing, in 

market research, and in elections. Multiple-choice items consist of a stem and a set of 

options which are the possible answers from which the examinees can choose. Because 

only one answer can be correct, when unanswered questions are counted as incorrect for 

many multiple-choice tests, it makes sense to guess when all else fails. Therefore, most 

often examinees taking a multiple-choice test may make a guess at the answers when they 

are not sure which alternative is correct to improve their test scores. This kind of behavior 

is especially prevalent when there is no penalty for guessing wrong.  

 Wright (1991) stated that guessing, which can increase opportunities for 

unqualified individuals, is considered to be a construct-irrelevant response. It is necessary 

to reevaluate those misfitting persons caused by guessing after they are identified by 

using the error estimates (also see Pelton, 2002).  

Generally, there are two forms of guessing: “blind guessing” or “informed guessing”. 

Blind guessing occurs when the examinee has no idea of the correct answer and responds 

randomly while informed guessing occurs when the examinee responds to an item on the 

basis of partial knowledge. Guessing of one form or another can especially occur on 

multiple-choice test items and it can increase error variance of test scores, thereby 

damaging their reliability and validity (Rogers, 1999). 

Random guessing, however, provides no information about ability. Correct 
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responses due to random guessing are quite different from correct responses by guessing 

when examinees can eliminate some options by partial information (Smith, 1993). Some 

researchers have tried to distinguish random guessing which contains no information at 

all from informed guessing which contains some information. Birnbaum (1968) 

introduced the 3 parameter logistic (PL) item response theory (IRT) model which 

integrated a guessing parameter reflecting the possibility of a correct guess. The pseudo-

guessing item parameter, however, in the three-parameter IRT model mistakes guessing as 

the only function of the item properties, when, in fact, the guessing is an interaction 

between item properties and person ability. 

There are two good reasons to believe that the success of guessing is related to ability. 

The first reason is that for a certain item, only some examinees exhibit guessing behavior, 

especially low ability examinees. The more difficult the item is, the more guessing 

behavior is exhibited; the easier the item is, the less guessing behavior is exhibited, 

especially for high-ability examinees. This may explain why there is such a big difference 

in item parameter estimates between capable and weak students. The second reason is that 

3PL IRT model guessing parameter is sometimes more than 1/N (N is the number of 

options), so a plausible explanation for this issue is that some respondents can eliminate 

one or more of the options and then guess among the non-eliminated options. Partial 

knowledge may be reflected in this guessing parameter, so it is ability related (Martin, del 

Pino, & De Boeck, 2006). 

The most important purpose of an exam is to estimate the examinees’ ability or 

academic achievement and to make decisions on the basis of test scores; therefore, it is 
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very important to consider the effect of guessing on multiple-choice tests because 

guessing behavior either increases the measured error or can be held accountable for 

construct-irrelevant variance (Messick, 1995). If guessing behavior is not considered in 

the IRT parameter estimation, the standard IRT models will misestimate the true levels of 

the examinees’ ability and will cause to make wrong decisions. 

Statement of the Problem 

Some researchers (e.g. Cao & Stokes, 2008) have engaged to integrate IRT models 

with guessing. The 3PL model developed by Birnbaum (1968) assumes that the 

examinees would make a guess if he does not know the correct answer and the probability 

of guessing correctly will be 1/N (N is the number of options). The model applies this 

guessing behavior as an item parameter to all examinees assuming that the probability of 

successful guessing is entirely a quality of the item which has the same fixed effect on all 

examinees. Wietzman (1996) combined the Rasch model with guessing for a fixed-length, 

multiple-choice test with the requirement that all multiple-choice items must have equally 

guessworthy options. That is to say, if an item has 4 options, the guessing parameter c

should be equal to 1/4 for all test items regardless of examinees’ ability.  

However, this pseudo-guessing parameter has stirred a lot of concerns. De Ayala 

(2008) expressed his concerns on the guessing parameter: a) the difference between the 

guessing parameter and the random guessing probability occurs all the time and the 

random guessing assumption for guessing parameter is not reflected in the observed data; 

b) the responses from low ability individuals demonstrate the interaction between the 

person’s ability and the item characteristics; and c) the assumption for the guessing 
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parameter that every examinee has the same probability to guess an item correctly may 

not reflect the real guessing situation. 

In addition, the uniform guessing parameter cannot distinguish random guessing 

from informed guessing, therefore, this guessing parameter revealing nothing about the 

examinee’s partial knowledge. However, Hutchinson (1991) demonstrated that examinees 

getting a high proportion of items correct at their first attempt tend to get a high 

proportion of items correct at their second attempt, thus, showing some form of partial 

information was operating. With partial information, the examinee can eliminate one or 

more of the distracters as being obviously wrong, and then he guesses randomly among 

the remainder. 

Furthermore, the inaccuracy of estimating guessing parameter causes another 

concern. Renolds (1986) indicated that the guessing parameter could not be precisely 

estimated in her simulation study although she increased the sample size and test length 

and changed the distribution of ability. A research study conducted by Ree (1979) 

concerning the accuracy of the guessing parameter estimate revealed that the accuracy of 

the guessing parameter estimate was still poor even with 2000 subjects and 80 test items 

being simulated. There must be some other factors affecting the accuracy of estimation 

since sample size and test length are not the primary factors to influence the accuracy of 

guessing parameter estimate. 

Pelton (2002) concluded from his empirical study of the accuracy and stability of 

estimates on 1PL, 2PL, and 3PL models that the estimation of the guessing parameter is 

likely to fluctuate substantially with different guessing information. The 3PL model can 
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produce the best estimates only if a moderate amount of guessing was assumed. 

Martin, del Pino, and Boeck (2006) described that the guessing parameter for 

different ability levels of students may have a substantial impact on item parameter 

estimates. “In fact, most information about the lower asymptote in the item characteristic 

curve is obtained for relatively easy items, while the discrepancy between capable and 

less capable persons may also come from the probability of a correct guessing being 

dependent on ability” (p.185). 

Martin, del Pino, and De Boek (2006) developed a model to integrate guessing 

behavior with individual latent ability by putting the guessing parameter into a function of 

the ability of the examinee. However, their models failed to control guessing probability 

under 0.5 and an extra parameter of the weight of ability in the guessing function had to 

be estimated for all test items; therefore, the presence of such a parameter increased the 

complexity of parameter estimation. 

Bock (1997) proposed a nominal response model (NRM) to collect more 

information from incorrect answers and improve the accuracy of ability estimation for 

multiple-choice items (see also Verstralen, 1997); however, the model can increase 

accuracy mainly for low test scores. Nedelsky (1954) developed a model based on the 

idea that the borderline test-taker responds to a multiple-choice question by first 

eliminating the incorrect options, then guesses randomly from the remaining options. 

Nedelsky (1954) then generalized this method to all levels of ability. However, the model 

requires an assumption that the correct answer is never rejected, or the test taker will 

never think that the correct answer is wrong and a very large sample size is required to get 
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reliable estimates. Further, Farr, Pritchard, and Smitten (1990) found no evidence to 

support the assumption of the Nedelsky (1954) model in terms of reading comprehension 

tests. 

Cao and Stokes (2008) proposed three different models based on three different 

guessing behaviors by using Bayesian estimation methods: a) the IRT threshold guessing 

model; b) the IRT difficulty-based guessing model; and c) the IRT continuous guessing 

model. 

However, there are some limitations associated with the Cao and Stokes (2008) 

models. Cao and Stokes (2008) used only low-stake tests to apply three models with 

assumptions that 60% of the examinees were guessers and the guessing parameter for all 

three models was equal to the reciprocal of the number of options of the test item. This 

fails to reflect the relationship between the probability of correct guessing and the 

examinee’s ability. Furthermore, Cao and Stokes (2008) provided little or no discussion in 

terms of when or in what situation, or which model should be applied. 

The Purpose of the Study 

The purpose of this study was to: a) analyze and determine the relationship between 

the probability of guessing a test item correctly and the examinee’s ability and item 

parameters so that different ability examinees have different guessing probability of 

success; b) propose new IRT models with a guessing function related to the examinee’s 

ability and item parameters; c) use the Monte Carlo method to generate the proposed 

models’ and 3PL model’s response data, estimate item parameters, and compare the new 

2PL-Guessing model with the 3PL IRT models in item parameter recovery; and d) 
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compare goodness-of-fit using the real data between the 2PL-Guessing model and the 

3PL model. To do parameter estimation for the new models, the Monte Carlo approach 

will be used to generate simulation data and the marginal maximum likelihood estimation 

method will be used to estimate model parameters.  

The Limitations of the Study 

First, the response data were generated under the assumptions of unidimensionality 

and the normal distribution of ability; therefore, the models may not be appropriate to be 

applied to multidimensionality tests or polytomous assessments. Second, the models were 

also developed under the strong assumption that examinees have a high motivation to 

guess if they do not have the knowledge for the answer because guessing can increase 

their performance, so the best situations for the application of the models are high-stake 

tests, achievement tests or licensure tests. Third, the proposed new model may not be 

appropriate for classroom exams because sometimes instructors want all students to 

answer some items correctly for classroom tests. 

The Significance of the Study 

 The issue of guessing is important to multiple-choice assessments because 

guessing behavior can be a source of construct-irrelevant variance, posing a major threat 

to construct validity; furthermore, the use of guessing strategies not only increases error, 

but also weakens the relationships among test items. Therefore, it is imperative to account 

for guessing in the evaluation of multiple choice tests (Messick, 1995). 

 A multiple-choice question always provides opportunity for successful guessing. 

This kind of systematic error may increase the probability of success for the lower ability 
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examinees. If this bias or systematic error is not handled appropriately by the model, it 

may have a negative effect on the precision of the item difficulty and discrimination 

parameter estimates (Pelton, 2002).  

 Multiple-choice test items are subject to guessing, so answering an item correctly 

and knowing the correct answer to the item are not equivalent. Birnbaum (1968) 

introduced the 3PL model with a controversial guessing parameter which completely 

depends on item property and has nothing to do with the examinee’s ability. Furthermore, 

estimation of the guessing parameter in the 3PL model is the most unstable and Ree (1979) 

found that even large samples and long tests could not improve the accuracy of the 

guessing parameter estimate. 

 The proposed new models should reflect: a) the maximum probability of guessing 

should not be more than 0.5, even for the highest ability examinees; b) different ability of 

examinees should have different probability of successful guessing, because a basic 

assumption for the new models is that higher ability examinees have a higher probability 

of successful guessing than lower ability examinees; and c) because the new 2PL-

Guessing model has only two item parameters, the running time for estimation of item 

parameters is much shorter than the 3PL IRT model. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction of Item Response Theory 

Gulliksen (1950) indicated that an important contribution to the theory and practice 

of item analysis would be the discovery of item parameters that are relatively invariant to 

different examinee groups on which item analysis is based. Although classical test theory 

(CTT) has been widely used in the measurement field for a long time because of its 

simplicity and relatively weak assumption requirements which make CTT easily applied 

to many test situations, IRT has experienced tremendous growth in recent decades since 

IRT overcomes the circular dependency , the major weakness associated with CTT  

(Hambleton & Jones, 1993). IRT, also known as latent trait theory, is a model-based 

measurement in which ability estimates depend on both examinees’ responses and on the 

properties of the administered items (Embreston & Reise, 2000).  

Compared to CTT, IRT is more theory-driven and models the probability of 

examinees’ successful responses by the item statistics independent of examinee samples, 

the individual latent ability, and the particular set of items administered. That is to say, 

when the IRT model fits the data, the same item characteristic curve (ICC) is obtained for 

the test item regardless of the distribution of ability in the group of examinees used to 

estimate the item parameter. The chief advantage of IRT is the properties of item and 

ability parameter invariance which is crucial for inferences to be equally valid for 

different populations of examinees or different measurement conditions. “The importance 

of the property of invariance of item and ability parameter cannot be overstated. This 
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property is the cornerstone of item response theory and makes possible such important 

applications as equating, item banking, investigation of item bias, and adaptive testing.” 

(Hambleton, Swaminathan & Rogers, 1991, p. 25) 

More and more test developers are using IRT to design standardized tests due to 

IRT’s potential to solve practical issues and its theoretical invariance advantage. IRT now 

are applied to several major tests such as the Armed Services Vocational Aptitude Battery, 

SAT, and GRE. The early IRT applications involved mainly unidimensional IRT models 

(Embreston, 2000). Since Bock, Gibbons, and Muraki (1988) developed a 

multidimendional IRT model, IRT applications to personality, attitude, and behavioral 

self-reports have become possible as well. IRT has increasingly become the mainstream 

in the measurement field. 

IRT Assumptions 

Even though IRT has many advantages over CTT, these advantages can only take 

effect when its assumptions are met. There are two important assumptions for IRT models: 

unidimensionality and local independence.  

A common assumption of IRT models is that only one latent trait (or ability) is 

measured by a set of items in an exam. However, it is impossible to meet this assumption 

because other factors such as personality, motivation, anxiety, and guessing always affect 

test performance to some extent. Therefore, if there is the presence of a dominant 

component or factor in a set of test data, we would say, the unidimensionality assumption 

is met and this dominant factor is referred to as the latent trait measured by the test. 

Local independence means that the probability of answering any test item is 
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independent of the probability of answering any other test item when the abilities are held 

constant (Hambleton, Swaminathan & Rogers, 1991). The property of local independence, 

for a given examinee, means that the probability of a response pattern on a test is equal to 

the product of each test item probability. The assumptions of unidimensionality and local 

independence are equivalent because local independence can be obtained if 

unidimensionality is met. The property of local independence can be expressed 

mathematically in the following way: 

(2.1)         ,)|()|()...|()|()|,...,,(Pr
1

2121 ∏
=

==
n

i
inn UPUPUPUPUUUob θθθθθ

 
 

where θ  represents the examinee’s ability level; iU represents the response of a randomly 

chosen examinee to item =ii ( 1, 2, …, )n ; )|( θiUP  denotes the probability of the 

response of a randomly chosen examinee with abilityθ ; )|1( θ=iUP  denotes the 

probability of a correct response, and )|0( θ=iUP denotes the probability of an incorrect 

response.  

The final assumption for any selected IRT model is that the model must fit the data. 

That assumes that the ICC of chosen IRT model must be able to provide an accurate 

reflection of the relationship between examinees’ ability and item response (Davis, 2002). 

The advantages of IRT models can be achieved only if there is a satisfactory goodness-of-

fit between the model and test data. If the model fits the data poorly, the invariance of the 

examinee’s latent ability and item parameters will be compromised (Hambleton, 

Swaminathan & Rogers, 1991). 

There is no an absolute statistical method to determine a particular model fit or not 

overall, but Embreston and Reise (2000) suggested two approaches to evaluating 
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goodness-of-fit for IRT models: item fit and person fit. 

Dichotomous IRT Models 

  The three most popular unidimensional IRT models are the one-, two-, and three-

parameter logistic models named because of the number of item parameters each model 

has also, these models are appropriate for dichotomous item response data. A primary 

distinction among these three models is the number of parameters used to describe items. 

 One-Parameter Logistic Model. 

   The one-parameter logistics model, which is often called the Rasch model, is one of the 

most widely used IRT models. The probability of answering an item correctly is given by 

the equation 

, ,..., 2 ,1   
1

)( )(

)(

ni
e

eP
i

i

b

b

i =
+

= −

−

θ

θ

θ                                    (2.2) 

where )(θiP  is the probability that a randomly chosen examinee with abilityθ answer item

i correctly, ib is the item i difficulty parameter, n is the number of items in the test, and e is 

a transcendental number whose value is 2.718. In the one-parameter model, it is assumed 

that item difficulty is the only item property that affects examinee performance. This is 

equivalent to the assumption that all item discrimination indices are equal. The lower 

asymptote of the ICC is zero which means examinees of very low ability have zero 

probability of answering the item correctly. Thus, there is no allowance for guessing in 

this model (Hambleton, Swaminathan & Rogers, 1991). 

Two-Parameter Logistic Model. 

   Birnbaum (1968) substituted the two-parameter logistic function for the two-parameter 

normal ogive function developed by Lord (1952) because logistic functions have the 
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important advantage of being more convenient to work with than normal ogive functions. 

The probability of answering an item correctly is expressed by two-parameter model 

developed by Birnbaum (1968) as: 
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where ai represents the discrimination parameter of item i. The item discrimination is 

proportional to the slope of ICC at the point bi on the ability scale. The steeper the slope 

is, the more useful the item is to separate examinees into different ability levels  
 

(Hambleton, Swaminathan & Rogers, 1991). D is a scaling factor developed to make the 

logistic function as close as possible to normal ogive function and it is a constant and is 

equal to 1.7. 

Three-Parameter Logistic Model. 

The mathematical expression for the three-parameter logistic model is 

             (3.5)                       ,  ,..., 2 ,1   
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 where ci is called the guessing parameter which provides nonzero lower asymptote for 

the ICC and represents the probability of examinees with low ability answering the item 

correctly. It is important to note that by definition, the value of c does not vary as a 

function of ability level in this equation. Thus, the lowest and highest ability examinees 

have the same probability of answering the item correctly by guessing. 

Due to each model’s different properties and assumptions, the selection of the model 

should be determined by the primary purpose. The Rasch model has the advantage of 

estimating the fewest parameters (Davis, 2002). In addition, the Rasch model is robust in 



14 
 

that it is capable of calibrating data containing substantial variations to the item 

discrimination parameters (Linacre, 2002) and other deviations from model assumptions 

(Fisher, 1993; Linacre, 1995). On the other hand, the 3PL model which includes the 

possible potential for guessing on multiple-choice questions with guessing parameter c 

requires the most parameter estimation and “the pseudo-guessing parameter is especially 

difficult to estimate because of sparse data conditions at low ability level” (Davis, 2002, 

p14). 

One of the important advantages of IRT models over CTT is that each item has an 

item information function I(θ) that can be transformed into an item information curve 

(IIC) which reflects the amount of information an item provides for different latent trait 

level
 (Embreston & Reise, 2000). The item information function can be expressed as: 
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where )(θiP  equals the probability of correctly responding to item i givenθ , )(' θiP  is the 

first derivative of )(θiP  with respect toθ , and )(θiQ  is equal to )).(1( θiP−  The 

information functions can be used to select test items on the basis of ability level. 

   Hambleton, Swaminathan and Rogers (1991) stated the amount of information provided 

by a test atθ  is inversely correlated to the precision with which ability is estimated at that 

point: 

,
)(

1)ˆ(
θ

θ
I

SE =                                              (2.6) 

where )ˆ(θSE  is called the standard error of estimation and )(θI represents the test 

information function (which is the sum of all item functions) atθ . 
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How much information an item can provide completely depends on the item 

parameters. In the Rasch and the 2PL models, the item provides the maximum 

information at ib , so those examinees whose ability is equal to the item difficulty 

parameter receive most information from the item. In the 3PL model, because of the 

effect of the guessing parameter, the maximum amount of item information occurs 

slightly to the right of ib depending on the value of the guessing parameter (Embreston & 

Reise, 2000). The amount of information an item can provide is associated with item 

discrimination parameter. The higher the discrimination, and the more information the 

item provides. In the 3PL model, the guessing parameter has a negative effect on the 

information the item gives (Davis, 2002). 

2.2 Methods of Parameter Estimation 

There are two main techniques of estimating parameters for binary response IRT 

models: the maximum likelihood estimation and the Bayesian estimation. The maximum 

likelihood is the most popular method to estimate item parameters for IRT models, while 

Bayesian estimation method can be more effective if prior information for item 

parameters is available (Embreston & Reise, 2000). A review of three maximum 

likelihood methods: a) joint maximum likelihood (JML); b) conditional maximum 

likelihood (CML); c) marginal maximum likelihood (MML); and d) Bayesian estimation 

methods in the literature will be discussed in this section. 
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Maximum Likelihood Function 

 Maximum Likelihood estimation is a popular statistical method used to estimate 

the model’s parameters through a joint probabilistic function of observed data. The 

likelihood function is equal to the product of probabilities associated with each item 

response if the local independence is true (Si & Schumacker, 2004). Let us use 2-PL IRT 

as an example and ikii yyy ,..., 21 denote the binary responses of the thi  individual to k test 

items, )...,( 21 kaaa=a  and )...,( 21 kbbb=b be the vector of item discrimination and 

difficulty parameters respectively. The probability of obtaining a response vector y given 

ba  and ,jθ for thi individual is given by
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If the responses of each of the n individuals to the test items are assumed to be 

independent, then the likelihood function for all individuals will be 
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This function represents the likelihood of obtaining the observed data as a function 

of the model parameters. By applying a logarithm to L , maximum likelihood estimation is 

used to calculate the value of the parameters that maximize the value of L by solving the 

first derivative likelihood equation = 0 (Si & Schumacker, 2004). 

The Newton-Raphson algorithm is an iterative process used to find a solution for 

likelihood equation. Si and Schumacker (2004) described: 

The Newton-Raphson algorithm starts with an initial value for the estimate of the 
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parameter in the model. The number of items correct is typically used for the ability 

estimates and item statistics are used for item estimates. In each iteration, a new estimate 

for the parameter is generated based on the estimate obtained from the previous iteration. 

The difference between the new and old estimates are calculated for each iteration. The 

iterations continue until the difference is smaller than a pre-set minimal value, then the 

estimates has converged and is maximum likelihood estimate of the parameter. (p.154-

155).  

Joint Maximum Likelihood Estimation. 

JML is one of the most widely used parameter estimation methods and both item and 

ability parameters are estimated simultaneously in this method ( Lim & Drasgow, 1990). 

There are two steps for JML. Initial values for ability parameters must be selected on the 

basis of examinees’ test scores and used as known ability values to estimate item 

parameters in the first step; and then in the second step, item parameters are treated as 

known to estimate ability parameters. This two-step process is stopped until there is no 

difference between two-step estimations (Hambleton, Swaminathan & Rogers, 1991). 

Even though JML is easily programmable, applicable to many IRT models, and 

efficient in computation (Embreston & Reise, 2000), there are several disadvantages to 

JML. First, it does not produce consistent item and ability parameter estimation for the 

2PL or the 3PL IRT models because an increase in sample size does not result in 

improved estimations. Second, ability parameters cannot be estimated for perfect or zero 

scores. Third, parameter estimates for items answered correctly by all examinees are not 

available. Fourth, JML is very sensitive to item parameter fixed initial values when 
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applied to the 3PL model (Hambleton, Swaminathan & Rogers, 1991). 

Conditional Maximum Likelihood Estimation. 

The CML estimation method, compared with JML, produced more consistent and 

efficient parameter estimates by removing the trait level parameters from the likelihood 

equations (Si & Schumacker, 2004). CML can be implemented only if a sufficient statistic 

is available in the data for ability and item parameters. Embreston and Reise (2000) 

explained that “A sufficient statistic means that no other information is needed from the 

data for estimating the parameter” (p. 215). In the 1-PL Rasch model, the item total scores 

are sufficient statistics for the ability parameter and the number of correct responses to an 

item is a sufficient statistic for the item difficulty parameter (Si & Schumacker, 2004). 

CML can be only applicable to the Rasch model because of this sufficient statistic 

condition. 

While CML has the advantages of no requirement for ability distribution, more 

reliable parameter estimations compared with JML, its several disadvantages are 

discussed here. First, CML cannot be applied to the 2PL and 3PL models and this limits 

its applications. Second, estimations for examinees with extreme scores (zero or perfect) 

and these scores have to be removed prior to estimation. Third, CML loses its accuracy in 

estimating parameters for a long test (Embreston & Reise, 2000). 

Marginal Maximum Likelihood Estimation. 

 Due to CML’s limitation that can be only applied to the Rasch model, an alternative 

estimation method for the 3PL and 2PL models developed by Bock and Lieberman (1970) 

is marginal maximum likelihood estimation (MMLE). The most important advantage of 
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MML over CML and JML is that the ability parameter is treated as a random nuisance 

parameter can be removed by integrating over ability distribution (Lord, 1986; Bock & 

Aitkin, 1981; Harwell, Baker, & Zwarts, 1988). More formally, by definingθ  to represent 

ability level and iy to denote the ith  examinee’s responses to test items, then the likelihood 

function for individual i is: 

,)()/Pr()( θθθ dfyyL iii ∫=     

)( ii yL is a function of the item parameters because the ability parameter θ has been 

integrated out. 

 Although MML method by Bock and Lieberman (1970) can be used to estimate 

the 2PL and 3PL model parameters, this approach is computationally expensive and it 

was not feasible for very long tests (Si & Schumacker, 2004). Bock and Aitken (1981) 

used the EM algorithm for MML to estimate item parameters. The EM algorithm involves 

an iterative two-stage procedure for finding maximum likelihood estimates (Harwell, 

Baker , & Zwarts, 1988): an expectation (E) stage and a maximization (M) stage. 

Embreston and Reise(2000) explained that in the expectation stage, the expected numbers 

of the examinees at each quadrature point and the expected numbers of examinees 

passing each single item are computed, and then these expected values are used to 

execute the regular maximum parameter estimations in the maximization stage. These 

parameters are then used to determine the distribution of latent variables in the next 

expectation step. This repetition stops until the estimates converge. The Newton-Gauss 

method is used to solve the maximum likelihood equation and find the standard errors(Si 

& Schumacker, 2004). 
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 Compared with other maximum likelihood estimation methods, MML has several 

advantages (Embreston & Reise, 2000). First, it can be applied to all types of IRT models 

and any length of tests. Second, estimates for perfect and zero scores are available and 

thus no loss of information. Third, the estimates of item standard error in MML are good 

approximations of expected sampling variance of the estimates. Fourth, the item 

parameter estimate is completely independent of the ability distribution, so MML can 

obtain reliable estimates even for small sample sizes and short tests (Si & Schumacker, 

2004; Harwell, Baker , & Zwarts, 1988). However, the main disadvantage associated with 

MML estimation are its complicated computational process. MML computational process 

has created a huge problem for computer programming; another disadvantage of MML is 

that ability distribution has to be assumed normal if there is no prior ability distribution 

information available. (Embreston & Reise, 2000; Si & Schumacker, 2004; Baker, 1992). 

Bayesian Estimation 

 Bayesian model parameter estimation for IRT models is similar to marginal 

maximum likelihood estimation, however, Bayesian method requires prior information of 

item parameters (Johnson, 2007). The posterior distribution is obtained through the 

product of the likelihood function and prior distribution (Lim & Drasgow, 1990). It can be 

expressed for the 2-PL model as: 

 (2.9)                                                               ),(),()/,,( ba,θ,ba,y/θybaθ PLP ∝  

 )( b/ya,θ,P represents the distribution of parameter estimates based on the item response 

vector y (the posterior distribution). The )( ba,θ,P is the prior distribution of parameter 

estimates. ),,/( baθyL is the likelihood function. Bayesian methodology uses equation 
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(2.9) to estimate parameters (Si & Schumacker, 2004). 

 There are two types of priors in terms of their distributions: noninformative priors 

and informative priors. A noninformative prior distribution has a large variance and has 

little effect on the parameter estimates, while an informative prior distribution has a small 

variance and can estimate parameters close to the mean of the prior distribution and this is 

the main reason why informative priors are favored in some cases (Sheng, 2008; Si and 

Schumacker, 2004). 

 The most important advantage of Bayesian estimation is that the parameter estimates 

can be controlled in a reasonable range because item parameter prior information is used 

(Lim & Drasgow, 1990). On the other hand, the major problem associated with Bayesian 

model estimation occurs when prior information is incorrect and this may cause 

systematic bias to item parameter estimates (Baker, 1987; Lim & Drasgow, 1990; Mislevy, 

1986).   

2.3 Guessing Parameter and Latent Ability 

Approaches to the Guessing Effect in CTT 

Ever since multiple-choice tests became popular, there has been concern over the 

guessing effect on test scores. In the beginning, score increases due to guessing were 

deemed as being dishonest even though these score components usually reflect partial 

knowledge-the ability to eliminate some wrong options before guessing. Some educators 

even think guessing on test items has caused the primary psychometric problem since it 

increases the error variance of test scores, thereby reducing their reliability and validity. 

Hambleton and his colleagues (1992) indicated: 
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The inclination to guess is an idiosyncratic characteristic of particular low ability 

examinees. Lucky guessing is a random event. Neither feature contributes to valid 

measurement of a latent trait. Parameterizing guessing penalizes the low performer with 

advanced special knowledge and also the non-guesser. Rasch flags lucky guesses as 

unexpected responses. They can either be left intact which inflates the ability estimates of 

the guessers, or removed which provides a better estimate of the guessers' abilities on the 

intended latent trait. In practice, 3-P guessing parameter estimation is so awkward that 

values are either pre-set or pre-constrained to a narrow range (p.215). 

As a result, many educators try to avoid the use of multiple choice tests and some 

educators admonish students against guessing. However, multiple-choice tests have 

become inevitably dominant in mass testing because of their advantages of broader 

coverage of instructional content, reliable scoring, and easily calculated item statistics. 

Hence, neither admonishment against guessing nor avoidance of multiple-choice tests 

was an effective approach to the guessing problem. 

Since the 1920s, when multiple-choice tests came into widespread use, there has 

been considerable research conducted to reduce the effects of guessing on test scores. 

Since guessing is not directly measured in CTT, much of the research in CTT on 

corrections for guessing has focused on correction formulas scoring. The most widely 

used correction formula is based on the assumption that the examinee either has the 

complete knowledge or know nothing about the item, and he either skips the item or 

makes a random guessing. Therefore, wrong answers are deemed as the result of unlucky 

guessing; and then the number of wrong answers can be used to predict the number of 
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lucky guesses, which need to be deducted from the examinee’s score (Rogers, 1999). 

The standard correction for guessing is given by the formula: 

( ) ,1−
−=

A
WRF  

where R is the number of right answers,W is the number of wrong answers, and A is the 

number of alternatives for each item. 

 Thorndike (1982) developed a corresponding correction that can be applied to the 

item difficulty index or −p value (the proportion of examinees answering the item 

correctly).  The corrected p -value is given by the formula 

( ) ,1−
−=

A
p

pp w
c  

where p is the item difficulty index and wp the proportion of examinees attempting the 

item who answered it incorrectly. A problem with this correction is that when the 

proportion of correct answers falls below the chance level, the corrected difficulty index 

can be less than zero. 

 Rowley and Traub (1977) criticized the formula because it ignored the possibility 

that the examinee can use partial knowledge to eliminate some distracters and is more 

likely to get an item right than if the examinee guesses randomly, so the formula scoring 

discriminates against the examinee who omits items. It has been discussed that informed 

guessing increases true score variance rather than error variance and thus increases the 

validity of scores (Mehrens & Lehman, 1987). Moreover, when examinees respond to an 

item on the basis of partial knowledge, their test scores are based on a greater sample of 

content, and hence may have better validity. 
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 Rogers (1999) indicated that another criticism about the appropriateness and 

effectiveness of formula scoring was that: (a) it is based on false assumptions about 

examinee behavior, and (b) it disadvantages examinees who exhibit the reluctance to take 

a risk to guess. With respect to the first point, critics argue that there are no such ignorant 

examinees that they will not attempt or be completely unable to rule out a single distracter 

on a large number of questions, that is, examinees who have no knowledge to answer the 

question rarely guess randomly. Thorndike (1982) demonstrated this point by the example 

of a set of verbal analogy items from a published test, where the most popular distracter 

was chosen by about 20 per cent of examinees and the least popular by about 4 per cent of 

examinees, therefore, the effort of “correcting for guessing” is largely useless. 

 With respect to the second point, there is a considerable body of research which 

shows that the extent to which examinees comply with the instructions associated with 

formula scoring (i.e., the instruction to omit rather than guessing randomly). This reflects 

a personality trait which may bias against some examinees (Diamond & Evans, 1973; 

Rowley & Traub, 1977). Examinees who are more willing to take risks will not be 

penalized on average, because at most they will lose the points gained by randomly 

guessing. The research in this area indicates that the tendency to omit items under 

formula scoring directions is personality trait which is more reliably measured by 

multiple choice tests than the cognitive trait of interest (Rogers, 1999). 

 Even though the formula scoring has its assumption problems, some educators are 

in favor of it because it increases the reliability and validity of test scores (Mattson, 1965; 

Lord, 1975). Prihoda and Pinckard (2006) compared uncorrected and corrected for 
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guessing scores on multiple-choice examinations with scores on short-answer 

examinations for dental students; they found that students guessed at a level close to 

random guessing and correcting for guessing increased the validity in multiple-choice 

tests and they suggested that instructors using multiple-choice tests should either correct 

for guessing or take the effect of guessing into account when establishing the criterion for 

passing grades at different levels. 

 A second argument in favor of formula scoring is based on empirical studies that 

formula scoring has an advantage of equating the mean scores of randomly equivalent 

groups of examinees who have been given different instructions regarding guessing. 

Angoff and Schrader (1984) compared the mean number-right and formula scores of 

groups of examinees and found that while the means for two groups of number-right 

scores were significantly different, but there was no difference between the means for two 

groups of formula scores. 

IRT Approaches to the Guessing Effect 

 Item response theory provides an alternative approach to the problem of guessing. 

Under IRT, an examinee’s observed performance on a test item is assumed to depend on 

the latent trait level and properties of the test item and the probability of a correct 

response to an item as a function of person and item parameters; the examinee ability 

estimate is not a simple transformation of number-correct test score; it is estimated in the 

presence of item parameters, thus taking into account the properties of the item. 

 The most commonly used IRT model integrated with guessing is 3-paramter 

model assuming that examinee’s probability of a correct response on a test item is 
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affected by three characteristics of the item: its difficulty, discrimination, and a guessing 

factor which reflects the probability that a very low ability examinee will answer the item 

correctly. Items differ in their c -parameters due to their difficulty and the attractiveness 

of the distracters.  

 Although the c -parameter takes into account the ability of the examinee for the 

adjustment of probability of guessing (that is why c -parameter estimate is usually higher 

than the probability of random guessing), a uniform nonzero value of guessing parameter 

applied to all examinees should be the biggest concern for educators because the 

precision of estimation of ability is reduced and error variance is increased. As a matter of 

fact, the c -parameter is always poorly estimated even though the data for three-parameter 

model have large samples of examinees and long tests. For this reason, many practitioners 

choose less-restricted one-parameter or two-parameter model which is easier to fit to test 

data, making no allowance for guessing behavior. If guessing behavior is a factor in test 

scores, the ability of the examinee will be overestimated (Rogers, 1999). 

Multiple choice items are subject to guessing which can cause irrelevant variance 

and increases measurement error, so some researchers have engaged to solve this problem 

by two different methods: one is to get rid of random guessing effect on multiple choice 

items; the other is to integrate guessing parameter with latent ability into IRT models. 

Waller (1973) introduced the Ability Removing Random Guessing (ARRG) model to 

deal with the problem by focusing on the interaction between the person and the item. He 

simply omitted those item-person interaction for estimation of θ  to eliminate the effect of 

random guessing on any particular item by including only items for which essentially 
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random guessing is unlikely to occur. The following is his model: 

                              

where the ARRG cutoff value cP  is less than or equal to jj AA  ,/1 is the number of 

alternatives for item .j  The model divides the items into two groups for each person: 

those items whose ijP  is greater than cP , and those items whose ijP  is less than or equal to 

cP . The ARRG model uses only those items from the first group to estimate a person’s 

ability. 

 Even though the ARRG model estimates a person’s ability on the basis of fewer 

items than two-parameter model does, the resulting estimated precision has been found to 

increase (Waller, 1973) because the noise caused by random guessing is removed for the 

estimation of item parameters. However, when the ARRG model was compared with 

three-parameter model, the ARRG model failed to produce better fit to empirical data. He 

also indicated that the three-parameter model using the individualized method to estimate 

guessing parameter produced a better fit to the data than did the three-parameter model 

using fixed value for guessing parameter.  

 Cao and Stokes (2008) developed three Bayesian IRT guessing models to 

accommodate different guessing behavior: the threshold guessing model, the difficulty-

based guessing model, and the continuous guessing model. The threshold guessing model 

assumes that some examinees answer questions on the basis of their knowledge up to a 

certain test item, and guess randomly thereafter. An item location threshold for each 

examinee has to be specified for this model. The difficulty-based model assumes that 

some examinees answer relatively easy items on the basis of their knowledge and guess 
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randomly on relatively difficulty items. The continuous guessing model is constructed 

under the assumption that low-motivated examinees use less effort to answer test items 

than motivated examinees, and thus they are more likely to answer questions wrong. 

 A few critical limitations for Cao and Stokes’ guessing models must be 

highlighted here: 60% of the examinees are guessers under the threshold guessing model; 

the probability of guessing is equal to .25 (assuming each question has 4 options), which 

means once examinees guess on test items, they guess randomly; these models can be 

applied to only low-stake tests. 

 Martin, del Pino, and De Boeck (2006) developed more reasonable models to 

integrate ability with guessing parameter. They ended up with only one reasonable model: 

jijijij gppYP )1()|)1( −+== θ  

The first is that the p -process comes first and that, depending on the result, the −g

process follows. This would mean that the examinee first works on the question with a 

probability of ijp  to answer it correctly; if the examinee could not find correct answer, he 

or she would make a guess with a success probability of jg . The guessing probability of 

jg is defined by: 
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where ),0(~ 2σθ Ni  is a latent ability of the examinee; iγ is the guessing parameter of 

item j on the logistic scale, corresponding to a person with average ability; andα is the 

weight of the ability in the guessing component. 

 Martin, del Pino, and De Boeck (2006) showed, by using the previous ability-

based guessing model, that the ability contributed the chances of correct guess. Even 
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though the number of the replications was very small, the results of parameter recovery 

from the simulation study were very consistent and accurate. When this ability-based 

model was applied to two real tests, language and mathematics, ability played much more 

important role in making a correct guess on the language test than on the mathematics test. 

Martin, del Pino, and de Boeck (2006) explained the difference by giving two reasons: a) 

mathematics is perhaps more like an know all or know nothing matter; and b) the 

examinees were not motivated to guess because of higher non-response rate for the 

mathematics test. 
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CHAPTER THREE 

 METHODOLOGY 

3.1 The Proposed Models 

 The guessing parameter of a conventional 3-PL IRT model has the same value for 

every examinee regardless of their ability, which means all examinees have the same 

probability of guessing the same item correctly. The purpose of this study is to develop 

new IRT models in which the guessing function is associated with the examinee’s latent 

trait and item characteristics and the proposed IRT models based on the conventional 3-

PL IRT model (Birnbaum, 1968) should integrate the examinees’ ability and item 

parameters into the guessing function.  

The proposed models associate guessing with examinees’ abilities and the number of 

multiple choice alternatives and item parameters; it can reflect that the higher ability 

examinees have higher probability of guessing the same item correctly. 

Assumptions for the Proposed Models 

The proposed models were developed on the basis of the following assumptions: 

First, these new models are applied to achievement, high-stake, and licensure multiple 

choice tests with no penalty for wrong answers; if the examinee cannot find correct 

answers to test items, he/she will guess at those items. Second, all examinees try to use 

knowledge to answer test questions first and if they cannot find correct answers they will 

apply guessing strategies to test items, meaning they will use their partial knowledge to 

eliminate some alternatives to increase the probability of guessing items correctly. Third, 

the probability of guessing correctly is related only to item difficulty and discrimination 
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and the examinee’s ability; higher ability examinees have higher probability of guessing 

correctly the same item correctly than lower ability examinees. Fourth, the highest ability 

groups are engaged in some level of guessing, no matter how small. Freedle (2006) 

examined hundreds of test items for low ability students and found that none of the data 

fit the classic definition of truly random guessing data; he also found that 6% of the 

students who earned 600 on SAT verbal part were engaged in guessing. Fifth, 

unidimensionality and local independence assumptions are also applied to the new 

models. Sixth, the guessing probability cannot be greater than 0.5 because the highest 

probability of successful guessing is between two options if the examinee does not know 

the correct answer after eliminating other options, he or she has to make a random guess 

between the remaining two options. The following equation is the general equation for all 

IRT models 

(3.1),                                                      )|()1(),,|1( , jjiijijjjiijij bagPPbaYP θθ −+==

where the guessing probability distribution𝑔�𝜃𝑖|𝑎𝑗 , 𝑏𝑗� is associated with ability and item 

parameters.  

The Proposed Models with Guessing Function 

     Let 𝜃𝑖 = 𝜃 (for convenience reason only) and M is equal to the number of options for a 

multiple choice item. To control the probability of successful guessing between the 

probability of successful random guessing (1/M) and the highest probability of guessing 

correctly (0.5), a logistic function )(
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guessing function first.  

If )(θg  need to be under 0.5, then 
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Let  

We know the probability of successful guessing is inversely apportioned to item difficulty 

and its relationship with discrimination parameter should be just like the probability of 

answering correctly in 2PL IRT model, so we can change the guessing function into 
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To make the random guessing probability equal to 1/M, 1/M constant should be added to 

the guessing function 3.2. To make the highest probability of guessing correctly equal to 

0.5, let   ,
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Model 1. The proposed Rasch model with guessing function 
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where M is the number of options in any multiple choice item and jb is the jth  item 

difficulty parameter. 

Model 2. The 2PL IRT model with guessing function 
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where aj is the jth item discrimination parameter and its the guessing function is: 
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 Properties of Guessing Function. 

 Property 1. The probability of guessing an item correctly is associated with the 

examinee’s ability (θ ) and the item difficulty ( b ) and discrimination ( a ) parameters. For 

the Rasch model, the probability of guessing is associated with the examinee’s ability and 

item difficulty only; for the 2PL model, the probability of guessing is associated with the 

examinee’s ability and item difficulty and discrimination. Figure 1 is 3D graph for 

guessing function 3.4 with M=4, the graph shows that when the difficulty b increases the 

probability of guessing correctly at the same ability level will decrease; while the 

probability of guessing correctly will increase at the same difficulty value when the 

ability level θ increases. 

 

 

 Property 2. The minimum of probability of guessing is equal to 1/M (M is the 

Figure 1.  Guessing function 3D graph (M=4) for the Rasch-GuessingModel. 
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number of options) and the maximum of probability of guessing can go up to 0.5 as the 

following equation and figure 2. (M=4): 

(3.7)                                                                                                            5.0)(lim =
∞→

θ
θ

g     

 
Figure 2. The guessing function for 2PL IRT model graph (a=1.5, b=2.0). 

Comparison of Proposed Models with 1PL and 3PL model 

 
 Figure 3. ICC for the Rasch model (dashed line) and the Rasch-Guessing model 
(continuous line). 
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     For the Rasch model, the probability of success is always higher for the Rasch-

Guessing than the Rasch model for any abilityθ  because of guessing function. This can 

be seen in Figure 3. 

 Compared with the 3PL model, the 2PL-Guessing model always has higher 

probability of success than the 3PL model, independent of θ , because the proposed 

model guessing can reflect that higher ability examinees have higher probability of 

successful guessing. Two ICC merge at two ends (extremely high ability and low ability), 

this indicates that when extremely low ability examinees guess, they make random 

guessing and the probability of success is equal to 1/M; while as extremely high ability 

examinees almost don’t guess, so two ICC merge at high end. The maximum contribution 

of guessing to the success probability is to be found somewhere between two extremes of 

ability scale. For high ability examinees, the knowledge exclusively contributes to 

success, but for low ability examinees, the guessing does not help too much to success. 

This can be seen in Figure 4. 

 
Figure 4. ICC of the 2PL-Guessing model (continuous line) and 3PL model (dashed line). 
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3.2 Generating IRT Parameters 

 In this study, In order to make the model more general to the real achievement 

tests, high-stake tests, or licensure tests (examinees will guessing questions if they do not 

know correct answers without being penalized). Item difficulty and discrimination 

parameters were generated on the basis of previous empirical studies and real-world test 

parameter ranges.  

Ability and Difficulty Distribution 

        To avoid the deviation from the unidemensionality assumption, item difficulty 

parameter or person ability parameter distributions are expected to be standard normal. 

IRT programs like BILOG or SAS require person ability distribution to be standard 

normal (Misvey & Bock, 1990; Pelton, 2002).  

        Allen and Yen (1979) suggested that item difficulty between 0.3 and 0.7 can provide 

the maximum information to distinguish examinees in CTT. This difficulty range will be -

0.52 to 0.52 if converted to normal standardized score. A high-stake test used to select 

graduate students for a university that admits only 10% of applicants should include 

extremely difficult items such as difficulty value is greater than 1.7 (or 0.05 in CTT). 

 In this study, in order to make the models more general to the real tests containing 

both easy items and extremely difficult items, the difficulty parameter values were 

focused on a range from -0.7 to +2.0 with normal distribution. 

Discrimination Parameter Distribution 

 The Rasch model assumes equal item discrimination parameter while the 2PL and 

3PL models assume discrimination parameter varies, so it is appropriate to assume that 
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discrimination parameter might be truncated normal. However, those items with negative 

discrimination are always removed from ability tests because if the probability of 

answering an item correctly decreases as examinee ability increases, there must be 

something wrong with the item. It is hardly to see the discrimination parameter is greater 

than 2, so the normal range for discrimination parameters is usually (0, 2) (Hambleton, 

Swaminathan & Rogers, 1991).  

In this study, the discrimination parameter values were narrowed in a range of 0.4 to 

2.0, because too low or too high discrimination values are either not practical or not stable 

to estimate. The discrimination parameters were generated from (0, 1) uniform 

distribution. 

Pseudo-guessing Function 

The guessing probability can go as high as 0.5 because some examinees can rule out 

some distracters from partial information ( Kubinger & Gottschall, 2007). The probability 

of guessing an item correctly is determined by the examinee’s ability and item parameters 

only. The guessing function should reflect the assumption that the higher ability persons 

have the higher probability of guessing the same item correctly. The highest probability of 

guessing cannot be greater than 0.5; otherwise, it would not be called knowledge-based 

answer instead of guessing. The relationship between probability of guessing correctly 

and the examinee’s ability is logistic. 

3.3 Data Simulation Design and Computer Program 

A SAS program was used to generate simulation data for this study. The first step of 

the simulation used the random number seed RANNOR to generate item parameters for 
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20-item test, 30-item test, and 40-item test. These item parameters were treated as 

independent variables and parameter values were fixed for different lengths of tests. The 

second step of the program started with generating ability parameters which were 

normally distributed with mean equal to zero and standard deviation equal to 1. The 

probability of success for each examinee on each item was calculated in terms of 

proposed model functions and 3PL model with previously fixed item parameters and 

ability parameters. The calculated probability was compared with a random number 

drawn from uniform distribution (0, 1) produced by RANUNI to generate dichotomous 

response data sets. If the probability calculated was greater than the randomly drawn 

number from the uniform distribution, the response was assigned 1 as a correct answer; if 

the probability calculated was less than the randomly drawn number from the uniform 

distribution, the response was assigned 0 as an incorrect answer. 

This study employed a design of one, two, and three item parameterization models 

(the Rasch-Guessing model, the 2PL-Guessing model, and the 3PL model) with normal 

ability distributions. 10 sets of dichotomous item responses of 1,000, 500, 200, and 100 

subjects for 20 items , 1,000, 500, 300, and 200 subjects for 30 items, and 2,000, 1,000, 

500, 300 subjects for 40 items were simulated using SAS computer program. Therefore, 

the total 3×12×10 different sets of dichotomous item responses were generated. These 

sets of item response data were used to estimate item parameters given the Rasch and the 

2-PL IRT models with guessing function using SAS NLMIXED computer program 

described in the next section. The 36 combinations for two models are shown in Table 3.1 

and 3.2. 
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Table 3.1 

Data Simulation Design for the Rasch-Guessing Model 
 
 
 
 

The Number of Test Items 
 

20 
 

30 
 

40 
The Number of Examinees 

100 200 500 1000 100 200 500 1000 100 200 500 
 

1000 
 

 
Rasch- 
Guessing 
 

 

 

Table 3.2 

Data Simulation Design for the 2PL-Guessing Model and the 3PL Model 

 
 

 
 
 
 

The Number of Test Items 
20 

The Number of Examinees 
                100                  200                  500                1000 

 
2PL- 
Guessing 

 

 

 
3PL 
 

 

 

3.4 Number of Replications in Monte Carlo Estimation 

 In IRT Monte Carlo research, the number of replications is driven by the purpose 

of research (Harwell, Stone, Hsu, & Kirisci, 1996). If a significance test for a parameter 

recovery study is necessary, at least 500 replications are needed. If the purpose of study is 

to compare different methodologies, a small number of replications such as 10 are 

sufficient. The ultimate purpose of this study is to compare the 2PL-Guessing model with 

the 3PL model on parameter recovery and goodness-of-fit for observed data, too many 
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replications are not necessary. 

   This study employed 10 replications for each combination of conditions based on 

suggestions from these Monte Carlo studies because of slow computer running time for 

SAS program. In the each of the 10 replications of data simulation, the same random 

seeds were used to generate the random normal distribution ability parameters for 1000, 

500, 200, 100 examinees was kept constant and the 10 random seeds that was used to 

generate the item response data was changed in each replication so that 20 item response 

data were different but with the same sample of examinees (Si & Schumacker, 2004).  

3.5 Criteria to Evaluate the Proposed Model 

 The parameter recovery comparison between the 2PL-Guessing model and the 

3PL model was evaluated by three criteria. First, averaged estimated parameter values 

across 10 replications were correlated with true parameter values to determine how well 

the proposed models recovered those parameters. However, the correlation served as a 

relative indicator of accuracy because it only reflects the rank ordering of variables 

correlated (Harwell, Stone, Hsu, & Kirisci, 1996). The higher the correlation is; the better 

the parameter recovery will be. 

 Second, a root mean squared deviation (RMSD) of parameter estimate was 

calculated across 10 replications for each of the study design. The RMSD indicated the 

variance of parameter estimate across replications, and thus serves as an indicator of 

accuracy; the smaller the RMSD is, the more accurate the estimate will be. The RMSD 

was calculated by the following formula: 
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where n = number of replications 

    ja = the true discrimination parameter value of the jth  item 

 jâ = the discrimination parameter estimates of jth  item from n replications 

  jb = the true difficulty parameter value of the jth  item 

  jb̂ = the discrimination parameter estimates of jth  item from n replications 

   Third, estimate bias is the mean difference between the estimated and true parameter 

value for an item across all replications. The smaller bias differences are, the closer the 

estimates are to the true parameter values. Positive bias indicates overestimation and 

negative bias indicates underestimation (Dawber, Roger, & Carbonaro, 2004). Bias for aj 

and bj can be calculated in this study by the following: 

∑

∑

=

=

=−=

=−=

10

1

10

1

10/)(ˆ  where,ˆ 

10/ˆ  where,ˆ 

r
jrjjjj

r
jrjjjj

bbbbbBias

aaaaaBias
 

3.6 Test Length 

 In psychological and educational assessments, the short (20 items) and moderate 

(40 items) exam lengths are most frequently used (Dawber, Roger, & Carbonaro, 2004; 

Seong, 1990; Yen, 1987); therefore, three test lengths were employed in this study: two 

short exams of 20 and 30 items, a moderate exam of 40 items. The number of alternatives 

in each item was set to four in this study. Only 20 item tests were simulated to compare 

the 2PL-Guessing model with the 3PL model. 
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3.7 Parameter Estimation Methods 

 MML estimations were used to estimate item difficulty and discrimination 

parameters for the Rasch-Guessing and the 2PL-Guessing models. Under the MMLE 

approach to item parameter estimates, the examinees are treated as a random sample 

which is drawn from a population with ability distributed on a density function and items 

are treated as a fixed effect and abilities as a random effect (Baker & Kim, 2004). The 

most important part for MMLE is the integration over the ability distribution and the 

ability parameter can be removed from the likelihood function, so item parameter 

estimates are independent of each examinee’s ability, thus producing more reliable item 

parameter estimates.  

According to Bock and Lieberman’s (1970) solution, let item response vector= jY

conditional on the examinee’s ability jθ and the item parameters inξ , )|( τjg θ is the 

probability density function of ability in the population of examinees with parameter 

vector τ , and ∫= jjjjj dgPP θθθ )|(),|()( τξYY (Baker & Kim, 2004). Because the 

integration is across the ability distribution, this expression is the marginal probability of 

item response vector jY in terms of the item parameters and the population ability density. 

The marginal likelihood function is 

(3.8)                                                                                                            ),(
1

j

n

j
PL Y

=
∏=  

so, the logarithm of L is  
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and, to find the marginal likelihood equation for the ith item ia  take 
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∂
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ai  

then, the marginal likelihood function for discrimination parameter can be written as the 

following (the detailed procedures for the deduction of marginal maximum likelihood 

function see Appendix A): 

 

 

where Qi(θj) is the probability of incorrect answer and is equal to 1-Pi(θj) which is the 

probability of correct answer to the ith item at the ability level of θj. yij is the jth 

examinee’s response to the ith item and is equal to1 for correct response or 0 for incorrect 

response. The P(θj|Yj,ξ,τ) is the probability of an examinee having ability θj along the 

conditional on the item response vector Yj, the item parameter in ξ, and the population 

distribution of ability τ. It is also called the posterior ability distribution. 

The marginal likelihood equation for discrimination parameter ai is: 

(3.11)                                  )],,|([]
)(

][
)()(

)(
[)(log

:is parameter  difficultyfor equation  likelihood The

(3.10)                                  )],,|([]
)(

][
)()(

)(
[)(log

1

1

jjj

N

j i

ji

jiji

jiij

i

i

jjj

N

j i

ji

jiji

jiij

i

dP
b

P
QP
Py

L
b

b

dP
a

P
QP
Py

L
a

θθ
θ

θθ
θ

θθ
θ

θθ
θ

τξY

τξY

∑∫

∑∫

=

=

∂

∂−
=

∂
∂

∂

∂−
=

∂
∂

 

 3.8 Item Information Functions 

     Birnbaum (1968) has defined the test function as 
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where )(θiP  is obtained by the ICC model function atθ and
θ

θ
∂
∂

= i
i

P
P )(' . The right side of 

equation 3.12 can be decomposed into the contribution of each item to the entire test 

information, so the amount of information each item contributes to the test information is 

given by  

(3.13)                                                                                                    . 
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Inspection of equation (3.13) indicates that the test information is simply the sum of the 

amount of each item information at the ability level of interest. Figure 5 shows the item 

information functions for three items in which continuous line represents item 1 with  

5.0=a and =b -1, dashed line represents item 2 with 1=a and 0=b , and dotted line 

represents item 3 with 5.1=a and 0.1=b . 

Figure 5.  Item Information Functions for three items 

Figure 5 highlights several important points: (a) the maximum information provided 
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by an item is at its difficult level equal to ability level, (b) the higher discrimination 

parameter is, the more information an item will provide, and (c) an item with low 

discrimination power is almost useless statistically in a test. 

3.9 Item Parameter Estimation Computer Program 

The SAS PROC NLMIXED was used to estimate item parameters on the basis of 

generated dichotomous response data sets. PROC NLMIXED fits nonlinear mixed 

models by maximizing an approximation to the likelihood integrated over the random 

effect. PROC NLMIXED enables you to specify a conditional distribution for your data 

(given the random effects) having either a standard form (normal, binomial, Poisson) or a 

general distribution that you code using SAS programming statements. Fixed effects were 

item parameters and random effect was ability in this study.    

    SAS PROC NLMIXED uses Gaussian quadrature to do the integral approximation and 

uses dual quasi-Newton algorithm as the optimization method to implement maximization. 

Pinheiro and Bates (1995) proved that adaptive Gaussian quadrature is the best method 

after they compared several different integrated likelihood approximations. Successful 

convergence of the optimization problem results in parameter estimates and their 

approximate standard errors based on the second derivative matrix of likelihood function 

(SAS/STAT, 2008). 

 

 

 

 



46 
 

CHAPTER FOUR 

RESULTS 

The purpose of this study was to compare the accuracy of parameter estimates for the 

2PL-Guessing model with the 3PL IRT model and investigate how well the Rasch-

Guessing model can recover parameters. Three criteria were used to determine how well 

the new models’ item parameters were recovered, correlation between true parameter 

values and estimated parameter mean values across 10 replications for four different 

sample sizes, the root mean squared deviation (RMSD) and bias. The higher the 

correlation is and the smaller the RMSD is, the more accurate the estimate will be. 

Correlations and RMSD for parameter estimates were tabulated for each study design.  

The Rasch-Guessing Model Parameter Recovery Results 

Item difficulty parameter estimates for the Rasch-Guessing model were run via SAS  

PROC NLMIXED under sample sizes of 100, 200, 500, and 1000 and test length of 20, 

30 and 40 items with 10 replications. Estimated difficulty parameter values for each 

replication were saved and then the mean of each item difficulty parameter estimated was 

calculated across 10 replications. The calculated means were used to correlate with their 

corresponding parameter true values. The results of these correlations were given in the 

Table 4.1. As shown in the Table 4.1, the highest correlation was 0.999 for 20 and 40 

items with 1000 subjects and the lowest was 0.975 for 20 items with 100 subjects. As 

sample size increased, the correlation increased too; however, the number of test items 

had little effect on those correlations because as the test length increased from 20 to 40, 

the correlations didn’t change too much. 
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Table 4.1. 
 
Correlations for Difficulty Parameter Recovery for the Rasch-Guessing Model 

No of Items 20 30 

 

40 

 
                        Sample size (n=100) 

bbr ˆ                        
0.975 

                 
0.993    0.985 

                        Sample size (n=200) 
bbr ˆ                         

0.997 
                    

0.996           0.992 
                        Sample size (n=500) 

bbr ˆ                         
0.998 

                   
0.997     0.997 

                         Sample size (n=1000) 
bbr ˆ                         

0.999 
                   

0.998     0.999 
 
 
 
Table 4.2  
 
RMSD and Bias for The Rasch-Guessing Model Difficulty Parameter Estimates 

No of Items Sample Size 

 
RMSD 

 
 

Bias 
 

 
Maximum 

 
Minimum Average Maximum Minimum 

  20 

  100   0.662   0.241   0.373   0.445   0.032 
  200   0.371   0.116   0.232   0.165   0.004 
  500   0.242   0.101   0.156   0.14   0.004 
  1000   0.165   0.076   0.118   0.074     0 

  30 

  100   0.601   0.168   0.320   0.258   0.002 
  200   0.337   0.123   0.233   0.251   0.005 
  500   0.222   0.103   0.155   0.126   0.012 
  1000   0.133   0.062   0.104   0.099     0 

  40 

  100   0.582   0.201   0.380   0.247     0 
  200   0.346   0.172   0.261   0.157   0.003 
  500   0.216   0.089   0.153   0.113   0.002 
  1000   0.145   0.058   0.108   0.108     0 
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    As shown in the Table 4.2, RMSD decreases as the sample size increases from 100 

samples to 1000 samples for the same number of test items. The maximum RMSD was 

0.662 for the estimation of 100 sample size of 20 items; the minimum is 0.058 for the 

estimation of 1000 sample size of 40 items. However, estimations for 30 items have the 

best average RMSD compared with estimations for 20 or 40 items. The estimated mean 

and calculated RMSD values for each item under different sample size are listed in the 

Appendix table… 

How well the parameter estimates under different sample sizes for the Rasch-

Guessing model is also illustrated by the following graphs. 

 

Figure.6. Average RMSD for the Rasch-Guessing model 
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The Comparison Between the 3PL Model and the 2PL-Guessing Model 

      Two designs were used to compare parameter estimates between the proposed model 

and 3PL model. In the first design, only the proposed model was used to generate a       

20-item test for samples of 100, 200, 500, and 1000, and then parameters were estimated 

via the proposed model and the 3PL model. In the second design, the traditional 3PL 

model was used to generate a 20-item test for samples of 100, 200, 500, and 1000, and 

then parameters were estimated by both models. 

  Three criteria were used to compare the traditional 3PL model with the newly 

proposed 2PL-Guessing model: correlations between true parameter values and estimated 

values, root mean squared deviation (RMSD), and bias. Only correlations were used to 

compare latent ability estimates. 

Ability Parameter Estimate Results 

    The ability parameter estimate results are shown in the Table 4.3. 

Table 4.3 

Correlations Between Estimated Ability Values and True Ability Values 

Sample size 

 

Estimation method 

 2PLG-2PLG    2PLG-3PL        3PL-3PL           3PL-2PLG 

100    0.808 0.805     0.805      0.820 

200    0.824 0.817     0.795      0.805 

500    0.829 0.821     0.798      0.805 

1000    0.830 0.825     0.807      0.814 

Note: 2PLG-2PLG represents the estimation that the data was generated by the 2PL-Guessing model and 
estimated by the 2PL-Guessing model; 2PLG-3PL represents the estimation that the data was generated by 
the 2PL-Guessing model but estimated by the 3PL model; 3PL-3PL represents the estimation that the data 
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was generated by the 3PL model and estimated by the 3PL model; 3PL-2PLG represents the estimation that 
the data was generated by the 3PLmodel but estimated by the 2PL-Guessing model. 

The correlations between true ability values and estimated values for 20 item 

simulated test were generally around 0.8. The highest correlation was 0.830 and the 

lowest was 0.795. The highest correlation occurred when the data was generated by the 

2PL-Guessing model and ability parameters were estimated by the 2PL-Guessing model 

with 1000 sample size. The lowest correlation occurred when the data was generated by 

3PL model and ability parameters were estimated by the 3PL model with 200 sample size. 

As shown in the Table 4.3, regardless of sample size, all correlations calculated were 

higher when the data were generated by the 2PL-Guessing model and ability parameters 

were estimated by the 2PL-Guessing model than those calculated when the data were 

generated by 2PL-Guessing model, but ability parameters were estimated by the 3PL 

model for corresponding sample size. Furthermore, when the 3PL model was used to 

simulate data and the 2PL-guessing model was used to estimate latent ability, their 

correlations for different sample sizes were higher than correlations calculated when the 

3PL model was used to simulate data and latent ability parameters were estimated by the 

3PL model.  

 
Item Parameter Estimate Results 
 
   Item Parameter Correlations 
 
   Because we wanted to compare the accuracy of parameter estimates for the proposed 

model with the 3PL model under the same condition, the data was simulated by one of 

the two models and parameters were estimated by both two models. The correlation and 

RMSD were calculated for each item parameter. The Table 4.4 and 4.5 show the 
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correlation results for difficulty and discrimination parameter estimates (2PLG-2PLG 

means the data was generated by the 2PL-Guessing model and parameters were estimated 

by the 2PL-Guessing models too; 2PL-3PL means the data was generated by the 2PL-

Guessing model , but parameters were estimated by the 3PL model. Similar explanation 

goes to 3PL-3PL and 3PL-2PLG). 

 

Table 4.4 
 
Correlations for Difficulty Parameter Estimates 
 

Sample size 
Estimation method 

2PLG-2PLG             2PLG-3PL 3PL-3PL          3PL-2PLG 

100   0.969 0.949   0.964    0.921 

200   0.993 0.964   0.982    0.938 

500   0.995 0.968   0.991    0.950 

1000   0.998 0.943   0.981    0.958 

Note: 2PLG-2PLG represents the estimation that the data was generated by the 2PL-Guessing model and 
estimated by the 2PL-Guessing model; 2PLG-3PL represents that the data was generated by the 2PL-
Guessing model but estimated by the 3PL model; 3PL-3PL represents that the data was generated by the 
3PL model and estimated by the 3PL model; 3PL-2PLG represents that the data was generated by the 
3PLmodel but estimated by the 2PL-Guessing model. 

 

          The highest correlation (0.998) for difficulty parameter estimates went to the 

2PLG-2PLG estimation for 1000 sample size and the lowest correlation (0.921) went to 

the 3PL-2PLG estimation for 100 sample size. All correlations for the 2PLG-2PLG 

difficulty parameter estimates were greater than those of the 2PLG-3PL estimation. All 

correlations for the 3PL-3PL difficulty parameter estimates were greater than those for 

the 3PL-2PLG estimates. 
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Table 4.5 
 
Correlations for Discrimination Parameter Estimates 
 

Sample size 
Estimation method 

   2PLG-2PLG          2PLG-3PL            3PL-3PL             3PL-2PLG 

100 0.890 0.787    0.782    0.856 

200 0.957 0.924    0.819    0.921 

500 0.980 0.909    0.842    0.972 

1000 0.994 0.941    0.881    0.988 

 

 

    The highest correlation (0.994) for discrimination parameter estimates went to the 

2PLG-2PLG estimation under the sample size of 1000 and the lowest correlation (0.782) 

went to the 3PL-3PL estimation under the sample size of 100. Among all the estimation 

methods, the 2PLG-2PLG produced the highest correlations. Even though the data were 

generated by the 3PL model, the discrimination parameters were estimated better by the 

new proposed model than by the conventional 3PL model. Generally, the correlations for 

both difficulty and discrimination parameter estimation tended to be enhanced as the 

sample size was increased. 

Item Parameter Estimate RMSD  
 
RMSD is the best indicator for the accuracy of parameter calibration. The smaller 

the RMSD is, the more accurate the estimates will be. The average RMSD results for 

item difficulty and discrimination parameter estimates with different estimation methods 

are presented in Table 4.6 and 4.7. The detailed RMSDs for each item is presented in the 

Appendix C. 
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Table 4.6  
 
Average RMSD for Difficulty Parameter Estimates 
 

Sample size 

Estimation Method 
 
2PLG-2PLG 
 

2PLG-3PL 3PL-3PL 3PL-2PLG 

100 
 

 0.405  0.784  0.505  0.722 

200 
 

 0.273  0.826  0.462  0.666 

500 
 

 0.206  0.827  0.396  0.606 

1000 
 

 0.155  0.777  0 .360  0.584 

 
 
Table 4.7 
 
Average RMSD for Discrimination Parameter Estimates 
 

Sample size 

Estimation Method 
 
2PLG-2PLG 
 

2PLG-3PL 3PL-3PL 3PL-2PLG 

100 
 

 0.436  0.578  0.506  0.483 

200 
 

 0.322  0.477  0.477  0.391 

500 
 

 0.233  0.402  0.376  0.270 

1000 
 

 0.175  0.323  0.306  0.207 

 

The 2PLG-2PLG method estimated the difficulty parameter most accurately 

compared with other methods as shown in Table 4.6. The least accuracy of the difficulty 

parameter estimates (0.827) went to the 2PLG-3PL situation for 500 sample size. The 

most accurate difficulty parameter estimates (0.155) went to the 2PLG-2PLG situation 

for 1000 sample size. When the 3PL model was used to estimate item difficulty parameter 

using the 2PL-Guessing model generated data, the RMSD would increase tremendously. 

The maximum increase was almost 400% for 1000 sample size (from 0.155 to 0.777). 
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Figure 7. the 2PLG-2PLG and the 2PLG-3PL Difficulty Parameter Estimate RMSD 

Graph 

 

 

  Figure 8. the 3PL-3PL and the 3PL-2PLG Difficulty Parameter Estimate RMSD Graph 
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Figure 9. the 2PLG-2PLG and the 2PLG-3PL Discrimination Parameter Estimate  
RMSD Graph 

 

 
 

         
        Figure 10. the 3PL-3PL and the 3PL-2PLG Discrimination Parameter Estimate  
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When the 2PL-Guessing model was used to estimate item difficulty parameter using the 

data generated by the 3PL model, the RMSD would increase about 40% to 50% for all 

sample sizes. Figure 6 and 7 demonstrated that the average RMSD gap between the 

2PLG-2PLG estimation and the 2PLG-3PL estimation for all sample sizes was much 

larger than the average gap between the 3PL-3PL estimation and the 3PL-2PLG 

estimation for all sample sizes. 

      The discrimination parameter was estimated most accurately by the 2PLG-2PLG 

estimation method for all sample sizes. The discrimination parameter was estimated most 

accurately with the 2PLG-2PLG estimation method for 1000 sample size (RMSD=0.175) 

and was estimated the least accurately with the 2PLG-3PL estimation situation for 100 

sample size (RMSD=0.578). When the 3PL model was used to estimate discrimination 

parameter using the data generated by the 2PL-Guessing model, average RMSDs for all 

sample sizes were increased from 30% to 85% compared with average RMSDs estimated 

by the 2PL-Guessing model. When the 2PL-Guessing model was used to estimate 

discrimination parameter using the data generated by the 3PL model, average RMSDs for 

all sample sizes were decreased from 5% to 30% compared with average RMSDs 

estimated by the 3PL model. This can also be seen in Figure 8 and Figure 9.    

Item Parameter Estimate Bias  
 

The bias was calculated by the following: 
 
the mean of estimated each item parameter values – the item parameter true value. 
 

Because some biases were positive and some were negative, we did not calculate the 

mean of the bias. The positive bias indicates an overestimated parameter and the negative 

bias presents an underestimated parameter. The zero mean of biases does not mean there 

is no bias. The absolute values of maximum and minimum biases for different sample 

sizes are illustrated in Table 4.8 and 4.9. 
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Table 4.8 
Maximum and Minimum Bias for Difficulty Parameter Estimates 

Bias Values Sample 
Size 

Estimation methods 
 

2PLG-2PLG 2PLG-3PL 3PL-3PL 
 

3PL-2PLG 
 

Maximum 

100 0.507 -0.866 -0.430 1.460 
200 0.277 -1.160 -0.458 1.332 
500 0.15 -1.026 -0.280 1.248 
1000 -0.103 -1.238 -0.571 1.159 

Minimum 

100 0.005 0.058 0.023 0.232 
200 -0.006 -0.220 -0.028 0.340 
500 0.001 -0.227 -0.005 0.292 
1000 0.001 -0.169 -0.009 0.299 

 

     The smallest maximum and minimum biases for difficulty parameter estimates went to 

the 2PLG-2PLG estimation and the biggest maximum and minimum biases for difficulty 

parameter estimates went to the 3PL-2PLG estimation. The smallest bias (0.001) went to 

the 2PLG-2PLG estimation for 1000 sample size and the highest bias was 1.460 in the 

3PL-2PLG estimation for 100 sample size. The 2PLG-3PL difficulty parameter estimates 

had much greater biases than the 2PLG-2PLG difficulty parameter estimates and the 

3PL-2PLG difficulty parameter estimates presented much higher biases then the 3PL-3PL 

difficulty parameter estimates. 

Table 4.9 
 
Maximum and Minimum Bias for Discrimination Parameter Estimate 

Bias Values Sample Size 

Estimation methods 
 

2PLG-2PLG 2PLG-3PL 3PL-3PL 
 

3PL-2PLG 
 

Maximum 

100 0.537 0.579 -0.635 0.459 
200 0.218 0.378 -0.772 0.481 
500 0.219 -0.312 -0.754 0.320 
1000 0.096 -0.397 -0.717 0.256 

Minimum 

100 0.002 -0.001 0.002 0.001 
200 -0.001 0.009 0.000 -0.015 
500 0.002 0.023 -0.006 0.003 
1000 0.000 -0.023 0.003 0.001 
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      The 2PLG-2PLG estimation had the smallest bias in estimating discrimination 

parameter compared with all other estimation methods, while the 3PL-3PL estimation 

had the largest maximum discrimination bias across all estimation methods. The 3PL-

2PLG method had smaller bias in estimating discrimination parameter than the 3PL-3PL 

method. The smallest bias went to the 2PLG-2PLG estimation for 1000 sample size and 

the 3PL-3PL estimation for 200 sample size. The 2PLG-3PL discrimination parameter 

estimates had greater biases than the 2PLG-2PLG discrimination parameter estimates and 

the 3PL-2PLG discrimination parameter estimates presented smaller biases then the 3PL-

3PL discrimination parameter estimates. Each item parameter estimate bias is presented 

in the Appendix D. 

Goodness of Fit Index Results 
 
Table 4.10 
 
Average AIC for Goodness-of-Fit 
 

Sample size 
Estimation method 

2PLG-2PLG  2PLG-3PL   ∆1         3PL-3PL        3PL-2PLG   ∆2 

100  2508.9   2537.7     28.8         2659.5   2630.6     28.9 

200  5018.9                  5044.6     25.7              5295.1  5267.5     27.6 

500  12464  12487      23  12977   12952      25 

1000  24906                  24925      19  25933  25918      15 

 

As shown in the above table, the 2PLG-2PLG estimation presented the smallest 

average AIC for the same sample size design, while the 3PL-3PL estimation had the 

biggest AIC index. It is very important to point out that even though the 2PL-Guessing 

model was used to run the 3PL model-generated data, the average AIC for the 2PL-

Guessing model was still smaller than the average AIC for the 3PL model. However, the 
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difference (∆1 and ∆2 ) between two AICs decreased as the sample size increased, while 

∆1 is equal to the average AIC for the 2PLG-3PL estimation minus the average AIC for 

the 2PLG-2PLG estimation and ∆ 2 is equal to the average AIC for the 3PL-3PL 

estimation minus the average AIC for the 3PL-2PLG estimation. 
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CHAPTER FIVE 

CONCLUSIONS 

 
Stage (2003) investigated whether the conventional 3PL model would be applicable 

to the Swedish Scholastic Aptitude Test (SweSAT) which is a norm-referenced and high-

stake multiple choice test and Stage concluded that the 3PL model did not fit the SweSAT 

data even though guessing existed. Stage’s study presented a big challenge to the 

traditional 3PL model when handling guessing. Simply assuming that every examinee has 

the same probability of guessing an item correctly is not appropriate for all kinds of tests. 

The new model in this study was developed to solve this problem. 

The primary purpose of this study is to compare the accuracy of parameter estimates 

via the new model with the conventional 3PL model under different situations (or 

designs) through the Monte Carlo method. Three criteria were used to compare how the 

proposed model estimated parameters more accurately than the 3PL model: correlation, 

RMSD, and bias. In this section, a few advantages of the new model compared with the 

3PL model will be discussed.  

Ability Parameter Estimate Comparison 

The newly proposed model estimated ability parameter more accurately than the 

traditional 3PL model. Two Monte Carlo study designs were created to prove this. In the 

first design, the data were simulated using the new model and the ability parameters were 

estimated by both the new and the 3PL model. In the second design, the data was 

simulated by the 3PL model and the ability parameters were estimated by both the new 

and the 3PL model. The average correlations between true ability values and estimated 

ability values for each replication were used as the criterion to compare two models. 

In both designs, regardless the data was generated by the new model or the 3PL 
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model, the proposed model produced higher correlations for all sample sizes than the 3PL 

model indicating that even if the real guessing situation fits the 3PL model (assuming if 

the examinee did not know the correct answer, he/she would guess randomly), the 

proposed model can estimate ability parameter more accurately than the 3PL model 

because the new model also takes random guessing into consideration and it can be more 

universally applied to multiple choice tests. If the ability estimate is the most important 

for those who are more interested in placement, admission, or selection, the new model 

can provide more accurate information than the traditional 3PL model. 

Item Parameter Estimate Comparison 

Three criteria were adopted to compare the accuracy of item parameter estimates for 

two models, correlation, root mean standard deviation, and bias. The same study design 

for ability estimate was used to generate the data and estimate item parameters. The 

means were calculated for estimated difficulty and discrimination parameters with 10 

replications for sample size of 100, 200, 500 to 1000, and then those means were 

correlated with corresponding true values to get correlation coefficients, the equation 3.8 

and 3.9 were used to calculate RMSDs, and the bias was the difference between the mean 

of estimated parameter and the true value. 

Among all four estimation methods (2PLG-2PLG, 2PLG-3PL, 3PL-3PL, and 3PL-

2PLG), the 2PLG-2PLG had the most accurate estimate for item parameters because it 

had the highest correlations, the smallest RMSDs, and the lowest biases, indicating that if 

the guessing situation is close to the assumption that examinees of different ability level 

have different probability of successful guessing, the proposed model will be most 

accurate to estimate item parameters than the 3PL model.  

If we used the 3PL-model to estimate these item difficulty parameter, RMSD would 

increase tremendously. For 100 sample size, it would increase almost 100% (from 0.405 
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to 0.784), and for 1000 sample size, it would increase more than 400% (from 0.155 to 

0.777). However, the 3PL model estimated the item difficulty parameter better than the 

new model when the data was generated by the 3PL model or in the situation of random 

guessing. For example, the average RMSDs for 100 and 1000 sample size were 0.505 and 

0.360 respectively via the 3PL model estimation, but the average RMSDs were 0.722 and 

0.584 respectively via the new model estimation. Therefore, if the guessing situation is 

close to random guessing and the difficulty parameter estimation is more important than 

any other purposes, the 3PL model should be adopted to estimate item parameters. 

The new model, nonetheless, estimated the discrimination parameter more 

accurately for all sample sizes than the 3PL model even though the data was generated by 

the 3PL model. For example, the average RMSDs estimated by the 3PL model for sample 

sizes of 100 and 1000 were 0.506 and 0.306 respectively, however, the average RMSDs 

estimated by the new model for sample sizes of 100 and 1000 were 0.483 and 0.207 

respectively. This indicates that even in a random guessing situation test, the new model 

is still better in estimating item discrimination parameter and this can also prove the huge 

advantage of the new model compared with the 3PL model. This is probably the main 

reason why the new model can estimate latent ability more accurately than the 3PL model 

even in random guessing situation. 

Goodness of Fit Index AIC Comparison 

The fit of the model to the data is very important in item response theory. Akaike’s 

information criterion (AIC) was adopted to compare the goodness of fit between the 2PL-

Guessing model and the 3PL model. The smaller the AIC is, the better fit the model will 

be to the data. 

In this study, regardless of data generated by the 2PL-Guessing model or by the 3PL 

model, when the 2PL-Guessing model was used to estimate item parameters, all AIC 
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indices for sample size of 100, 200, and 500 were smaller than those AIC indices 

estimated by the 3PL model, so the 2PL-Guessing model not only fit the data generated 

by the 2PL-Guessing model better, but also fit the data generated by the 3PL model better 

for sample size of 100, 200, and 500., demonstrating that even in random guessing 

situation for small sample sizes, the new 2PL-Guessing model always fit the data better 

than the 3Pl model. 

However, in random guessing situation for sample size 1000 (or the data was 

generated by the 3PL model), even the average AIC index estimated by the 2PL-Guessing 

model was smaller than the average AIC index estimated the 3PL model, not each 

replication’s AIC estimated by the 2PL-Guessing model was smaller than the AIC 

estimated by the 3PL model. Some AIC indices estimated by the 3PL model were smaller 

than those estimated by the 2PL-Guessing model, meaning the conventional 3PL  model 

is better applied to big sample size tests. For sample size under 1000, the 2PL-Guessing 

model can do better estimation than the 3PL model even in random guessing situation. 

Running Time Comparison 

Another big advantage of the new model was that it ran a lot faster than the 3PL 

model when estimating item parameters using maximum likelihood estimation method. 

The 3PL model has been notoriously slow in estimating item parameters because there 

are three parameters in the 3PL model. The new model changed the guessing parameter 

in the 3PL model into a function of difficulty and discrimination parameters, so the new 

model is still 2PL plus a guessing function model in which there are only two item 

parameters: difficulty and discrimination parameters. The process of estimating item 

parameters can be reduced tremendously because of this, for example, a laptop with 4GB 

ram memory was used to estimate item parameters for a 1000 sample size and 20-item 

test and it took 72 hours to get the results using the 3PL model, but it took only 18 hours 



64 
 

to get the results using the new model. 

Convergence Problem for the 3PL Model 

    Although the optimization techniques used by SAS PROC NLMIXED are some of the 

best ones available, for the 3PL model, it always has difficult time in converging because 

the 3PL model is more complex. To achieve convergence for the 3PL model, we took 

some extra steps in SAS program such as changing the parameter initial values and using 

boundary constraints to avoid floating-point errors and overflows. The new model, 

however, could converge easily for all sample sizes under any condition. 

In summary, the new model was a better model to estimate parameters if the 

assumption that different ability examinees have different probability of guessing an item 

correctly is viable. Even in the random guessing situation, the new model could estimate 

the latent ability and discrimination parameter more accurately than the 3PL model. The 

3PL model performed better than the new model in estimating difficulty parameter only 

in the random guessing situation.  

The new model successfully controlled the successful guessing probability between 

the probability of random guessing and 0.5, estimated parameters more accurately, ran 

much faster in estimating item parameters, and reflected the different probability of 

successful guessing for examines of different ability. However, due to the highly time-

consuming estimation process of PROC NLMIXED, only 20-item short tests were 

simulated with minimum sample size 100, this may lead to a restriction in the 

generalizability of the new model. 

Future Research Recommendations 

Due to the limited designs in this study, there are a few directions for future research 

that could be considered. First, Reynolds (1986) found that the normal ability distribution 

estimated the difficulty parameter most accurately and the uniform ability distribution 
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estimated discrimination parameter most accurately. The ability distribution was normally 

distributed in this study, the effect of skewed ability distribution on parameter estimation 

for the new model should be very interesting to explore.  

Second, the difficulty parameter was controlled from -0.7 to 2.0 and the item 

discrimination was controlled from 0.4 to 2.0 to simulate an achievement test or a high-

stake test, so it may be of interest to investigate the effect of expanded range (for 

example, -2.0 to 2.5 for difficulty parameter and 0 to 2.5 for discrimination parameter) on 

the accuracy of estimating item parameters. Because we all know that some classroom 

test items were made very easy on teacher’s purpose and students use guessing strategies 

to answer those items that they do not know the correct answers, the expanded item 

parameter range study will be crucial for the new model to apply to classroom tests.  

SAS PROC NLMIXED was adopted to do marginal maximum likelihood estimation 

because it provides one of the best optimization techniques. It should be enlightening to 

use other statistical softwares such as R or Matlab to calibrate parameters using the new 

model, and then compare their results to find which software can produce the most 

accurate estimation and which one will have the worst estimation. 

 The number of options used in this study was 4 which is most popular in  high-stake 

tests. We know that as the number of options increases, the probability of guessing an 

item correctly decreases. The number of options should have effect on guessing 

strategies. If the number of options, theoretically, increased up to infinite, then the 

probability of successful guessing would be zero. Therefore, the more the number of 

options is, the less motivating the examinee will be because it is too time-consuming.       

What will happen if the number of options is increased up to a threshold that examinees 

are not motivated to use partial knowledge to make a guess because there are too many 
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options? In this situation, examinees just make random guess to those items that they do 

not know the answers, thus we can simplify the guessing situation. 
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Appendix A 

 The Deduction of Marginal Maximum Likelihood Function for the 2PL-

Guessing Model 

According to Bayes’ theorem, the posterior ability distribution is given as (Baker & Kim, 

2004): 
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Put equation A.4 into equation A.3, we get the marginal likelihood equation for ai can be 

written as the follows: 
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For Rasch-Guessing model, there is only item difficulty parameter, then (N is the number 

of options for the following equations) 
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For 2PL-Guessing model, (N is the number of options) 
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Appendix B 

Difficulty Parameter RMSD Estimates for the Rasch-Guessing Model 

 

Table B1 
RMSD of Difficulty Parameter Estimates for the Rasch-Guessing Model (20 items) 

 
True 

values 
 

  b̂   RMSD  b̂  RMSD 
 

 b̂  
 

RMSD b̂  RMSD 

N=100 N=200 N=500 N=1000 

 

 
 
 
  

-0.327 -0.283 0.303 -0.307 0.224   -0.267 0.205 -0.361 0.138 
 0.724 0.852 0.320 0.802 0.287 0.864 0.242 0.798 0.165 

1.67 1.712 0.418 1.651 0.221 1.652 0.154 1.689 0.134 
0.413 0.510 0.244 0.441 0.167 0.361 0.141 0.399 0.134 
0.032 -0.311 0.446 -0.048 0.245 0.020 0.101 0.028 0.094 
1.113 1.173 0.370 1.136 0.230 1.127 0.109 1.154 0.109 
0.202 0.293 0.341 0.157 0.243 0.192 0.117 0.182 0.103 
0.986 0.984 0.385 1.036 0.239 0.954 0.184 0.983 0.103 
1.417 1.862 0.662 1.495 0.244 1.378 0.168 1.357 0.108 
1.843 2.058 0.397 2.008 0.260 1.895 0.156 1.846 0.116 
0.567 0.546 0.317 0.597 0.142 0.571 0.105 0.547 0.105 
0.106 -0.104 0.312 0.022 0.183 0.032 0.185 0.070 0.111 
-0.67 -0.220 0.505 -0.526 0.371 -0.629 0.155 -0.626 0.138 
2.018 1.917 0.358 1.960 0.275 2.002 0.193 1.983 0.163 

-0.245 -0.279 0.337 -0.284 0.200 -0.316 0.146 -0.280 0.092 
0.116 0.084 0.316 0.132 0.262 0.112 0.169 0.111 0.143 
1.216 1.360 0.330 1.234 0.193 1.251 0.143 1.216 0.095 
1.682 1.793 0.425 1.693 0.242 1.693 0.170 1.696 0.118 
0.291 0.154 0.423 0.274 0.301 0.254 0.168 0.273 0.111 
0.451 0.483 0.241 0.455 0.116 0.446 0.109 0.432 0.076 
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Table B2 
RMSD of Difficulty Parameter Estimates for the Rasch-Guessing Model(30 Items) 

 
True 

values 
 

   b̂  RMSD b̂       
   

RMSD 

 

    b̂  
 

RMSD  b̂  RMSD 

     N=100         N=200     N=500             N=1000 
-0.327 -0.213 0.284 -0.311 0.186 -0.407 0.103 -0.394 0.108 
0.724 0.785 0.429 0.687 0.244 0.710 0.158 0.734 0.102 
1.67 1.751 0.276 1.716 0.179 1.705 0.165 1.638 0.155 

0.413 0.502 0.387 0.565 0.323 0.539 0.204 0.451 0.119 
0.032 -0.049 0.312 -0.019 0.186 -0.008 0.137 0.030 0.116 
1.113 0.999 0.291 1.032 0.337 1.101 0.222 1.096 0.102 
0.202 0.287 0.256 0.250 0.201 0.234 0.145 0.228 0.098 
0.986 1.077 0.215 0.929 0.207 0.894 0.154 0.899 0.133 
1.417 1.587 0.322 1.668 0.324 1.445 0.152 1.422 0.080 
1.843 2.040 0.375 1.837 0.297 1.773 0.175 1.799 0.099 
0.567 0.686 0.278 0.629 0.221 0.487 0.187 0.548 0.077 
0.106 0.115 0.245 0.067 0.248 0.092 0.164 0.084 0.100 
-0.67 -0.584 0.258 -0.711 0.204 -0.638 0.172 -0.670 0.062 
2.018 2.276 0.579 2.064 0.237 2.059 0.173 2.039 0.089 

-0.245 -0.243 0.312 -0.203 0.254 -0.294 0.142 -0.282 0.101 
0.116 0.058 0.282 0.035 0.215 0.072 0.114 0.059 0.083 
1.216 1.267 0.335 1.262 0.157 1.254 0.124 1.245 0.105 
1.682 1.781 0.385 1.736 0.283 1.763 0.138 1.758 0.095 
0.291 0.369 0.381 0.329 0.238 0.306 0.192 0.290 0.112 
0.451 0.465 0.206 0.476 0.123 0.490 0.207 0.460 0.111 
0.46 0.374 0.312 0.361 0.228 0.361 0.164 0.406 0.104 

1.419 1.316 0.350 1.442 0.170 1.493 0.125 1.518 0.153 
1.886 2.125 0.476 2.017 0.299 1.937 0.207 1.945 0.117 
1.169 1.160 0.340 1.230 0.261 1.200 0.133 1.162 0.100 
0.944 0.853 0.601 0.949 0.307 0.957 0.166 0.958 0.096 
0.39 0.340 0.274 0.320 0.208 0.345 0.136 0.336 0.107 

0.046 -0.034 0.205 0.040 0.220 -0.019 0.108 -0.007 0.083 
0.858 0.898 0.168 0.911 0.186 0.842 0.148 0.862 0.095 
0.734 0.760 0.200 0.740 0.193 0.721 0.103 0.699 0.100 
0.258 0.320 0.255 0.285 0.254 0.310 0.141 0.291 0.126 
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Table B3 
RMSD of  Difficulty Parameter Estimates for the Rasch-Guessing Model (40 Items) 

 
True 

values 
 

    b̂  RMSD     b̂  
   

RMSD 

 

    b̂  
 

 RMSD b̂  RMSD 

N=100 N=200 N=500          N=1000 
-0.327 -0.269 0.385 -0.265 0.265 -0.334 0.098 -0.326 0.072 
0.724 0.804 0.493 0.712 0.242 0.730 0.117 0.669 0.092 
1.670 1.584 0.331 1.537 0.186 1.597 0.216 1.592 0.127 
0.734 0.906 0.388 0.765 0.224 0.815 0.173 0.764 0.127 
0.413 0.393 0.378 0.401 0.323 0.383 0.151 0.382 0.089 
0.448 0.399 0.424 0.465 0.292 0.461 0.129 0.427 0.122 
0.032 -0.015 0.475 -0.026 0.310 0.038 0.113 0.032 0.058 
0.425 0.369 0.241 0.369 0.195 0.450 0.124 0.415 0.125 
0.490 0.460 0.201 0.506 0.172 0.504 0.133 0.446 0.092 
1.419 1.652 0.474 1.525 0.239 1.464 0.165 1.410 0.145 
1.113 1.261 0.430 1.154 0.234 1.121 0.107 1.113 0.082 
0.202 0.044 0.321 0.068 0.207 0.089 0.182 0.094 0.146 
0.983 1.044 0.331 0.988 0.202 1.033 0.163 1.008 0.089 
0.986 1.042 0.503 1.065 0.275 1.069 0.182 0.986 0.083 
0.858 0.785 0.308 0.745 0.255 0.808 0.151 0.838 0.095 
0.451 0.499 0.441 0.368 0.346 0.404 0.130 0.366 0.128 
0.046 0.011 0.216 0.062 0.227 0.082 0.121 0.046 0.114 
1.417 1.505 0.283 1.543 0.219 1.419 0.089 1.400 0.088 
0.460 0.460 0.339 0.533 0.304 0.540 0.193 0.475 0.135 
0.315 0.562 0.360 0.396 0.312 0.347 0.186 0.318 0.103 
1.843 2.004 0.371 2.000 0.317 1.889 0.210 1.800 0.131 
1.286 1.267 0.315 1.330 0.203 1.338 0.141 1.320 0.108 
0.567 0.658 0.412 0.563 0.287 0.552 0.129 0.565 0.109 
0.955 0.946 0.480 1.022 0.259 1.006 0.105 0.999 0.074 
1.133 1.143 0.407 1.096 0.327 1.177 0.211 1.139 0.130 
1.118 1.361 0.582 1.153 0.304 1.154 0.200 1.128 0.098 
0.390 0.310 0.308 0.228 0.255 0.349 0.175 0.367 0.116 
0.944 0.813 0.318 0.883 0.231 0.950 0.125 0.923 0.090 
0.106 0.008 0.380 0.069 0.243 0.025 0.151 0.080 0.108 
1.216 1.150 0.301 1.092 0.258 1.179 0.156 1.180 0.111 

-0.670 -0.628 0.279 -0.640 0.270 -0.691 0.127 -0.692 0.081 
0.116 0.050 0.349 0.131 0.206 0.140 0.144 0.111 0.059 
1.169 1.283 0.379 1.224 0.242 1.130 0.181 1.152 0.136 
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Table B3 (continued). 
RMSD of  Difficulty Parameter Estimates for the Rasch-Guessing Model (40 Items)  

 
True 

values 
 

    b̂  RMSD       b̂  
   

RMSD 

 

   b̂  
 

RMSD b̂  RMSD 

N=100 N=200 N=500          N=1000 
0.291 0.080 0.361 0.138 0.307 0.194 0.148 0.207 0.131 
1.682 1.682 0.524 1.528 0.324 1.599 0.201 1.638 0.135 

-0.245 -0.272 0.465 -0.311 0.287 -0.294 0.115 -0.270 0.097 
0.481 0.360 0.280 0.484 0.220 0.465 0.111 0.413 0.119 
0.258 0.183 0.356 0.193 0.236 0.229 0.130 0.212 0.120 
1.886 1.803 0.393 1.840 0.264 1.859 0.253 1.913 0.148 
2.018 1.800 0.636 1.885 0.373 1.982 0.174 1.967 0.113 
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Appendix C 
 
 

RMSD of Each Item Parameter Estimates for All Methods 
 
 

Table C1 
RMSD of Difficulty Parameter Estimates for the 2PLG-2PLG (20 items) 

 
True 

values 
 

   b̂    RMSD     b̂   RMSD 
 

    b̂  
 

 RMSD   b̂   RMSD 

N=100 N=200 N=500 N=1000 

 
 
 
  

-0.327 -0.322 0.282 -0.309  0.225 -0.249 0.193 -0.350 0.160 
  0.724 0.863 0.338 0.823 0.242 0.842 0.204 0.756 0.151 

1.67 1.747 0.455 1.691 0.361 1.808 0.324 1.749 0.240 
0.413 0.431 0.186 0.462 0.159 0.377 0.091 0.414 0.096 
0.032 -0.225 0.396 0.000 0.253 0.033 0.130 0.036 0.097 
1.113 1.089 0.523 1.026 0.216 1.130 0.136 1.118 0.146 
0.202 0.222 0.339 0.161 0.274 0.184 0.144 0.179 0.101 
0.986 1.092 0.446 1.046 0.309 0.950 0.210 1.003 0.106 
1.417 1.718 0.519 1.576 0.474 1.519 0.309 1.422 0.213 
1.843 1.570 0.485 1.793 0.352 1.736 0.347 1.740 0.231 
0.567 0.632 0.384 0.561 0.112 0.571 0.117 0.534 0.077 
0.106 -0.029 0.506 0.036 0.354 0.011 0.419 0.063 0.257 
-0.67 -0.163 0.588 -0.393 0.369 -0.587 0.123 -0.578 0.133 
2.018 1.943 0.230 2.029 0.068 2.028 0.100 2.032 0.104 

-0.245 -0.304 0.351 -0.304 0.229 -0.316 0.150 -0.269 0.089 
0.116 0.067 0.262 0.106 0.198 0.084 0.140 0.092 0.126 
1.216 1.619 0.621 1.410 0.429 1.366 0.432 1.205 0.307 
1.682 1.577 0.390 1.618 0.290 1.623 0.239 1.701 0.251 
0.291 0.231 0.325 0.298 0.250 0.257 0.142 0.269 0.103 
0.451 0.431 0.479 0.495 0.301 0.455 0.175 0.397 0.120 
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Table C2 
RMSD of Discrimination Parameter Estimates for the 2PLG-2PLG (20 Items) 

 
True 

values 
 

   â    RMSD     â   RMSD 
 

    â  
 

 RMSD   â   RMSD 

N=100 N=200 N=500 N=1000 
0.873 1.101 0.547 0.976 0.280 0.968 0.209 0.908 0.156 
1.409 1.435 0.373 1.408 0.362 1.395 0.217 1.476 0.221 
0.831 0.906 0.436 0.881 0.295 0.764 0.156 0.811 0.100 
1.676 1.605 0.430 1.522 0.404 1.662 0.263 1.666 0.212 
1.218 1.264 0.452 1.155 0.212 1.184 0.224 1.201 0.164 
1.457 1.693 0.453 1.675 0.347 1.455 0.213 1.533 0.216 
1.054 1.056 0.417 1.030 0.352 1.100 0.188 1.039 0.127 
1.318 1.385 0.532 1.454 0.452 1.379 0.223 1.318 0.104 
1.3 1.452 0.449 1.429 0.519 1.277 0.411 1.273 0.250 

0.924 1.461 0.676 1.131 0.394 1.143 0.465 1.020 0.180 
1.378 1.390 0.497 1.367 0.214 1.402 0.162 1.410 0.178 
0.54 0.899 0.537 0.607 0.200 0.542 0.145 0.530 0.102 
0.833 0.819 0.260 0.816 0.216 0.823 0.211 0.884 0.186 
1.578 1.423 0.420 1.413 0.315 1.523 0.245 1.528 0.274 
0.964 0.859 0.315 0.974 0.297 0.999 0.119 1.021 0.116 
1.3 1.395 0.483 1.382 0.380 1.430 0.374 1.350 0.228 

0.603 0.551 0.122 0.589 0.138 0.601 0.165 0.648 0.123 
1.444 1.675 0.429 1.584 0.387 1.591 0.344 1.462 0.272 
1.858 1.757 0.335 1.741 0.336 1.797 0.215 1.843 0.204 
0.599 0.800 0.554 0.707 0.342 0.625 0.116 0.595 0.087 
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Table C3 
RMSD of Difficulty Parameter Estimates for the 2PLG-3PL (20 Items) 

 
True 

values 
 

   b̂    RMSD     b̂   RMSD 
 

    b̂  
 

 RMSD   b̂   RMSD 

N=100 N=200 N=500 N=1000 

 
 
 
  

-0.327 -0.270 0.351 -0.560 0.546 -0.554 0.780 -0.496 0.584 
 0.724 0.184 0.715 0.223 0.697 0.265 0.659 0.149 0.756 

1.67 1.168 1.128 0.914 0.997 0.728 1.143 0.805 1.052 
0.413 -0.137 0.706 0.072 0.611 -0.150 0.700 -0.184 0.672 
0.032 -0.204 0.578 -0.626 0.949 -0.398 0.671 -0.247 0.394 
1.113 0.487 1.018 0.484 0.752 0.555 0.617 0.645 0.512 
0.202 -0.205 0.743 -0.461 0.967 -0.369 0.840 -0.626 1.026 
0.986 0.315 0.908 0.229 0.923 0.293 0.808 0.590 0.501 
1.417 1.277 0.769 0.861 0.788 0.965 0.583 0.750 0.781 
1.843 0.977 1.079 1.017 1.040 1.059 0.960 1.207 0.711 
0.567 0.064 0.698 0.141 0.587 0.145 0.612 -0.086 0.775 
0.106 -0.096 0.636 -0.434 1.065 -0.382 1.129 -0.097 0.856 
-0.67 -0.408 0.746 -1.011 0.761 -1.696 1.093 -1.563 1.018 
2.018 1.311 0.830 1.270 0.834 1.491 0.634 1.541 0.517 

-0.245 -0.345 0.366 -0.465 0.436 -0.882 0.975 -0.704 0.812 
0.116 -0.031 0.520 -0.318 0.803 -0.271 0.702 -0.526 0.758 
1.216 0.504 1.472 0.056 1.420 0.533 1.257 -0.022 1.401 
1.682 1.122 0.846 1.030 0.805 0.918 0.818 1.005 0.731 
0.291 -0.133 0.684 0.067 0.496 -0.175 0.607 -0.097 0.420 
0.451 0.321 0.884 -0.107 1.039 0.028 0.943 -0.405 1.252 
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Table C4 
RMSD of Discrimination Parameter Estimates for the 2PLG-3PL (20 Items) 

 
True 

values 
 

    â    RMSD     â   RMSD 
 

    â  
 

 RMSD   â   RMSD 

N=100 N=200 N=500 N=1000 
0.873 1.346 0.713 0.998 0.378 1.096 0.400 1.001 0.271 
1.409 1.331 0.529 1.435 0.441 1.373 0.462 1.378 0.418 
0.831 1.120 0.724 1.209 0.795 0.875 0.537 0.731 0.268 
1.676 1.574 0.506 1.632 0.425 1.559 0.443 1.384 0.399 
1.218 1.571 0.541 1.060 0.417 1.183 0.214 1.301 0.228 
1.457 1.375 0.429 1.529 0.449 1.278 0.473 1.412 0.348 
1.054 1.152 0.426 1.151 0.580 1.081 0.227 0.964 0.266 
1.318 1.388 0.650 1.327 0.537 1.220 0.374 1.245 0.386 

1.3 1.267 0.644 1.283 0.395 1.343 0.459 1.341 0.484 
0.924 1.234 0.720 0.911 0.517 1.113 0.666 1.037 0.268 
1.378 1.372 0.560 1.456 0.485 1.529 0.429 1.274 0.395 
0.54 1.119 0.803 0.610 0.360 0.563 0.153 0.517 0.126 

0.833 0.832 0.238 0.787 0.209 0.723 0.256 0.747 0.219 
1.578 1.222 0.740 1.294 0.604 1.266 0.523 1.395 0.560 
0.964 1.006 0.429 1.149 0.415 1.059 0.350 1.046 0.246 

1.3 1.609 0.559 1.425 0.536 1.567 0.569 1.248 0.329 
0.603 0.995 0.762 0.641 0.473 0.707 0.248 0.565 0.146 
1.444 1.562 0.539 1.313 0.633 1.194 0.568 1.047 0.570 
1.858 1.785 0.336 1.792 0.323 1.685 0.362 1.787 0.303 
0.599 0.921 0.711 0.853 0.578 0.727 0.338 0.623 0.226 
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Table C5 
RMSD of Difficulty Parameter Estimates for the 3PL-3PL (20 Items) 

 
True 

values 
 

   b̂    RMSD     b̂   RMSD 
 

    b̂  
 

 RMSD   b̂   RMSD 

N=100 N=200 N=500 N=1000 

 
       

 
       

 
  

-0.327 -0.210 0.410 -0.423 0.338 -0.280 0.323 -0.414 0.336 
 0.724 0.557 0.361 0.598 0.370 0.599 0.353 0.410 0.467 

1.67 1.627 0.508 1.517 0.469 1.783 0.404 1.441 0.486 
0.413 -0.017 0.538 0.216 0.435 0.251 0.393 0.214 0.363 
0.032 -0.092 0.562 -0.263 0.519 -0.111 0.395 -0.116 0.405 
1.113 0.914 0.484 0.816 0.478 1.032 0.299 1.040 0.271 
0.202 -0.170 0.571 -0.256 0.601 -0.078 0.595 -0.042 0.468 
0.986 0.882 0.375 0.791 0.455 0.743 0.451 0.922 0.307 
1.417 1.490 0.642 1.340 0.482 1.412 0.462 1.345 0.307 
1.843 1.590 0.545 1.514 0.570 1.632 0.477 1.750 0.249 
0.567 0.244 0.467 0.214 0.516 0.310 0.414 0.393 0.361 
0.106 -0.186 0.472 -0.052 0.621 0.038 0.447 0.185 0.444 
-0.67 -0.370 0.507 -0.582 0.271 -0.676 0.041 -0.636 0.140 
2.018 1.670 0.495 1.703 0.535 1.904 0.323 2.060 0.073 

-0.245 -0.394 0.362 -0.449 0.343 -0.404 0.309 -0.226 0.254 
0.116 -0.015 0.465 0.088 0.263 -0.032 0.427 -0.109 0.390 
1.216 1.109 0.817 1.046 0.588 1.087 0.600 0.645 0.802 
1.682 1.468 0.562 1.428 0.379 1.421 0.330 1.523 0.367 
0.291 0.314 0.369 0.324 0.320 0.230 0.297 0.282 0.127 
0.451 0.789 0.594 0.572 0.692 0.273 0.581 0.260 0.578 
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Table C6 
RMSD of Discrimination Parameter Estimates for the 3PL-3PL (20 Items) 

 
True 

values 
 

    â    RMSD     â   RMSD 
 

    â  
 

 RMSD   â   RMSD 

N=100 N=200 N=500 N=1000 
0.873 1.121 0.578 1.002 0.483 0.920 0.177 0.882 0.184 
1.409 1.345 0.499 1.345 0.418 1.403 0.450 1.281 0.428 
0.831 0.796 0.499 1.026 0.623 0.838 0.379 0.731 0.321 
1.676 1.526 0.487 1.676 0.406 1.555 0.417 1.501 0.358 
1.218 1.220 0.563 1.153 0.426 1.189 0.365 1.122 0.181 
1.457 1.539 0.414 1.340 0.544 1.449 0.393 1.460 0.359 
1.054 1.070 0.445 0.849 0.382 0.969 0.307 1.003 0.256 
1.318 1.443 0.593 1.317 0.438 1.339 0.432 1.445 0.395 

1.3 1.060 0.663 1.382 0.694 1.274 0.518 1.227 0.381 
0.924 1.174 0.691 1.033 0.676 0.898 0.467 1.031 0.321 
1.378 1.269 0.501 1.160 0.439 1.229 0.340 1.356 0.297 
0.54 0.832 0.505 0.498 0.141 0.508 0.124 0.530 0.084 

0.833 0.703 0.281 0.790 0.257 0.793 0.172 0.859 0.155 
1.578 0.943 0.913 0.806 0.952 0.824 0.940 0.861 0.904 
0.964 0.837 0.270 0.943 0.402 0.995 0.232 1.000 0.178 

1.3 1.574 0.488 1.562 0.518 1.459 0.408 1.244 0.289 
0.603 0.622 0.228 0.772 0.435 0.543 0.155 0.527 0.155 
1.444 0.933 0.772 1.178 0.767 0.902 0.704 1.129 0.598 
1.858 1.896 0.213 1.781 0.285 1.725 0.393 1.827 0.174 
0.599 0.691 0.506 0.590 0.257 0.574 0.155 0.577 0.106 
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Table C7 
RMSD of Difficulty Parameter Estimates for the 3PL-2PLG (20 Items) 

 
True 

values 
 

   b̂    RMSD     b̂   RMSD 
 

    b̂  
 

 RMSD   b̂   RMSD 

N=100 N=200 N=500 N=1000 

 
  

-0.327 0.423 0.839 0.341 0.703 0.368 0.714 0.306 0.644 
 0.724 1.298 0.657 1.213 0.539 1.202 0.503 1.107 0.410 

1.67 2.244 0.698 2.187 0.630 2.362 0.720 2.368 0.718 
0.413 0.719 0.381 0.770 0.420 0.705 0.316 0.747 0.350 
0.032 0.454 0.775 0.485 0.555 0.513 0.507 0.513 0.501 
1.113 1.484 0.485 1.536 0.469 1.554 0.461 1.527 0.449 
0.202 0.780 0.725 0.883 0.737 0.765 0.589 0.747 0.552 
0.986 1.537 0.666 1.498 0.588 1.387 0.476 1.416 0.455 
1.417 2.062 0.806 1.850 0.641 1.853 0.551 1.875 0.535 
1.843 2.075 0.470 2.239 0.522 2.323 0.538 2.366 0.561 
0.567 0.983 0.625 1.008 0.523 0.964 0.402 0.924 0.359 
0.106 0.773 0.856 1.253 1.227 1.354 1.407 1.265 1.281 
-0.67 0.502 1.377 0.202 0.967 0.023 0.713 0.031 0.711 
2.018 2.315 0.382 2.358 0.375 2.419 0.417 2.457 0.442 

-0.245 0.293 0.662 0.321 0.618 0.245 0.512 0.321 0.575 
0.116 0.445 0.415 0.492 0.437 0.489 0.387 0.522 0.416 
1.216 2.036 0.894 2.015 0.909 2.107 0.981 2.084 0.928 
1.682 2.167 0.636 2.109 0.543 2.147 0.539 2.129 0.510 
0.291 0.596 0.484 0.654 0.441 0.608 0.329 0.590 0.307 
0.451 1.911 1.606 1.783 1.485 1.458 1.052 1.404 0.976 
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Table C8 
RMSD of Discrimination Parameter Estimates for the 3PL-2PLG (20 Items) 

 
True 

values 
 

    â    RMSD     â   RMSD 
 

    â  
 

 RMSD   â   RMSD 

N=100 N=200 N=500 N=1000 
0.873 1.193 0.628 1.077 0.433 1.024 0.218 0.971 0.179 
1.409 1.654 0.455 1.574 0.325 1.601 0.296 1.665 0.321 
0.831 1.078 0.429 1.078 0.439 0.917 0.155 0.934 0.158 
1.676 1.786 0.328 1.767 0.285 1.861 0.261 1.809 0.184 
1.218 1.237 0.592 1.318 0.486 1.310 0.315 1.295 0.179 
1.457 1.620 0.343 1.583 0.386 1.534 0.279 1.592 0.269 
1.054 1.275 0.475 1.086 0.354 1.173 0.253 1.160 0.182 
1.318 1.546 0.505 1.620 0.515 1.555 0.367 1.477 0.217 

1.3 1.759 0.532 1.678 0.519 1.486 0.423 1.405 0.293 
0.924 1.640 0.823 1.405 0.640 1.244 0.509 1.112 0.291 
1.378 1.521 0.526 1.434 0.334 1.493 0.214 1.531 0.194 
0.54 0.888 0.583 0.577 0.192 0.535 0.188 0.557 0.131 

0.833 0.712 0.357 0.818 0.276 0.836 0.211 0.930 0.207 
1.578 1.468 0.481 1.515 0.384 1.636 0.253 1.592 0.238 
0.964 0.875 0.305 1.042 0.386 1.096 0.216 1.064 0.181 

1.3 1.694 0.465 1.631 0.476 1.556 0.328 1.447 0.244 
0.603 0.817 0.461 0.775 0.315 0.715 0.230 0.710 0.164 
1.444 1.617 0.486 1.591 0.445 1.537 0.311 1.515 0.249 
1.858 1.859 0.266 1.742 0.328 1.804 0.232 1.859 0.139 
0.599 0.759 0.622 0.650 0.302 0.664 0.143 0.667 0.121 
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Appendix D 
 
 

Biases of Each Item Parameter Estimates for All Estimation Methods 
 

 
Table D1 
Difficulty Parameter Estimate Biases for the 2PLG-2PLG (20 Items) 

 
True 

values 
 

Sample  Size 

N=100 N=200       N=500    N=1000 

 
 
  

-0.327 0.005 0.018 0.078 -0.023 
 0.724 0.139 0.099 0.118 0.032 

1.67 0.077 0.021 0.138 0.079 
0.413 0.018 0.049 -0.036 0.001 
0.032 -0.257 -0.032 0.001 0.004 
1.113 -0.024 -0.087 0.017 0.005 
0.202 0.020 -0.041 -0.018 -0.023 
0.986 0.106 0.060 -0.036 0.017 
1.417 0.301 0.159 0.102 0.005 
1.843 -0.273 -0.050 -0.107 -0.103 
0.567 0.065 -0.006 0.004 -0.033 
0.106 -0.135 -0.070 -0.095 -0.043 
-0.67 0.507 0.277 0.083 0.092 
2.018 -0.075 0.011 0.010 0.014 

-0.245 -0.059 -0.059 -0.071 -0.024 
0.116 -0.049 -0.010 -0.032 -0.024 
1.216 0.403 0.194 0.150 -0.011 
1.682 -0.105 -0.064 -0.059 0.019 
0.291 -0.060 0.007 -0.034 -0.022 
0.451 -0.020 0.044 0.004 -0.054 
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Table D2 
Discrimination Parameter Estimate Biases for the 2PLG-2PLG (20 Items) 

 
True 

values 
 

Sample   Size 

N=100 N=200 N=500 N=1000 

0.873 0.228 0.103 0.095 0.035 
1.409 0.026 -0.001 -0.014 0.067 
0.831 0.075 0.050 -0.067 -0.020 
1.676 -0.071 -0.154 -0.014 -0.010 
1.218 0.046 -0.063 -0.034 -0.017 
1.457 0.236 0.218 -0.002 0.076 
1.054 0.002 -0.024 0.046 -0.015 
1.318 0.067 0.136 0.061 0.000 

1.3 0.152 0.129 -0.023 -0.027 
0.924 0.537 0.207 0.219 0.096 
1.378 0.012 -0.011 0.024 0.032 
0.54 0.359 0.067 0.002 -0.010 

0.833 -0.014 -0.017 -0.010 0.051 
1.578 -0.155 -0.165 -0.055 -0.050 
0.964 -0.105 0.010 0.035 0.057 

1.3 0.095 0.082 0.130 0.050 
0.603 -0.052 -0.014 -0.002 0.045 
1.444 0.231 0.140 0.147 0.018 
1.858 -0.101 -0.117 -0.061 -0.015 
0.599 0.201 0.108 0.026 -0.004 
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Table D3 
Difficulty Parameter Estimate Biases for the 2PLG-3PL (20 Items) 

 
True 

values 
 

Sample  Size 

N=100 N=200       N=500    N=1000 

 
 
  

-0.327 0.058 -0.233 -0.227 -0.169 
 0.724 -0.540 -0.501 -0.459 -0.575 

1.67 -0.502 -0.756 -0.942 -0.865 
0.413 -0.550 -0.341 -0.563 -0.597 
0.032 -0.236 -0.658 -0.430 -0.279 
1.113 -0.626 -0.629 -0.558 -0.468 
0.202 -0.407 -0.663 -0.571 -0.828 
0.986 -0.671 -0.757 -0.693 -0.396 
1.417 -0.140 -0.556 -0.452 -0.667 
1.843 -0.866 -0.826 -0.784 -0.636 
0.567 -0.503 -0.426 -0.422 -0.653 
0.106 -0.202 -0.540 -0.488 -0.203 
-0.67 0.262 -0.341 -1.026 -0.893 
2.018 -0.707 -0.748 -0.527 -0.477 

-0.245 -0.100 -0.220 -0.637 -0.459 
0.116 -0.147 -0.434 -0.387 -0.642 
1.216 -0.712 -1.160 -0.683 -1.238 
1.682 -0.560 -0.652 -0.764 -0.677 
0.291 -0.424 -0.224 -0.466 -0.388 
0.451 -0.130 -0.558 -0.423 -0.856 
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Table D4 
Discrimination Parameter Estimate Biases for the 2PLG-3PL (20 Items) 

 
True 

values 
 

Sample   Size 

N=100 N=200 N=500 N=1000 

0.873 0.473 0.125 0.223 0.128 
1.409 -0.078 0.026 -0.036 -0.031 
0.831 0.289 0.378 0.044 -0.100 
1.676 -0.102 -0.044 -0.117 -0.292 
1.218 0.353 -0.158 -0.035 0.083 
1.457 -0.082 0.072 -0.179 -0.045 
1.054 0.098 0.097 0.027 -0.090 
1.318 0.070 0.009 -0.098 -0.073 

1.3 -0.033 -0.017 0.043 0.041 
0.924 0.310 -0.013 0.189 0.113 
1.378 -0.006 0.078 0.151 -0.104 
0.54 0.579 0.070 0.023 -0.023 

0.833 -0.001 -0.046 -0.110 -0.086 
1.578 -0.356 -0.284 -0.312 -0.183 
0.964 0.042 0.185 0.095 0.082 

1.3 0.309 0.125 0.267 -0.052 
0.603 0.392 0.038 0.104 -0.038 
1.444 0.118 -0.131 -0.250 -0.397 
1.858 -0.073 -0.066 -0.173 -0.071 
0.599 0.322 0.254 0.128 0.024 
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Table D5 
Difficulty Parameter Estimate Biases for the 3PL-3PL (20 Items) 

 
True 

values 
 

Sample  Size 

N=100 N=200       N=500    N=1000 

 
 
  

-0.327 0.117 -0.096 -0.280 -0.087 
 0.724 -0.167 -0.126 -0.125 -0.314 

1.67 -0.043 -0.153 0.113 -0.229 
0.413 -0.430 -0.197 -0.162 -0.199 
0.032 -0.124 -0.295 -0.143 -0.148 
1.113 -0.199 -0.297 -0.081 -0.073 
0.202 -0.372 -0.458 -0.280 -0.244 
0.986 -0.104 -0.195 -0.243 -0.064 
1.417 0.073 -0.077 -0.005 -0.072 
1.843 -0.253 -0.329 -0.211 -0.093 
0.567 -0.323 -0.353 -0.257 -0.174 
0.106 -0.292 -0.158 -0.068 0.079 
-0.67 0.300 0.088 -0.006 0.034 
2.018 -0.348 -0.315 -0.114 0.042 

-0.245 -0.149 -0.204 -0.159 0.019 
0.116 -0.131 -0.028 -0.148 -0.225 
1.216 -0.107 -0.170 -0.129 -0.571 
1.682 -0.214 -0.254 -0.261 -0.159 
0.291 0.023 0.033 -0.061 -0.009 
0.451 0.338 0.121 -0.178 -0.191 
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Table D6 
Discrimination Parameter Estimate Biases for the 3PL-3PL (20 Items) 

 
True 

values 
 

Sample   Size 

N=100 N=200 N=500 N=1000 

0.873 0.248 0.129 0.047 0.009 
1.409 -0.064 -0.064 -0.006 -0.128 
0.831 -0.035 0.195 0.007 -0.100 
1.676 -0.150 0.000 -0.121 -0.175 
1.218 0.002 -0.065 -0.029 -0.096 
1.457 0.082 -0.117 -0.008 0.003 
1.054 0.016 -0.205 -0.085 -0.051 
1.318 0.125 -0.001 0.021 0.127 

1.3 -0.240 0.082 -0.026 -0.073 
0.924 0.250 0.109 -0.026 0.107 
1.378 -0.109 -0.218 -0.149 -0.022 
0.54 0.292 -0.042 -0.032 -0.010 

0.833 -0.130 -0.043 -0.040 0.026 
1.578 -0.635 -0.772 -0.754 -0.717 
0.964 -0.127 -0.021 0.031 0.036 

1.3 0.274 0.262 0.159 -0.056 
0.603 0.019 0.169 -0.060 -0.076 
1.444 -0.511 -0.266 -0.542 -0.315 
1.858 0.038 -0.077 -0.133 -0.031 
0.599 0.092 -0.009 -0.025 -0.022 
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Table D7 
Difficulty Parameter Estimate Biases for the 3PL-2PLG (20 Items) 

 
True 

values 
 

Sample  Size 

N=100 N=200       N=500    N=1000 

 
 
  

-0.327 0.750 0.668 0.695 0.633 
 0.724 0.574 0.489 0.478 0.383 

1.67 0.574 0.517 0.692 0.698 
0.413 0.306 0.357 0.292 0.334 
0.032 0.422 0.453 0.481 0.481 
1.113 0.371 0.423 0.441 0.414 
0.202 0.578 0.681 0.563 0.545 
0.986 0.551 0.512 0.401 0.430 
1.417 0.645 0.433 0.436 0.458 
1.843 0.232 0.396 0.480 0.523 
0.567 0.416 0.441 0.397 0.357 
0.106 0.667 1.147 1.248 1.159 
-0.67 1.172 0.872 0.693 0.701 
2.018 0.297 0.340 0.401 0.439 

-0.245 0.538 0.566 0.490 0.566 
0.116 0.329 0.376 0.373 0.406 
1.216 0.820 0.799 0.891 0.868 
1.682 0.485 0.427 0.465 0.447 
0.291 0.305 0.363 0.317 0.299 
0.451 1.460 1.332 1.007 0.953 
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Table D8 
Discrimination Parameter Estimate Biases for the 3PL-2PL (20 Items) 

 
True 

values 
 

Sample   Size 

N=100 N=200 N=500 N=1000 

0.873 0.320 0.204 0.151 0.098 
1.409 0.245 0.165 0.192 0.256 
0.831 0.247 0.247 0.086 0.103 
1.676 0.110 0.091 0.185 0.133 
1.218 0.019 0.100 0.092 0.077 
1.457 0.163 0.126 0.077 0.135 
1.054 0.221 0.032 0.119 0.106 
1.318 0.228 0.302 0.237 0.159 

1.3 0.459 0.378 0.186 0.105 
0.924 0.716 0.481 0.320 0.188 
1.378 0.143 0.056 0.115 0.153 
0.54 0.348 0.037 -0.005 0.017 

0.833 -0.121 -0.015 0.003 0.097 
1.578 -0.110 -0.063 0.058 0.014 
0.964 -0.089 0.078 0.132 0.100 

1.3 0.394 0.331 0.256 0.147 
0.603 0.214 0.172 0.112 0.107 
1.444 0.173 0.147 0.093 0.071 
1.858 0.001 -0.116 -0.054 0.001 
0.599 0.160 0.051 0.065 0.068 
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