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TITLE: THE EXPLORATION OF THE RELATIONSHIP BETWEEN GUESSING AND

LATENT ABILITY IN IRT MODELS

MAJOR PROFESSOR: Dr. Todd Headrick

This study explored the relationship between successful guessing and latent ability in
dichotomous IRT models. Two new IRT models, the Rasch-Guessing model and the 2PL -
Guessing model were developed with guessing functions integrating probability of guessing
an item correctly with the examinee' s ability and the item parameters. The conventional 3PL
IRT model was compared with the new 2PL-Guessing model on parameter estimation using
the Monte Carlo method. SAS program was used to implement the data simulation and the

maximum likelihood estimation.

Compared with the traditional 3PL model, the new model should reflect: a) the maximum
probability of guessing should not be more than 0.5, even for the highest ability examinees; b)
different ability of examinees should have different probability of successful guessing
because a basic assumption for the new modelsis that higher ability examinees have a higher
probability of successful guessing than lower ability examinees; c) smaller standard error in
estimating parameters; d) better AIC for goodness of fit; and €) faster running time. Three

criteriawere used to compare parameter estimates. correlation, RMSD (root mean squared



deviation), and bias.

Two item response data sets on 20 items from 100, 200, 500, and 1000 examinees using the
3PL model and the 2PL-Guessing model with 10 replications were simulated. Each data set
was used by both models to recover parameters to compare the accuracy of parameter

recovery between these two models in terms of three aforementioned criteria.

The new 2PL-Guessing model can control the probability of the successful guessing between
the probability of random guessing and 0.5 by applying logistic function to the successful
guessing probability, successfully reflecting different probability of successful guessing with
different ability. The parameter estimate resultsillustrated that the new 2PL -Guessing model
produced higher correlations between true parameter values and estimated parameter values,
smaller RMSD, smaller bias, and better AIC for goodness of fit using the dataset generated
by the new model. When using the dataset generated by the conventional 3PL model, the
new model produced better results for ability and discrimination parameter estimates and
smaller average AIC indices across al sample sizes compared than the 3PL model, but the

3PL model produced better difficulty parameter estimates.
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CHAPTER ONE

INTRODUCTION

Guessing and Multiple Choice Tests

Multiple-choice format questions are most frequently used in educational testing, in
market research, and in elections. Multiple-choice items consist of a stem and a set of
options which are the possible answers from which the examinees can choose. Because
only one answer can be correct, when unanswered questions are counted as incorrect for
many multiple-choice tests, it makes sense to guess when all elsefails. Therefore, most
often examinees taking a multiple-choice test may make a guess at the answers when they
are not sure which alternative is correct to improve their test scores. This kind of behavior
is especially prevalent when there is no penalty for guessing wrong.

Wright (1991) stated that guessing, which can increase opportunities for
unqualified individuals, is considered to be a construct-irrelevant response. It is necessary
to reevaluate those misfitting persons caused by guessing after they are identified by
using the error estimates (also see Pelton, 2002).

Generdly, there are two forms of guessing: “blind guessing” or “informed guessing’”.
Blind guessing occurs when the examinee has no idea of the correct answer and responds
randomly while informed guessing occurs when the examinee responds to an item on the
basis of partial knowledge. Guessing of one form or another can especially occur on
multiple-choice test items and it can increase error variance of test scores, thereby
damaging their reliability and validity (Rogers, 1999).

Random guessing, however, provides no information about ability. Correct
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responses due to random guessing are quite different from correct responses by guessing
when examinees can eliminate some options by partial information (Smith, 1993). Some
researchers have tried to distinguish random guessing which contains no information at

all from informed guessing which contains some information. Birnbaum (1968)
introduced the 3 parameter logistic (PL) item response theory (IRT) model which
integrated a guessing parameter reflecting the possibility of a correct guess. The pseudo-
guessing item parameter, however, in the three-parameter IRT model mistakes guessing as
the only function of the item properties, when, in fact, the guessing is an interaction
between item properties and person ability.

There are two good reasons to believe that the success of guessing is related to ability.
Thefirst reason is that for a certain item, only some examinees exhibit guessing behavior,
especialy low ability examinees. The more difficult the item is, the more guessing
behavior is exhibited; the easier the item is, the less guessing behavior is exhibited,
especialy for high-ability examinees. This may explain why there is such a big difference
in item parameter estimates between capable and weak students. The second reason is that
3PL IRT model guessing parameter is sometimes more than /N (N is the number of
options), so a plausible explanation for thisissueis that some respondents can eliminate
one or more of the options and then guess among the non-eliminated options. Partial
knowledge may be reflected in this guessing parameter, so it is ability related (Martin, del
Pino, & De Boeck, 2006).

The most important purpose of an exam is to estimate the examinees’ ability or

academic achievement and to make decisions on the basis of test scores; therefore, it is
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very important to consider the effect of guessing on multiple-choice tests because
guessing behavior either increases the measured error or can be held accountable for
construct-irrelevant variance (Messick, 1995). If guessing behavior isnot considered in
the IRT parameter estimation, the standard IRT models will misestimate the true levels of
the examinees' ability and will cause to make wrong decisions.
Statement of the Problem

Some researchers (e.g. Cao & Stokes, 2008) have engaged to integrate IRT models
with guessing. The 3PL model developed by Birnbaum (1968) assumes that the
examinees would make a guess if he does not know the correct answer and the probability
of guessing correctly will be /N (N is the number of options). The model appliesthis
guessing behavior as an item parameter to all examinees assuming that the probability of
successful guessing is entirely aquality of the item which has the same fixed effect on all
examinees. Wietzman (1996) combined the Rasch model with guessing for afixed-length,
multiple-choice test with the requirement that all multiple-choice items must have equally
guessworthy options. That isto say, if an item has 4 options, the guessing parameter ¢
should be equal to 1/4 for al test items regardless of examinees ability.

However, this pseudo-guessing parameter has stirred alot of concerns. De Ayaa
(2008) expressed his concerns on the guessing parameter: a) the difference between the
guessing parameter and the random guessing probability occurs all the time and the
random guessing assumption for guessing parameter is not reflected in the observed data;
b) the responses from low ability individuals demonstrate the interaction between the

person’s ability and the item characteristics; and c) the assumption for the guessing
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parameter that every examinee has the same probability to guess an item correctly may
not reflect the real guessing situation.

In addition, the uniform guessing parameter cannot distinguish random guessing
from informed guessing, therefore, this guessing parameter revealing nothing about the
examinee's partial knowledge. However, Hutchinson (1991) demonstrated that examinees
getting a high proportion of items correct at their first attempt tend to get ahigh
proportion of items correct at their second attempt, thus, showing some form of partial
information was operating. With partial information, the examinee can eliminate one or
more of the distracters as being obviously wrong, and then he guesses randomly among
the remainder.

Furthermore, the inaccuracy of estimating guessing parameter causes another
concern. Renolds (1986) indicated that the guessing parameter could not be precisely
estimated in her simulation study although she increased the sample size and test length
and changed the distribution of ability. A research study conducted by Ree (1979)
concerning the accuracy of the guessing parameter estimate revealed that the accuracy of
the guessing parameter estimate was still poor even with 2000 subjects and 80 test items
being ssimulated. There must be some other factors affecting the accuracy of estimation
since sample size and test length are not the primary factors to influence the accuracy of
guessing parameter estimate.

Pelton (2002) concluded from his empirical study of the accuracy and stability of
estimates on 1PL, 2PL, and 3PL models that the estimation of the guessing parameter is

likely to fluctuate substantially with different guessing information. The 3PL model can

4



produce the best estimates only if a moderate amount of guessing was assumed.

Martin, del Pino, and Boeck (2006) described that the guessing parameter for
different ability levels of students may have a substantial impact on item parameter
estimates. “In fact, most information about the lower asymptote in the item characteristic
curve isobtained for relatively easy items, while the discrepancy between capable and
less capable persons may also come from the probability of a correct guessing being
dependent on ability” (p.185).

Martin, del Pino, and De Boek (2006) devel oped a model to integrate guessing
behavior with individual latent ability by putting the guessing parameter into afunction of
the ability of the examinee. However, their models failed to control guessing probability
under 0.5 and an extra parameter of the weight of ability in the guessing function had to
be estimated for all test items; therefore, the presence of such a parameter increased the
complexity of parameter estimation.

Bock (1997) proposed a nominal response model (NRM) to collect more
information from incorrect answers and improve the accuracy of ability estimation for
multiple-choice items (see aso Verstralen, 1997); however, the model can increase
accuracy mainly for low test scores. Nedelsky (1954) developed a model based on the
idea that the borderline test-taker responds to a multiple-choice question by first
eliminating the incorrect options, then guesses randomly from the remaining options.
Nedelsky (1954) then generalized this method to all levels of ability. However, the model
requires an assumption that the correct answer is never rejected, or the test taker will

never think that the correct answer iswrong and avery large sample size isrequired to get
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reliable estimates. Further, Farr, Pritchard, and Smitten (1990) found no evidence to
support the assumption of the Nedelsky (1954) model in terms of reading comprehension
tests.

Cao and Stokes (2008) proposed three different models based on three different
guessing behaviors by using Bayesian estimation methods: a) the IRT threshold guessing
model; b) the IRT difficulty-based guessing model; and c) the IRT continuous guessing
model.

However, there are some limitations associated with the Cao and Stokes (2008)
models. Cao and Stokes (2008) used only low-stake tests to apply three models with
assumptions that 60% of the examinees were guessers and the guessing parameter for all
three models was equal to the reciprocal of the number of options of the test item. This
failsto reflect the relationship between the probability of correct guessing and the
examinee's ability. Furthermore, Cao and Stokes (2008) provided little or no discussionin
terms of when or in what situation, or which model should be applied.

The Purpose of the Study

The purpose of this study was to: a) analyze and determine the relationship between
the probability of guessing atest item correctly and the examinee's ability and item
parameters so that different ability examinees have different guessing probability of
success; b) propose new IRT models with a guessing function related to the examinee's
ability and item parameters; c) use the Monte Carlo method to generate the proposed
models' and 3PL model’s response data, estimate item parameters, and compare the new

2PL-Guessing model with the 3PL IRT modelsin item parameter recovery; and d)

6



compare goodness-of-fit using the real data between the 2PL-Guessing model and the
3PL model. To do parameter estimation for the new models, the Monte Carlo approach
will be used to generate simulation data and the marginal maximum likelihood estimation
method will be used to estimate model parameters.
The Limitations of the Study

First, the response data were generated under the assumptions of unidimensionality
and the normal distribution of ability; therefore, the models may not be appropriate to be
applied to multidimensionality tests or pol ytomous assessments. Second, the models were
also developed under the strong assumption that examinees have a high motivation to
guessiif they do not have the knowledge for the answer because guessing can increase
their performance, so the best situations for the application of the models are high-stake
tests, achievement tests or licensure tests. Third, the proposed new model may not be
appropriate for classroom exams because sometimes instructors want all students to
answer some items correctly for classroom tests.

The Significance of the Study
The issue of guessing isimportant to multiple-choice assessments because
guessing behavior can be a source of construct-irrelevant variance, posing a magjor threat
to construct validity; furthermore, the use of guessing strategies not only increases error,
but also weakens the relationships among test items. Therefore, it isimperative to account
for guessing in the evaluation of multiple choice tests (Messick, 1995).
A multiple-choice question always provides opportunity for successful guessing.

Thiskind of systematic error may increase the probability of success for the lower ability
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examinees. If thisbias or systematic error is not handled appropriately by the mode, it
may have a negative effect on the precision of the item difficulty and discrimination
parameter estimates (Pelton, 2002).

Multiple-choice test items are subject to guessing, so answering an item correctly
and knowing the correct answer to the item are not equivalent. Birnbaum (1968)
introduced the 3PL model with a controversial guessing parameter which completely
depends on item property and has nothing to do with the examinee’s ability. Furthermore,
estimation of the guessing parameter in the 3PL model is the most unstable and Ree (1979)
found that even large samples and long tests could not improve the accuracy of the
guessing parameter estimate.

The proposed new models should reflect: @) the maximum probability of guessing
should not be more than 0.5, even for the highest ability examinees; b) different ability of
examinees should have different probability of successful guessing, because a basic
assumption for the new modelsis that higher ability examinees have a higher probability
of successful guessing than lower ability examinees; and ¢) because the new 2PL-
Guessing model has only two item parameters, the running time for estimation of item

parameters is much shorter than the 3PL IRT model.



CHAPTER TWO
LITERATURE REVIEW
2.1 Introduction of Item Response Theory

Gulliksen (1950) indicated that an important contribution to the theory and practice
of item analysis would be the discovery of item parameters that are relatively invariant to
different examinee groups on which item analysis is based. Although classical test theory
(CTT) has been widely used in the measurement field for along time because of its
simplicity and relatively weak assumption requirements which make CTT easily applied
to many test situations, IRT has experienced tremendous growth in recent decades since
IRT overcomes the circular dependency , the major weakness associated with CTT
(Hambleton & Jones, 1993). IRT, also known as latent trait theory, is a model-based
measurement in which ability estimates depend on both examinees' responses and on the
properties of the administered items (Embreston & Reise, 2000).

Compared to CTT, IRT is more theory-driven and models the probability of
examinees successful responses by the item statistics independent of examinee samples,
the individual latent ability, and the particular set of items administered. That isto say,
when the IRT model fits the data, the same item characteristic curve (ICC) is obtained for
the test item regardless of the distribution of ability in the group of examinees used to
estimate the item parameter. The chief advantage of IRT is the properties of item and
ability parameter invariance which is crucia for inferences to be equally valid for
different populations of examinees or different measurement conditions. “The importance

of the property of invariance of item and ability parameter cannot be overstated. This
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property is the cornerstone of item response theory and makes possible such important
applications as equating, item banking, investigation of item bias, and adaptive testing.”
(Hambleton, Swaminathan & Rogers, 1991, p. 25)

More and more test developers are using IRT to design standardized tests due to
IRT’s potential to solve practical issues and its theoretical invariance advantage. IRT now
are applied to several major tests such as the Armed Services Vocational Aptitude Battery,
SAT, and GRE. The early IRT applications involved mainly unidimensional IRT models
(Embreston, 2000). Since Bock, Gibbons, and Muraki (1988) developed a
multidimendional IRT model, IRT applications to personality, attitude, and behavioral
self-reports have become possible aswell. IRT has increasingly become the mainstream
in the measurement field.

IRT Assumptions

Even though IRT has many advantages over CTT, these advantages can only take
effect when its assumptions are met. There are two important assumptions for IRT models:
unidimensionality and local independence.

A common assumption of IRT modelsisthat only one latent trait (or ability) is
measured by a set of itemsin an exam. However, it isimpossible to meet this assumption
because other factors such as personality, motivation, anxiety, and guessing always affect
test performance to some extent. Therefore, if there is the presence of a dominant
component or factor in a set of test data, we would say, the unidimensionality assumption
ismet and this dominant factor is referred to as the latent trait measured by the test.

Local independence means that the probability of answering any test itemis

10



independent of the probability of answering any other test item when the abilities are held
constant (Hambleton, Swaminathan & Rogers, 1991). The property of local independence,
for agiven examinee, means that the probability of aresponse pattern on atest is equal to
the product of each test item probability. The assumptions of unidimensionality and local
independence are equivalent because local independence can be obtained if
unidimensionality is met. The property of local independence can be expressed

mathematically in the following way:

ProbU,,U,,...U. |0) = PU, |0)P(U, | )..PU. |6) :ﬁp(ui 10), (2.1

i1
where 6 represents the examinee's ability level; U, represents the response of arandomly
chosen examineetoitemi(i=1, 2, ...,n); P(U, |9) denotes the probability of the
response of arandomly chosen examinee with abilityd; P(U, =1|68) denotesthe
probability of acorrect response, and P(U, = 0| 8) denotes the probability of an incorrect
response.

The final assumption for any selected IRT model is that the model must fit the data.
That assumes that the ICC of chosen IRT model must be able to provide an accurate
reflection of the relationship between examinees’ ability and item response (Davis, 2002).
The advantages of IRT models can be achieved only if there is a satisfactory goodness-of -
fit between the model and test data. If the modél fits the data poorly, the invariance of the
examinee's latent ability and item parameters will be compromised (Hambleton,
Swaminathan & Rogers, 1991).

There is no an absol ute statistical method to determine a particular model fit or not

overall, but Embreston and Reise (2000) suggested two approaches to evaluating
11



goodness-of-fit for IRT models: item fit and person fit.
Dichotomous IRT Models

The three most popular unidimensional IRT models are the one-, two-, and three-
parameter |ogistic models named because of the number of item parameters each model
has also, these models are appropriate for dichotomous item response data. A primary
distinction among these three models is the number of parameters used to describe items.

One-Parameter Logistic Model.

The one-parameter logistics model, which is often called the Rasch model, is one of the

most widely used IRT models. The probability of answering an item correctly is given by

the equation

el?-o) _
R(e):m | :].,2,...,n, (22)

whereP, (0) isthe probability that arandomly chosen examinee with ability & answer item
i correctly, b, istheitemi difficulty parameter, nisthe number of itemsin the test, andeis
atranscendental number whose value is 2.718. In the one-parameter model, it is assumed
that item difficulty isthe only item property that affects examinee performance. Thisis
equivalent to the assumption that all item discrimination indices are equal. The lower
asymptote of the ICC is zero which means examinees of very low ability have zero
probability of answering the item correctly. Thus, there is no alowance for guessing in
this model (Hambleton, Swaminathan & Rogers, 1991).
Two-Parameter Logistic Model.
Birnbaum (1968) substituted the two-parameter logistic function for the two-parameter

normal ogive function developed by Lord (1952) because logistic functions have the
12



important advantage of being more convenient to work with than normal ogive functions.
The probability of answering an item correctly is expressed by two-parameter model

developed by Birnbaum (1968) as:

ePa (0-b)

P 0) = i=12,..,n

1+ ePa (@)

(2.3),

where g represents the discrimination parameter of itemi. The item discrimination is
proportional to the slope of ICC at the point b; on the ability scale. The steeper the slope
is, the more useful the item is to separate examinees into different ability levels
(Hambleton, Swaminathan & Rogers, 1991). D is a scaling factor devel oped to make the
logistic function as close as possible to normal ogive function and it is a constant and is
equal to 1.7.

Three-Parameter Logistic Model.

The mathematical expression for the three-parameter logistic model is

eba(0-h)

R =c +(1—Ci)w

i=12,..,n, (3.5)

where ¢; is called the guessing parameter which provides nonzero lower asymptote for
the ICC and represents the probability of examinees with low ability answering the item
correctly. It isimportant to note that by definition, the value of ¢ does not vary as a
function of ability level in this equation. Thus, the lowest and highest ability examinees
have the same probability of answering the item correctly by guessing.

Due to each model’s different properties and assumptions, the selection of the model
should be determined by the primary purpose. The Rasch model has the advantage of

estimating the fewest parameters (Davis, 2002). In addition, the Rasch model isrobust in
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that it is capable of calibrating data containing substantial variationsto theitem
discrimination parameters (Linacre, 2002) and other deviations from model assumptions
(Fisher, 1993; Linacre, 1995). On the other hand, the 3PL model which includes the
possible potential for guessing on multiple-choice questions with guessing parameter ¢
requires the most parameter estimation and “the pseudo-guessing parameter is especialy
difficult to estimate because of sparse data conditions at low ability level” (Davis, 2002,
pl4).

One of the important advantages of IRT models over CTT isthat each item has an
item information function /(8) that can be transformed into an item information curve

(I1C) which reflects the amount of information an item provides for different latent trait

(Embreston & Reise, 2000). The item information function can be expressed as.
level

__ RO
Ii(e)_Pi(H)Q(H) 1=12,..n, (2.5)

where P (9) equals the probability of correctly responding to item i givend, P (8) isthe
first derivative of P (8) with respect tod, andQ. (9) isequa to(1- P (0)). The
information functions can be used to select test items on the basis of ability level.

Hambl eton, Swaminathan and Rogers (1991) stated the amount of information provided
by atest at isinversdly correlated to the precision with which ability is estimated at that
point:

~1
SE(9) = o (2.6)

where SE(é) is called the standard error of estimation and | (&) represents the test

information function (which is the sum of al item functions) at 6
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How much information an item can provide completely depends on the item
parameters. In the Rasch and the 2PL models, the item provides the maximum
information atb. , so those examinees whose ability is equal to the item difficulty
parameter receive most information from the item. In the 3PL model, because of the
effect of the guessing parameter, the maximum amount of item information occurs
dightly to the right of b. depending on the value of the guessing parameter (Embreston &
Reise, 2000). The amount of information an item can provide is associated with item
discrimination parameter. The higher the discrimination, and the more information the
item provides. In the 3PL model, the guessing parameter has a negative effect on the
information the item gives (Davis, 2002).

2.2 Methods of Parameter Estimation

There are two main techniques of estimating parameters for binary response IRT
models: the maximum likelihood estimation and the Bayesian estimation. The maximum
likelihood is the most popular method to estimate item parameters for IRT models, while
Bayesian estimation method can be more effectiveif prior information for item
parameters is available (Embreston & Reise, 2000). A review of three maximum
likelihood methods: @) joint maximum likelihood (JML); b) conditional maximum
likelihood (CML); ¢) marginal maximum likelihood (MML); and d) Bayesian estimation

methods in the literature will be discussed in this section.
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Maximum Likelihood Function

Maximum Likelihood estimation is a popular statistical method used to estimate
the model’s parameters through ajoint probabilistic function of observed data. The
likelihood function is equal to the product of probabilities associated with each item
responseif the local independenceistrue (Si & Schumacker, 2004). Let us use 2-PL IRT
asan exampleand vy, Y.,,...Y, denote the binary responses of theith individual tok test
items, a=(a,,a,...a,) ahd b = (b,,b,...b, ) bethe vector of item discrimination and
difficulty parameters respectively. The probability of obtaining a response vectory given

0;,aandb for ithindividual is given by

Pr(Yil = yil""’Yik|9i ,a,b) =

Py

Pr(Yij =Y |‘9i a, b)

f(a,0,-b,)" [i- f(a,6, - b)), 2.7)

-

J

Il
uN

If the responses of each of the nindividuals to the test items are assumed to be

independent, then the likelihood function for al individuals will be

L(6,a,b) = Hf[ f(a,0,-b)" [i- (a6 -b,) [, 2.8)

21 -1
This function represents the likelihood of obtaining the observed data as a function
of the model parameters. By applying alogarithm to L , maximum likelihood estimation is
used to calculate the value of the parameters that maximize the value of L by solving the
first derivative likelihood equation = 0 (Si & Schumacker, 2004).
The Newton-Raphson algorithm is an iterative process used to find a solution for
likelihood equation. Si and Schumacker (2004) described:

The Newton-Raphson algorithm starts with an initial value for the estimate of the
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parameter in the model. The number of items correct istypically used for the ability
estimates and item statistics are used for item estimates. In each iteration, a new estimate
for the parameter is generated based on the estimate obtained from the previous iteration.
The difference between the new and old estimates are calculated for each iteration. The
iterations continue until the difference is smaller than a pre-set minimal value, then the
estimates has converged and is maximum likelihood estimate of the parameter. (p.154-
155).

Joint Maximum Likelihood Estimation.

JML is one of the most widely used parameter estimation methods and both item and
ability parameters are estimated simultaneously in this method ( Lim & Drasgow, 1990).
There are two steps for IML. Initia values for ability parameters must be selected on the
basis of examinees' test scores and used as known ability values to estimate item
parameters in the first step; and then in the second step, item parameters are treated as
known to estimate ability parameters. This two-step processis stopped until thereisno
difference between two-step estimations (Hambleton, Swaminathan & Rogers, 1991).

Even though JML is easily programmable, applicable to many IRT models, and
efficient in computation (Embreston & Reise, 2000), there are severa disadvantagesto
JML. First, it does not produce consistent item and ability parameter estimation for the
2PL or the 3PL IRT models because an increase in sample size does not result in
improved estimations. Second, ability parameters cannot be estimated for perfect or zero
scores. Third, parameter estimates for items answered correctly by all examinees are not

available. Fourth, JML isvery sensitive to item parameter fixed initial values when
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applied to the 3PL model (Hambleton, Swaminathan & Rogers, 1991).

Conditional Maximum Likelihood Estimation.

The CML estimation method, compared with IML, produced more consistent and
efficient parameter estimates by removing the trait level parameters from the likelihood
equations (Si & Schumacker, 2004). CML can be implemented only if a sufficient statistic
isavailablein the data for ability and item parameters. Embreston and Reise (2000)
explained that “A sufficient statistic means that no other information is needed from the
data for estimating the parameter” (p. 215). In the 1-PL Rasch model, the item total scores
are sufficient statistics for the ability parameter and the number of correct responses to an
item is a sufficient statistic for the item difficulty parameter (Si & Schumacker, 2004).
CML can be only applicable to the Rasch model because of this sufficient statistic
condition.

While CML has the advantages of no requirement for ability distribution, more
reliable parameter estimations compared with JML, its several disadvantages are
discussed here. First, CML cannot be applied to the 2PL and 3PL models and this limits
its applications. Second, estimations for examinees with extreme scores (zero or perfect)
and these scores have to be removed prior to estimation. Third, CML losesits accuracy in
estimating parameters for along test (Embreston & Reise, 2000).

Marginal Maximum Likelihood Estimation.

Dueto CML’s limitation that can be only applied to the Rasch model, an aternative
estimation method for the 3PL and 2PL models devel oped by Bock and Lieberman (1970)

ismarginal maximum likelihood estimation (MMLE). The most important advantage of
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MML over CML and JML isthat the ability parameter is treated as a random nuisance
parameter can be removed by integrating over ability distribution (Lord, 1986; Bock &
Aitkin, 1981; Harwell, Baker, & Zwarts, 1988). More formally, by definingé to represent
ability level and y; to denote theith examinee’s responses to test items, then the likelihood
function for individual i is:

L () = [ Pr(y, 16)f (6)do,
L, (y,) isafunction of the item parameters because the ability parameter 6 has been
integrated out.

Although MML method by Bock and Lieberman (1970) can be used to estimate
the 2PL and 3PL model parameters, this approach is computationally expensive and it
was not feasible for very long tests (Si & Schumacker, 2004). Bock and Aitken (1981)
used the EM agorithm for MML to estimate item parameters. The EM algorithm involves
an iterative two-stage procedure for finding maximum likelihood estimates (Harwell,
Baker , & Zwarts, 1988): an expectation (E) stage and a maximization (M) stage.
Embreston and Reise(2000) explained that in the expectation stage, the expected numbers
of the examinees at each quadrature point and the expected numbers of examinees
passing each single item are computed, and then these expected values are used to
execute the regular maximum parameter estimations in the maximization stage. These
parameters are then used to determine the distribution of latent variables in the next
expectation step. This repetition stops until the estimates converge. The Newton-Gauss
method is used to solve the maximum likelihood equation and find the standard errors(Si

& Schumacker, 2004).
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Compared with other maximum likelihood estimation methods, MML has several
advantages (Embreston & Reise, 2000). First, it can be applied to all types of IRT models
and any length of tests. Second, estimates for perfect and zero scores are available and
thus no loss of information. Third, the estimates of item standard error in MML are good
approximations of expected sampling variance of the estimates. Fourth, the item
parameter estimate is completely independent of the ability distribution, so MML can
obtain reliable estimates even for small sample sizes and short tests (Si & Schumacker,
2004; Harwell, Baker , & Zwarts, 1988). However, the main disadvantage associated with
MML estimation are its complicated computational process. MML computationa process
has created a huge problem for computer programming; another disadvantage of MML is
that ability distribution has to be assumed normal if there is no prior ability distribution
information available. (Embreston & Reise, 2000; Si & Schumacker, 2004; Baker, 1992).
Bayesian Estimation

Bayesian model parameter estimation for IRT modelsis similar to marginal
maximum likelihood estimation, however, Bayesian method requires prior information of
item parameters (Johnson, 2007). The posterior distribution is obtained through the
product of the likelihood function and prior distribution (Lim & Drasgow, 1990). It can be
expressed for the 2-PL model as:

P(0,a,b/y) o« L(y/08,a,b)P(8,a,b), (2.9

P(0,a, bly) represents the distribution of parameter estimates based on the item response
vector y (the posterior distribution). The P(0,a,b) isthe prior distribution of parameter
estimates. L(y/0,a,b) isthelikelihood function. Bayesian methodol ogy uses equation
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(2.9) to estimate parameters (Si & Schumacker, 2004).

There are two types of priorsin terms of their distributions: noninformative priors
and informative priors. A noninformative prior distribution has alarge variance and has
little effect on the parameter estimates, while an informative prior distribution has a small
variance and can estimate parameters close to the mean of the prior distribution and thisis
the main reason why informative priors are favored in some cases (Sheng, 2008; Si and
Schumacker, 2004).

The most important advantage of Bayesian estimation is that the parameter estimates
can be controlled in a reasonabl e range because item parameter prior information is used
(Lim & Drasgow, 1990). On the other hand, the major problem associated with Bayesian
model estimation occurs when prior information is incorrect and this may cause
systematic bias to item parameter estimates (Baker, 1987; Lim & Drasgow, 1990; Mislevy,
1986).

2.3 Guessing Parameter and Latent Ability
Approaches to the Guessing Effect in CTT

Ever since multiple-choice tests became popular, there has been concern over the
guessing effect on test scores. In the beginning, score increases due to guessing were
deemed as being dishonest even though these score components usually reflect partial
knowledge-the ability to eliminate some wrong options before guessing. Some educators
even think guessing on test items has caused the primary psychometric problem since it
increases the error variance of test scores, thereby reducing their reliability and validity.

Hambleton and his colleagues (1992) indicated:
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Theinclination to guess is an idiosyncratic characteristic of particular low ability
examinees. Lucky guessing is arandom event. Neither feature contributes to valid
measurement of alatent trait. Parameterizing guessing penalizes the low performer with
advanced specia knowledge and also the non-guesser. Rasch flags lucky guesses as
unexpected responses. They can either be left intact which inflates the ability estimates of
the guessers, or removed which provides a better estimate of the guessers' abilities on the
intended latent trait. In practice, 3-P guessing parameter estimation is so awkward that
values are either pre-set or pre-constrained to a narrow range (p.215).

Asaresult, many educators try to avoid the use of multiple choice tests and some
educators admonish students against guessing. However, multiple-choice tests have
become inevitably dominant in mass testing because of their advantages of broader
coverage of instructional content, reliable scoring, and easily calculated item statistics.
Hence, neither admonishment against guessing nor avoidance of multiple-choice tests
was an effective approach to the guessing problem.

Since the 1920s, when multiple-choice tests came into widespread use, there has
been considerabl e research conducted to reduce the effects of guessing on test scores.
Since guessing is not directly measured in CTT, much of theresearchin CTT on
corrections for guessing has focused on correction formulas scoring. The most widely
used correction formulais based on the assumption that the examinee either has the
complete knowledge or know nothing about the item, and he either skips the item or
makes a random guessing. Therefore, wrong answers are deemed as the result of unlucky

guessing; and then the number of wrong answers can be used to predict the number of
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lucky guesses, which need to be deducted from the examinee's score (Rogers, 1999).

The standard correction for guessing is given by the formula:

w
=}

where Ris the number of right answers,W is the number of wrong answers, and Aisthe
number of aternatives for each item.

Thorndike (1982) devel oped a corresponding correction that can be applied to the
item difficulty index or p — vaue (the proportion of examinees answering the item

correctly). The corrected p -valueis given by the formula

where pistheitem difficulty index and p,, the proportion of examinees attempting the
item who answered it incorrectly. A problem with this correction is that when the
proportion of correct answers falls below the chance level, the corrected difficulty index
can be less than zero.

Rowley and Traub (1977) criticized the formula because it ignored the possibility
that the examinee can use partial knowledge to eliminate some distracters and is more
likely to get an item right than if the examinee guesses randomly, so the formula scoring
discriminates against the examinee who omitsitems. It has been discussed that informed
guessing increases true score variance rather than error variance and thus increases the
validity of scores (Mehrens & Lehman, 1987). Moreover, when examinees respond to an
item on the basis of partial knowledge, their test scores are based on a greater sample of

content, and hence may have better validity.
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Rogers (1999) indicated that another criticism about the appropriateness and
effectiveness of formula scoring was that: (@) it is based on fal se assumptions about
examinee behavior, and (b) it disadvantages examinees who exhibit the reluctance to take
arisk to guess. With respect to the first point, critics argue that there are no such ignorant
examinees that they will not attempt or be completely unable to rule out asingle distracter
on alarge number of questions, that is, examinees who have no knowledge to answer the
guestion rarely guess randomly. Thorndike (1982) demonstrated this point by the example
of aset of verbal analogy items from a published test, where the most popular distracter
was chosen by about 20 per cent of examinees and the least popular by about 4 per cent of
examinees, therefore, the effort of “correcting for guessing” islargely useless.

With respect to the second point, there is a considerable body of research which
shows that the extent to which examinees comply with the instructions associated with
formula scoring (i.e., the instruction to omit rather than guessing randomly). This reflects
apersonality trait which may bias against some examinees (Diamond & Evans, 1973;
Rowley & Traub, 1977). Examinees who are more willing to take risks will not be
penalized on average, because at most they will lose the points gained by randomly
guessing. The research in this area indicates that the tendency to omit items under
formula scoring directions is personality trait which is more reliably measured by
multiple choice tests than the cognitive trait of interest (Rogers, 1999).

Even though the formula scoring has its assumption problems, some educators are
in favor of it because it increases the reliability and validity of test scores (Mattson, 1965;

Lord, 1975). Prihoda and Pinckard (2006) compared uncorrected and corrected for
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guessing scores on multiple-choice examinations with scores on short-answer
examinations for dental students; they found that students guessed at alevel close to
random guessing and correcting for guessing increased the validity in multiple-choice
tests and they suggested that instructors using multiple-choice tests should either correct
for guessing or take the effect of guessing into account when establishing the criterion for
passing grades at different levels.

A second argument in favor of formula scoring is based on empirical studies that
formula scoring has an advantage of equating the mean scores of randomly equivalent
groups of examinees who have been given different instructions regarding guessing.
Angoff and Schrader (1984) compared the mean number-right and formula scores of
groups of examinees and found that while the means for two groups of number-right
scores were significantly different, but there was no difference between the means for two
groups of formula scores.

IRT Approaches to the Guessing Effect

Item response theory provides an aternative approach to the problem of guessing.
Under IRT, an examinee's observed performance on atest item is assumed to depend on
the latent trait level and properties of the test item and the probability of a correct
response to an item as afunction of person and item parameters; the examinee ability
estimate is not a simple transformation of number-correct test score; it is estimated in the
presence of item parameters, thus taking into account the properties of theitem.

The most commonly used IRT model integrated with guessing is 3-paramter

model assuming that examinee’s probability of a correct response on atest itemis
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affected by three characteristics of the item: its difficulty, discrimination, and a guessing
factor which reflects the probability that a very low ability examinee will answer the item
correctly. Items differ in their c-parameters due to their difficulty and the attractiveness
of the distracters.

Although the c-parameter takes into account the ability of the examinee for the
adjustment of probability of guessing (that is why c-parameter estimate is usually higher
than the probability of random guessing), a uniform nonzero value of guessing parameter
applied to all examinees should be the biggest concern for educators because the
precision of estimation of ability isreduced and error variance is increased. As a matter of
fact, thec-parameter is always poorly estimated even though the data for three-parameter
model have large samples of examinees and long tests. For this reason, many practitioners
choose less-restricted one-parameter or two-parameter model which is easier to fit to test
data, making no allowance for guessing behavior. If guessing behavior isafactor in test
scores, the ability of the examinee will be overestimated (Rogers, 1999).

Multiple choice items are subject to guessing which can cause irrelevant variance
and increases measurement error, So some researchers have engaged to solve this problem
by two different methods: oneisto get rid of random guessing effect on multiple choice
items; the other is to integrate guessing parameter with latent ability into IRT models.

Waller (1973) introduced the Ability Removing Random Guessing (ARRG) model to
deal with the problem by focusing on the interaction between the person and the item. He
simply omitted those item-person interaction for estimation of € to eliminate the effect of

random guessing on any particular item by including only items for which essentially
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random guessing is unlikely to occur. The following is his model:

Pij = 1 Pij > Pc'
1+expla; (b, - 6)]

where the ARRG cutoff value P, islessthan or equa to 1/ A, A, is the number of
aternativesfor item j. The model divides the itemsinto two groups for each person:
those items whose P, is greater than P_, and those items whose P, isless than or equal to
P.. The ARRG model uses only those items from the first group to estimate a person’s
ability.

Even though the ARRG model estimates a person’s ability on the basis of fewer
items than two-parameter model does, the resulting estimated precision has been found to
increase (Waller, 1973) because the noise caused by random guessing is removed for the
estimation of item parameters. However, when the ARRG model was compared with
three-parameter model, the ARRG model failed to produce better fit to empirical data. He
also indicated that the three-parameter model using the individualized method to estimate
guessing parameter produced a better fit to the data than did the three-parameter model
using fixed value for guessing parameter.

Cao and Stokes (2008) devel oped three Bayesian IRT guessing models to
accommodate different guessing behavior: the threshold guessing model, the difficulty-
based guessing model, and the continuous guessing model. The threshold guessing model
assumes that some examinees answer questions on the basis of their knowledge up to a
certain test item, and guess randomly thereafter. An item location threshold for each
examinee has to be specified for this model. The difficulty-based model assumes that

some examinees answer relatively easy items on the basis of their knowledge and guess
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randomly on relatively difficulty items. The continuous guessing mode! is constructed
under the assumption that |ow-motivated examinees use less effort to answer test items
than motivated examinees, and thus they are more likely to answer questions wrong.

A few critical limitations for Cao and Stokes' guessing models must be
highlighted here: 60% of the examinees are guessers under the threshold guessing model;
the probability of guessing is equal to .25 (assuming each question has 4 options), which
means once examinees guess on test items, they guess randomly; these models can be
applied to only low-stake tests.

Martin, del Pino, and De Boeck (2006) developed more reasonable models to
integrate ability with guessing parameter. They ended up with only one reasonable mode!:
P(Y; =D10) = p; + (1-py)9;

Thefirst isthat the p -process comes first and that, depending on the result, theg —

process follows. This would mean that the examinee first works on the question with a

probability of p; to answer it correctly; if the examinee could not find correct answer, he

or she would make a guess with a success probability of g; . The guessing probability of

g, is defined by:

g; (Ylj =1]6) = e(a(ei+7j) ,
14 e “%*7)

whered, ~ N(0,5?) isalatent ability of the examineg; y, is the guessing parameter of

item j on the logistic scale, corresponding to a person with average ability; and « isthe

weight of the ability in the guessing component.

Martin, del Pino, and De Boeck (2006) showed, by using the previous ability-

based guessing model, that the ability contributed the chances of correct guess. Even
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though the number of the replications was very small, the results of parameter recovery
from the simulation study were very consistent and accurate. When this ability-based
model was applied to two real tests, language and mathematics, ability played much more
important role in making a correct guess on the language test than on the mathematics test.
Martin, del Pino, and de Boeck (2006) explained the difference by giving two reasons: a)
mathematics is perhaps more like an know all or know nothing matter; and b) the
examinees were not motivated to guess because of higher non-response rate for the

mathematics test.
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CHAPTER THREE
METHODOLOGY
3.1 The Proposed Models
The guessing parameter of a conventional 3-PL IRT model has the same value for

every examinee regardless of their ability, which means all examinees have the same
probability of guessing the same item correctly. The purpose of this study isto develop
new IRT models in which the guessing function is associated with the examinee’s latent
trait and item characteristics and the proposed IRT models based on the conventional 3-
PL IRT model (Birnbaum, 1968) should integrate the examinees’ ability and item
parameters into the guessing function.

The proposed models associate guessing with examinees abilities and the number of
multiple choice alternatives and item parameters; it can reflect that the higher ability
examinees have higher probability of guessing the same item correctly.

Assumptions for the Proposed Models

The proposed models were developed on the basis of the following assumptions:
First, these new models are applied to achievement, high-stake, and licensure multiple
choice tests with no penalty for wrong answers; if the examinee cannot find correct
answers to test items, he/she will guess at those items. Second, all examineestry to use
knowledge to answer test questions first and if they cannot find correct answers they will
apply guessing strategies to test items, meaning they will use their partial knowledge to
eliminate some alternatives to increase the probability of guessing items correctly. Third,

the probability of guessing correctly isrelated only to item difficulty and discrimination
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and the examinee's ability; higher ability examinees have higher probability of guessing
correctly the same item correctly than lower ability examinees. Fourth, the highest ability
groups are engaged in some level of guessing, no matter how small. Freedle (2006)
examined hundreds of test items for low ability students and found that none of the data
fit the classic definition of truly random guessing data; he also found that 6% of the
students who earned 600 on SAT verbal part were engaged in guessing. Fifth,
unidimensionality and local independence assumptions are also applied to the new
models. Sixth, the guessing probability cannot be greater than 0.5 because the highest
probability of successful guessing is between two options if the examinee does not know
the correct answer after eliminating other options, he or she has to make a random guess
between the remaining two options. The following equation is the general equation for all
IRT models
R (Y =116,,a;,b;) =R +(1-F;)a(4 | a; b)) (3.1,

where the guessing probability distributiong(6;]a;, b;) is associated with ability and item
parameters.
The Proposed Models with Guessing Function

Let 8; = 6 (for convenience reason only) and M is equal to the number of options for a
multiple choice item. To control the probability of successful guessing between the

probability of successful random guessing (1/M) and the highest probability of guessing

@
correctly (0.5), alogistic function g(@) = fﬁ was used to start to develop the
+€

guessing function first.

If g(&) need to be under 0.5, then
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) )
Let =—
9(9) 1+ 29

We know the probability of successful guessing is inversely apportioned to item difficulty
and its relationship with discrimination parameter should be just like the probability of

answering correctly in 2PL IRT model, so we can change the guessing function into

2(0b)
9(0) = ———5
1+ 263" (3.2)

To make the random guessing probability equal to 1/M, 1/M constant should be added to

the guessing function 3.2. To make the highest probability of guessing correctly equal to

05, letlimg(6) = 05-1/M =1/2-1/M =%, the coefficient for €™ in the

denominator has to change into l\/?M

5 (M 23)

Model 1. The proposed Rasch model with guessing function

(0-b;) (0-by)
e 1 1 e
P (Y. =1|6,b.) = + — 4+ , 3.3
0 =10 = o+ (g 14 M )e(‘”’”) 7
M -2
1 g™
9(6) = >N : (34)
1+ ()™
M -2

where M is the number of optionsin any multiple choice item and b, isthe jth item

difficulty parameter.

Mode 2. The 2PL IRT model with guessing function

eaj (6’7bj) 1 1 eaj (Q*bj)
P (Y, =1|6,a,,b,) = + —+ , 3.5
0% =116,2,.5) 145 (1+ ea'(e_bl))(l\/l 2M ajw—bj)) (39)
1+(M 2)e

where g;is the jth item discrimination parameter and its the guessing function is:
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£2(0-D)
1+ (72'\/I )e® ©5)
M-2

g(6) :ﬁ+ (3.6)

Properties of Guessing Function.

Property 1. The probability of guessing an item correctly is associated with the
examinee's ability (8) and the item difficulty (b) and discrimination (a) parameters. For
the Rasch model, the probability of guessing is associated with the examinee's ability and
item difficulty only; for the 2PL model, the probability of guessing is associated with the
examinee's ability and item difficulty and discrimination. Figure 1 is 3D graph for
guessing function 3.4 with M=4, the graph shows that when the difficulty b increases the
probability of guessing correctly at the same ability level will decrease; while the
probability of guessing correctly will increase at the same difficulty value when the

ability level 6 increases.

-5 0 5
]

Figure 1. Guessing function 3D graph (M=4) for the Rasch-GuessingModel.

Property 2. The minimum of probability of guessing is equal to /M (M isthe
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number of options) and the maximum of probability of guessing can go up to 0.5 asthe

following equation and figure 2. (M=4):
Igim g(@) =05 (3.7)

probedility of guessing coredly
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Figure 2. The guessing function for 2PL IRT model graph (a=1.5, b=2.0).

Comparison of Proposed Models with 1PL and 3PL model
probetility of suooess
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Figure 3. ICC for the Rasch model (dashed line) and the Rasch-Guessing model
(continuous line).
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For the Rasch model, the probability of successis always higher for the Rasch-
Guessing than the Rasch model for any ability 8 because of guessing function. This can
be seenin Figure 3.

Compared with the 3PL model, the 2PL-Guessing model aways has higher
probability of success than the 3PL model, independent of &, because the proposed
model guessing can reflect that higher ability examinees have higher probability of
successful guessing. Two ICC merge at two ends (extremely high ability and low ability),
thisindicates that when extremely low ability examinees guess, they make random
guessing and the probability of successis equal to 1/M; while as extremely high ability
examinees amost don’t guess, so two ICC merge at high end. The maximum contribution
of guessing to the success probability isto be found somewhere between two extremes of
ability scale. For high ability examinees, the knowledge exclusively contributes to
success, but for low ability examinees, the guessing does not help too much to success.
This can be seen in Figure 4.

probehility of suooess
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Figure 4. ICC of the 2PL-Guessing model (continuous line) and 3PL model (dashed line).
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3.2 Generating IRT Parameters

In this study, In order to make the model more general to the real achievement
tests, high-stake tests, or licensure tests (examinees will guessing questionsif they do not
know correct answers without being penalized). Item difficulty and discrimination
parameters were generated on the basis of previous empirical studies and real-world test
parameter ranges.

Ability and Difficulty Distribution

To avoid the deviation from the unidemensionality assumption, item difficulty
parameter or person ability parameter distributions are expected to be standard normal.
IRT programs like BILOG or SAS require person ability distribution to be standard
normal (Misvey & Bock, 1990; Pelton, 2002).

Allen and Yen (1979) suggested that item difficulty between 0.3 and 0.7 can provide
the maximum information to distinguish examineesin CTT. This difficulty range will be -
0.52t0 0.52 if converted to normal standardized score. A high-stake test used to select
graduate students for a university that admits only 10% of applicants should include
extremely difficult items such as difficulty value is greater than 1.7 (or 0.05in CTT).

In this study, in order to make the models more general to the real tests containing
both easy items and extremely difficult items, the difficulty parameter values were
focused on arange from -0.7 to +2.0 with normal distribution.

Discrimination Parameter Distribution
The Rasch model assumes equal item discrimination parameter while the 2PL and

3PL models assume discrimination parameter varies, so it is appropriate to assume that

36



discrimination parameter might be truncated normal. However, those items with negative
discrimination are aways removed from ability tests because if the probability of
answering an item correctly decreases as examinee ability increases, there must be
something wrong with the item. It is hardly to see the discrimination parameter is greater
than 2, so the normal range for discrimination parametersis usualy (0, 2) (Hambleton,
Swaminathan & Rogers, 1991).

In this study, the discrimination parameter values were narrowed in arange of 0.4 to
2.0, because too low or too high discrimination values are either not practical or not stable
to estimate. The discrimination parameters were generated from (0, 1) uniform
distribution.
Pseudo-guessing Function

The guessing probability can go as high as 0.5 because some examinees can rule out
some distracters from partial information ( Kubinger & Gottschall, 2007). The probability
of guessing an item correctly is determined by the examinee’s ability and item parameters
only. The guessing function should reflect the assumption that the higher ability persons
have the higher probability of guessing the same item correctly. The highest probability of
guessing cannot be greater than 0.5; otherwise, it would not be called knowledge-based
answer instead of guessing. The relationship between probability of guessing correctly
and the examinee's ability islogistic.

3.3 Data Simulation Design and Computer Program
A SAS program was used to generate simulation data for this study. The first step of

the simulation used the random number seed RANNOR to generate item parameters for
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20-item test, 30-item test, and 40-item test. These item parameters were treated as
independent variables and parameter values were fixed for different lengths of tests. The
second step of the program started with generating ability parameters which were
normally distributed with mean equal to zero and standard deviation equal to 1. The
probability of success for each examinee on each item was calculated in terms of
proposed model functions and 3PL model with previoudly fixed item parameters and
ability parameters. The calculated probability was compared with a random number
drawn from uniform distribution (0, 1) produced by RANUNI to generate dichotomous
response data sets. If the probability calculated was greater than the randomly drawn
number from the uniform distribution, the response was assigned 1 as a correct answe; if
the probability calculated was less than the randomly drawn number from the uniform
distribution, the response was assigned 0 as an incorrect answer.

This study employed a design of one, two, and three item parameterization models
(the Rasch-Guessing model, the 2PL-Guessing model, and the 3PL model) with normal
ability distributions. 10 sets of dichotomous item responses of 1,000, 500, 200, and 100
subjects for 20 items, 1,000, 500, 300, and 200 subjects for 30 items, and 2,000, 1,000,
500, 300 subjects for 40 items were simulated using SAS computer program. Therefore,
the total 3x12x10 different sets of dichotomous item responses were generated. These
sets of item response data were used to estimate item parameters given the Rasch and the
2-PL IRT models with guessing function using SAS NLMIXED computer program
described in the next section. The 36 combinations for two models are shown in Table 3.1

and 3.2.
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Table 3.1

Data Smulation Design for the Rasch-Guessing Model

The Number of Test Items

20 30 40

The Number of Examinees

100 200 500 1000 100 200 500 1000 100 200 500

1000

Rasch-
Guessing

Table 3.2

Data Smulation Design for the 2PL-Guessing Model and the 3PL Model

The Number of Test Items

20
The Number of Examinees
100 200 500 1000
2PL-
Guessing
3PL

3.4 Number of Replications in Monte Carlo Estimation

In IRT Monte Carlo research, the number of replicationsis driven by the purpose

of research (Harwell, Stone, Hsu, & Kirisci, 1996). If asignificance test for a parameter

recovery study is necessary, at least 500 replications are needed. If the purpose of study is

to compare different methodol ogies, a small number of replications such as 10 are

sufficient. The ultimate purpose of this study is to compare the 2PL-Guessing model with

the 3PL model on parameter recovery and goodness-of-fit for observed data, too many
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replications are not necessary.

This study employed 10 replications for each combination of conditions based on
suggestions from these Monte Carlo studies because of slow computer running time for
SAS program. In the each of the 10 replications of data simulation, the same random
seeds were used to generate the random normal distribution ability parameters for 1000,
500, 200, 100 examinees was kept constant and the 10 random seeds that was used to
generate the item response data was changed in each replication so that 20 item response
data were different but with the same sample of examinees (Si & Schumacker, 2004).

3.5 Criteria to Evaluate the Proposed Model

The parameter recovery comparison between the 2PL-Guessing model and the
3PL model was evaluated by three criteria. First, averaged estimated parameter values
across 10 replications were correl ated with true parameter values to determine how well
the proposed models recovered those parameters. However, the correlation served as a
relative indicator of accuracy because it only reflects the rank ordering of variables
correlated (Harwell, Stone, Hsu, & Kirisci, 1996). The higher the correlation is; the better
the parameter recovery will be.

Second, aroot mean squared deviation (RMSD) of parameter estimate was
calculated across 10 replications for each of the study design. The RMSD indicated the
variance of parameter estimate across replications, and thus serves as an indicator of
accuracy; the smaller the RMSD is, the more accurate the estimate will be. The RMSD

was calculated by the following formula:
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RMSD = /z@ (3.8)

RMSD = R LA (3.9)

where n = number of replications
a, = the true discrimination parameter value of the jth item
&, = the discrimination parameter estimates of jth item fromnreplications
b, = the true difficulty parameter value of the jth item
Bj = the discrimination parameter estimates of jth item fromnreplications
Third, estimate bias is the mean difference between the estimated and true parameter
value for an item across al replications. The smaller bias differences are, the closer the
estimates are to the true parameter values. Positive bias indicates overestimation and

negative bias indicates underestimation (Dawber, Roger, & Carbonaro, 2004). Biasfor g

and b; can be calculated in this study by the following:
— _ 10
Biasa, =4, —a,,whered, = > a, /10
=1
= = 10
Biasb, =b, —b,, whereb, :Z(bjr)llo
r=1

3.6 Test Length

In psychological and educational assessments, the short (20 items) and moderate

(40 items) exam lengths are most frequently used (Dawber, Roger, & Carbonaro, 2004;
Seong, 1990; Yen, 1987); therefore, three test lengths were employed in this study: two
short exams of 20 and 30 items, a moderate exam of 40 items. The number of aternatives
in each item was set to four in this study. Only 20 item tests were simulated to compare

the 2PL-Guessing model with the 3PL model.
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3.7 Parameter Estimation Methods

MML estimations were used to estimate item difficulty and discrimination
parameters for the Rasch-Guessing and the 2PL-Guessing models. Under the MMLE
approach to item parameter estimates, the examinees are treated as a random sample
which is drawn from a population with ability distributed on a density function and items
are treated as afixed effect and abilities as arandom effect (Baker & Kim, 2004). The
most important part for MMLE is the integration over the ability distribution and the
ability parameter can be removed from the likelihood function, so item parameter
estimates are independent of each examinee’s ability, thus producing more reliable item

parameter estimates.

According to Bock and Lieberman’s (1970) solution, et item response vector=;
conditional on the examinee's ability #; and the item parametersing, g(¢; | t) isthe
probability density function of ability in the population of examinees with parameter
vector T, and P(Y)) :_[P(Yj 16,,€)9(0, | t)dg, (Baker & Kim, 2004). Because the
integration is across the ability distribution, this expression isthe margina probability of

item response vector Y in terms of the item parameters and the population ability density.

The marginal likelihood function is
L= HlP(Y]. ), (3.8)
j=

so, the logarithm of Lis
N

logL =) logP(Y)), (3.9)
j=1

and, to find the marginal likelihood eguation for theithitema, take
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0
—(logL) =
6&(09)

then, the marginal likelihood function for discrimination parameter can be written as the
following (the detailed procedures for the deduction of margina maximum likelihood
function see Appendix A):

Y, ~P(6,) R,
—(I ogL) = ZJ[P(H 06 g P 1Y, 801,

where Q;(6;) is the probability of incorrect answer and is equal to 1-P;(4,) which isthe
probability of correct answer to theith item at the ability level of 6,. y; isthe jth
examinee's response to the ith item and is equal tol for correct response or O for incorrect
response. The P(6]Y; &,t) is the probability of an examinee having ability 6, along the
conditional on the item response vector Y, the item parameter in &, and the population
distribution of ability . It is also called the posterior ability distribution.

The marginal likelihood equation for discrimination parameter & is:

yl] P(a) i( )
—(I oglL) = Zj[p(g Q.0 )][ o =IIP©; 1Y;.8,7)]1d6, (3.10)

Thelikelihood equation for difficulty parameter b, is:

0 y; —R(6;) . oR(9))
a—bi(|9) ZI[P(Q)Q(Q )][ b 1IP(9; 1Y;,8,1)]do, (3.11)

3.8 Item Information Functions
Birnbaum (1968) has defined the test function as

0) = Z”: HOk

3.12
ZR©OQ O 842
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whereP (9) is obtained by the ICC model function at@and P (@) = % . Theright side of

equation 3.12 can be decomposed into the contribution of each item to the entire test
information, so the amount of information each item contributes to the test information is
given by

_ RO

(6)= P@O)Q(®)

(3.13)

Inspection of equation (3.13) indicates that the test information is simply the sum of the
amount of each item information at the ability level of interest. Figure 5 shows the item
information functions for three items in which continuous line represents item 1 with
a=0.5and b =-1, dashed line representsitem 2 with a=1and b = 0, and dotted line

representsitem 3with a=1.5and b=1.0.
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Figure5. Item Information Functions for three items

Figure 5 highlights severa important points: (a) the maximum information provided
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by an item is at its difficult level equa to ability level, (b) the higher discrimination
parameter is, the more information an item will provide, and (c) an item with low
discrimination power is amost useless statistically in atest.
3.9 Item Parameter Estimation Computer Program

The SAS PROC NLMIXED was used to estimate item parameters on the basis of
generated dichotomous response data sets. PROC NLMIXED fits nonlinear mixed
models by maximizing an approximation to the likelihood integrated over the random
effect. PROC NLMIXED enables you to specify a conditional distribution for your data
(given the random effects) having either a standard form (normal, binomial, Poisson) or a
general distribution that you code using SAS programming statements. Fixed effects were
item parameters and random effect was ability in this study.

SAS PROC NLMIXED uses Gaussian quadrature to do the integral approximation and
uses dual quasi-Newton algorithm as the optimization method to implement maximization.
Pinheiro and Bates (1995) proved that adaptive Gaussian quadrature is the best method
after they compared several different integrated likelihood approximations. Successful
convergence of the optimization problem results in parameter estimates and their
approximate standard errors based on the second derivative matrix of likelihood function

(SAS/STAT, 2008).
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CHAPTER FOUR
RESULTS
The purpose of this study was to compare the accuracy of parameter estimates for the
2PL-Guessing model with the 3PL IRT model and investigate how well the Rasch-
Guessing model can recover parameters. Three criteriawere used to determine how well
the new models’ item parameters were recovered, correlation between true parameter
values and estimated parameter mean values across 10 replications for four different
sample sizes, the root mean squared deviation (RMSD) and bias. The higher the
correlation is and the smaller the RMSD is, the more accurate the estimate will be.
Correlations and RMSD for parameter estimates were tabulated for each study design.
The Rasch-Guessing Model Parameter Recovery Results
Item difficulty parameter estimates for the Rasch-Guessing model were run viaSAS
PROC NLMIXED under sample sizes of 100, 200, 500, and 1000 and test length of 20,
30 and 40 items with 10 replications. Estimated difficulty parameter values for each
replication were saved and then the mean of each item difficulty parameter estimated was
calculated across 10 replications. The calculated means were used to correlate with their
corresponding parameter true values. The results of these correlations were given in the
Table 4.1. As shown in the Table 4.1, the highest correlation was 0.999 for 20 and 40
items with 1000 subjects and the lowest was 0.975 for 20 items with 100 subjects. As
sample size increased, the correlation increased too; however, the number of test items
had little effect on those correl ations because as the test length increased from 20 to 40,

the correlations didn’t change too much.
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Table4.1.

Corrélations for Difficulty Parameter Recovery for the Rasch-Guessing Model

No of Items 20 30 40

Sample size (h=100)

bb

0.975 0.993 0.985
Sample size (n=200)

bb

0.997 0.996 0.992
Sample size (n=500)

bb

0.998 0.997 0.997
Sample size (n=1000)

bb

0.999 0.998 0.999

Table 4.2

RMSD and Bias for The Rasch-Guessing Model Difficulty Parameter Estimates

RMSD Bias

No of Items Sample Size

Maximum Minimum Average Maximum Minimum

100 0.662 0.241 0.373 0.445 0.032

20 200 0.371 0.116 0.232 0.165 0.004
500 0.242 0.101 0.156 0.14 0.004
1000 0.165 0.076 0.118 0.074 0
100 0.601 0.168 0.320 0.258 0.002

30 200 0.337 0.123 0.233 0.251 0.005
500 0.222 0.103 0.155 0.126 0.012
1000 0.133 0.062 0.104 0.099 0
100 0.582 0.201 0.380 0.247 0

40 200 0.346 0.172 0.261 0.157 0.003
500 0.216 0.089 0.153 0.113 0.002

1000 0.145 0.058 0.108 0.108 0
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As shown in the Table 4.2, RMSD decreases as the sample size increases from 100

samples to 1000 samples for the same number of test items. The maximum RMSD was

0.662 for the estimation of 100 sample size of 20 items; the minimum is 0.058 for the

estimation of 1000 sample size of 40 items. However, estimations for 30 items have the

best average RMSD compared with estimations for 20 or 40 items. The estimated mean

and calculated RM SD values for each item under different sample size are listed in the

Appendix table...

How well the parameter estimates under different sample sizes for the Rasch-

Guessing model isasoillustrated by the following graphs.
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Figure.6. Average RM SD for the Rasch-Guessing model
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The Comparison Between the 3PL Model and the 2PL-Guessing Model
Two designs were used to compare parameter estimates between the proposed model
and 3PL model. In thefirst design, only the proposed model was used to generate a
20-item test for samples of 100, 200, 500, and 1000, and then parameters were estimated
viathe proposed model and the 3PL model. In the second design, the traditional 3PL
model was used to generate a 20-item test for samples of 100, 200, 500, and 1000, and
then parameters were estimated by both models.

Three criteria were used to compare the traditional 3PL model with the newly
proposed 2PL-Guessing model: correlations between true parameter values and estimated
values, root mean squared deviation (RMSD), and bias. Only correlations were used to
compare latent ability estimates.

Ability Parameter Estimate Results
The ability parameter estimate results are shown in the Table 4.3.

Table 4.3
Correlations Between Estimated Ability Values and True Ability Values

Sample size Estimation method
2PLG-2PLG 2PLG-3PL 3PL-3PL 3PL-2PLG
100 0.808 0.805 0.805 0.820
200 0.824 0.817 0.795 0.805
500 0.829 0.821 0.798 0.805
1000 0.830 0.825 0.807 0.814

Note: 2PLG-2PL G represents the estimation that the data was generated by the 2PL-Guessing model and
estimated by the 2PL-Guessing model; 2PL G-3PL represents the estimation that the data was generated by

the 2PL-Guessing model but estimated by the 3PL model; 3PL-3PL represents the estimation that the data
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was generated by the 3PL model and estimated by the 3PL model; 3PL-2PL G represents the estimation that
the data was generated by the 3PLmodel but estimated by the 2PL-Guessing model.

The correlations between true ability values and estimated values for 20 item
simulated test were generally around 0.8. The highest correlation was 0.830 and the
lowest was 0.795. The highest correlation occurred when the data was generated by the
2PL-Guessing model and ability parameters were estimated by the 2PL-Guessing model
with 1000 sample size. The lowest correlation occurred when the data was generated by
3PL model and ability parameters were estimated by the 3PL model with 200 sample size.

As shown in the Table 4.3, regardless of sample size, al correlations calcul ated were
higher when the data were generated by the 2PL-Guessing model and ability parameters
were estimated by the 2PL-Guessing model than those cal culated when the data were
generated by 2PL-Guessing model, but ability parameters were estimated by the 3PL
model for corresponding sample size. Furthermore, when the 3PL model was used to
simulate data and the 2PL-guessing model was used to estimate latent ability, their
correlations for different sample sizes were higher than correlations calculated when the
3PL model was used to simulate data and |atent ability parameters were estimated by the

3PL modd.

Item Parameter Estimate Results

Item Parameter Correlations

Because we wanted to compare the accuracy of parameter estimates for the proposed
model with the 3PL model under the same condition, the data was simulated by one of
the two models and parameters were estimated by both two models. The correlation and

RMSD were calculated for each item parameter. The Table 4.4 and 4.5 show the
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correlation results for difficulty and discrimination parameter estimates (2PLG-2PLG
means the data was generated by the 2PL -Guessing model and parameters were estimated
by the 2PL-Guessing models too; 2PL-3PL means the data was generated by the 2PL -
Guessing model , but parameters were estimated by the 3PL model. Similar explanation

goesto 3PL-3PL and 3PL-2PLG).

Table4.4

Correlations for Difficulty Parameter Estimates

Estimation method

Sample size
2PLG-2PLG 2PLG-3PL 3PL-3PL 3PL-2PLG
100 0.969 0.949 0.964 0.921
200 0.993 0.964 0.982 0.938
500 0.995 0.968 0.991 0.950
1000 0.998 0.943 0.981 0.958

Note: 2PLG-2PL G represents the estimation that the data was generated by the 2PL-Guessing model and
estimated by the 2PL-Guessing model; 2PL G-3PL represents that the data was generated by the 2PL -
Guessing model but estimated by the 3PL model; 3PL-3PL represents that the data was generated by the
3PL model and estimated by the 3PL model; 3PL-2PL G represents that the data was generated by the
3PLmodel but estimated by the 2PL-Guessing model.

The highest correlation (0.998) for difficulty parameter estimates went to the
2PLG-2PLG estimation for 1000 sample size and the lowest correlation (0.921) went to
the 3PL-2PL G estimation for 100 sample size. All correlations for the 2PLG-2PLG
difficulty parameter estimates were greater than those of the 2PL G-3PL estimation. All
correlations for the 3PL-3PL difficulty parameter estimates were greater than those for

the 3PL-2PLG estimates.
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Table4.5

Correlations for Discrimination Parameter Estimates

Estimation method

Sample size
2PLG-2PLG 2PLG-3PL 3PL-3PL 3PL-2PLG
100 0.890 0.787 0.782 0.856
200 0.957 0.924 0.819 0.921
500 0.980 0.909 0.842 0.972
1000 0.994 0.941 0.881 0.988

The highest correlation (0.994) for discrimination parameter estimates went to the
2PLG-2PLG estimation under the sample size of 1000 and the lowest correlation (0.782)
went to the 3PL-3PL estimation under the sample size of 100. Among all the estimation
methods, the 2PLG-2PL G produced the highest correlations. Even though the data were
generated by the 3PL model, the discrimination parameters were estimated better by the
new proposed model than by the conventional 3PL model. Generally, the correlations for
both difficulty and discrimination parameter estimation tended to be enhanced as the
sample size was increased.

Item Parameter Estimate RMSD

RMSD isthe best indicator for the accuracy of parameter calibration. The smaller
the RMSD is, the more accurate the estimates will be. The average RM SD results for
item difficulty and discrimination parameter estimates with different estimation methods
are presented in Table 4.6 and 4.7. The detailed RM SDs for each item is presented in the

Appendix C.
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Table 4.6

Average RMSD for Difficulty Parameter Estimates

Estimation Method

Samplesize o EoRG 2PLG-3PL 3PL-3PL 3PL-2PLG

100 0.405 0.784 0.505 0.722

200 0.273 0.826 0.462 0.666

500 0.206 0.827 0.396 0.606

1000 0.155 0.777 0.360 0.584
Table 4.7

Average RMSD for Discrimination Parameter Estimates

Estimation Method

Sample size

2PLG-2PLG 2PLG-3PL 3PL-3PL 3PL-2PLG
100 0.436 0.578 0.506 0.483
200 0.322 0.477 0.477 0.391
500 0.233 0.402 0.376 0.270
1000 0.175 0.323 0.306 0.207

The 2PLG-2PL G method estimated the difficulty parameter most accurately
compared with other methods as shown in Table 4.6. The least accuracy of the difficulty
parameter estimates (0.827) went to the 2PL G-3PL situation for 500 sample size. The
most accurate difficulty parameter estimates (0.155) went to the 2PL G-2PL G situation
for 1000 sample size. When the 3PL model was used to estimate item difficulty parameter
using the 2PL-Guessing model generated data, the RM SD would increase tremendously.
The maximum increase was almost 400% for 1000 sample size (from 0.155 to 0.777).
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When the 2PL-Guessing model was used to estimate item difficulty parameter using the
data generated by the 3PL model, the RM SD would increase about 40% to 50% for all
sample sizes. Figure 6 and 7 demonstrated that the average RM SD gap between the
2PLG-2PLG estimation and the 2PL G-3PL estimation for all sample sizes was much
larger than the average gap between the 3PL-3PL estimation and the 3PL-2PLG
estimation for all sample sizes.

The discrimination parameter was estimated most accurately by the 2PLG-2PLG
estimation method for all sample sizes. The discrimination parameter was estimated most
accurately with the 2PLG-2PLG estimation method for 1000 sample size (RM SD=0.175)
and was estimated the least accurately with the 2PLG-3PL estimation situation for 100
sample size (RMSD=0.578). When the 3PL model was used to estimate discrimination
parameter using the data generated by the 2PL-Guessing model, average RM SDs for all
sample sizes were increased from 30% to 85% compared with average RM SDs estimated
by the 2PL-Guessing model. When the 2PL-Guessing model was used to estimate
discrimination parameter using the data generated by the 3PL model, average RM SDs for
all sample sizes were decreased from 5% to 30% compared with average RMSDs
estimated by the 3PL model. This can also be seen in Figure 8 and Figure 9.

Item Parameter Estimate Bias

The bias was calculated by the following:

the mean of estimated each item parameter values — the item parameter true value.
Because some biases were positive and some were negative, we did not calculate the
mean of the bias. The positive bias indicates an overestimated parameter and the negative
bias presents an underestimated parameter. The zero mean of biases does not mean there
isno bias. The absolute values of maximum and minimum biases for different sample

sizesareillustrated in Table 4.8 and 4.9.
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Table 4.8
Maximum and Minimum Bias for Difficulty Parameter Estimates
Estimation methods

Bias Values Sz;r.rge
2PLG-2PLG  2PLG-3PL 3PL-3PL 3PL-2PLG
100 0.507 -0.866 -0.430 1.460
M aximum 200 0.277 -1.160 -0.458 1.332
500 0.15 -1.026 -0.280 1.248
1000 -0.103 -1.238 -0.571 1.159
100 0.005 0.058 0.023 0.232
Minimum 200 -0.006 -0.220 -0.028 0.340
500 0.001 -0.227 -0.005 0.292
1000 0.001 -0.169 -0.009 0.299

The smallest maximum and minimum biases for difficulty parameter estimates went to
the 2PLG-2PL G estimation and the biggest maximum and minimum biases for difficulty
parameter estimates went to the 3PL-2PL G estimation. The smallest bias (0.001) went to
the 2PL G-2PL G estimation for 1000 sample size and the highest bias was 1.460 in the
3PL-2PLG estimation for 100 sample size. The 2PLG-3PL difficulty parameter estimates
had much greater biases than the 2PL G-2PL G difficulty parameter estimates and the
3PL-2PLG difficulty parameter estimates presented much higher biases then the 3PL-3PL
difficulty parameter estimates.

Table 4.9

Maximum and Minimum Bias for Discrimination Parameter Estimate
Estimation methods

BiasVaues Sample Size
2PLG-2PLG 2PLG-3PL  3PL-3PL 3PL-2PLG

100 0.537 0.579 -0.635 0.459

M aximum 200 0.218 0.378 -0.772 0.481
500 0.219 -0.312 -0.754 0.320

1000 0.096 -0.397 -0.717 0.256

100 0.002 -0.001 0.002 0.001

Minimum 200 -0.001 0.009 0.000 -0.015
500 0.002 0.023 -0.006 0.003

1000 0.000 -0.023 0.003 0.001
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The 2PLG-2PLG estimation had the smallest bias in estimating discrimination
parameter compared with all other estimation methods, while the 3PL-3PL estimation
had the largest maximum discrimination bias across all estimation methods. The 3PL-
2PL G method had smaller bias in estimating discrimination parameter than the 3PL-3PL
method. The smallest bias went to the 2PLG-2PL G estimation for 1000 sample size and
the 3PL-3PL estimation for 200 sample size. The 2PLG-3PL discrimination parameter
estimates had greater biases than the 2PLG-2PL G discrimination parameter estimates and
the 3PL-2PL G discrimination parameter estimates presented smaller biases then the 3PL-
3PL discrimination parameter estimates. Each item parameter estimate bias is presented
inthe Appendix D.

Goodness of Fit Index Results
Table 4.10

Average AlC for Goodness-of-Fit

Estimation method

Sample size
2PLG-2PLG 2PLG-3PL A; 3PL-3PL 3PL-2PLG Az
100 2508.9 2537.7 2838 2659.5 2630.6 28.9
200 5018.9 5044.6 25.7 5295.1 52675 27.6
500 12464 12487 23 12977 12952 25
1000 24906 24925 19 25933 25918 15

As shown in the above table, the 2PLG-2PLG estimation presented the smallest
average AIC for the same sample size design, while the 3PL-3PL estimation had the
biggest AIC index. It is very important to point out that even though the 2PL-Guessing
model was used to run the 3PL model-generated data, the average AIC for the 2PL-

Guessing model was still smaller than the average AIC for the 3PL model. However, the
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difference (A;and A, ) between two AICs decreased as the sample size increased, while
Az is equal to the average AIC for the 2PLG-3PL estimation minus the average AIC for
the 2PLG-2PLG estimation and , is equa to the average AIC for the 3PL-3PL

estimation minus the average AIC for the 3PL-2PLG estimation.
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CHAPTER FIVE

CONCLUSIONS

Stage (2003) investigated whether the conventional 3PL model would be applicable
to the Swedish Scholastic Aptitude Test (SweSAT) which is a norm-referenced and high-
stake multiple choice test and Stage concluded that the 3PL model did not fit the SweSAT
data even though guessing existed. Stage’s study presented a big challenge to the
traditional 3PL model when handling guessing. Simply assuming that every examinee has
the same probability of guessing an item correctly is not appropriate for all kinds of tests.
The new model in this study was developed to solve this problem.

The primary purpose of this study isto compare the accuracy of parameter estimates
viathe new model with the conventional 3PL model under different situations (or
designs) through the Monte Carlo method. Three criteria were used to compare how the
proposed model estimated parameters more accurately than the 3PL model: correlation,
RMSD, and bias. In this section, a few advantages of the new model compared with the
3PL model will be discussed.

Ability Parameter Estimate Comparison

The newly proposed model estimated ability parameter more accurately than the
traditional 3PL model. Two Monte Carlo study designs were created to prove this. In the
first design, the data were simulated using the new model and the ability parameters were
estimated by both the new and the 3PL model. In the second design, the data was
simulated by the 3PL model and the ability parameters were estimated by both the new
and the 3PL model. The average correlations between true ability values and estimated
ability values for each replication were used as the criterion to compare two models.

In both designs, regardless the data was generated by the new model or the 3PL
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model, the proposed model produced higher correlations for all sample sizes than the 3PL
model indicating that even if the real guessing situation fits the 3PL model (assuming if
the examinee did not know the correct answer, he/she would guess randomly), the
proposed model can estimate ability parameter more accurately than the 3PL model
because the new model also takes random guessing into consideration and it can be more
universally applied to multiple choice tests. If the ability estimate is the most important
for those who are more interested in placement, admission, or selection, the new model
can provide more accurate information than the traditional 3PL model.

Item Parameter Estimate Comparison

Three criteria were adopted to compare the accuracy of item parameter estimates for
two models, correlation, root mean standard deviation, and bias. The same study design
for ability estimate was used to generate the data and estimate item parameters. The
means were calculated for estimated difficulty and discrimination parameters with 10
replications for sample size of 100, 200, 500 to 1000, and then those means were
correlated with corresponding true values to get correlation coefficients, the equation 3.8
and 3.9 were used to calculate RM SDs, and the bias was the difference between the mean
of estimated parameter and the true value.

Among al four estimation methods (2PLG-2PLG, 2PLG-3PL, 3PL-3PL, and 3PL-
2PLG), the 2PLG-2PL G had the most accurate estimate for item parameters because it
had the highest correlations, the smallest RM SDs, and the lowest biases, indicating that if
the guessing situation is close to the assumption that examinees of different ability level
have different probability of successful guessing, the proposed model will be most
accurate to estimate item parameters than the 3PL model.

If we used the 3PL-model to estimate these item difficulty parameter, RM SD would

increase tremendously. For 100 sample size, it would increase amost 100% (from 0.405
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to 0.784), and for 1000 sample size, it would increase more than 400% (from 0.155 to
0.777). However, the 3PL model estimated the item difficulty parameter better than the
new model when the data was generated by the 3PL model or in the situation of random
guessing. For example, the average RM SDs for 100 and 1000 sample size were 0.505 and
0.360 respectively viathe 3PL model estimation, but the average RMSDs were 0.722 and
0.584 respectively viathe new model estimation. Therefore, if the guessing situation is
close to random guessing and the difficulty parameter estimation is more important than
any other purposes, the 3PL model should be adopted to estimate item parameters.

The new model, nonethel ess, estimated the discrimination parameter more
accurately for all sample sizes than the 3PL model even though the data was generated by
the 3PL model. For example, the average RM SDs estimated by the 3PL model for sample
sizes of 100 and 1000 were 0.506 and 0.306 respectively, however, the average RM SDs
estimated by the new model for sample sizes of 100 and 1000 were 0.483 and 0.207
respectively. Thisindicates that even in arandom guessing situation test, the new model
is still better in estimating item discrimination parameter and this can aso prove the huge
advantage of the new model compared with the 3PL model. Thisis probably the main
reason why the new model can estimate latent ability more accurately than the 3PL model
even in random guessing situation.

Goodness of Fit Index AIC Comparison

Thefit of the model to the datais very important in item response theory. Akaike's
information criterion (A1C) was adopted to compare the goodness of fit between the 2PL-
Guessing model and the 3PL model. The smaller the AIC is, the better fit the model will
be to the data.

In this study, regardless of data generated by the 2PL-Guessing model or by the 3PL

model, when the 2PL-Guessing model was used to estimate item parameters, all AIC
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indices for sample size of 100, 200, and 500 were smaller than those AIC indices
estimated by the 3PL model, so the 2PL-Guessing model not only fit the data generated
by the 2PL-Guessing model better, but also fit the data generated by the 3PL model better
for sample size of 100, 200, and 500., demonstrating that even in random guessing
situation for small sample sizes, the new 2PL-Guessing model aways fit the data better
than the 3Pl model.

However, in random guessing situation for sample size 1000 (or the data was
generated by the 3PL model), even the average A1C index estimated by the 2PL-Guessing
model was smaller than the average AIC index estimated the 3PL model, not each
replication’s AlC estimated by the 2PL-Guessing model was smaller than the AIC
estimated by the 3PL model. Some AIC indices estimated by the 3PL model were smaller
than those estimated by the 2PL-Guessing model, meaning the conventional 3PL model
is better applied to big sample size tests. For sample size under 1000, the 2PL-Guessing
model can do better estimation than the 3PL model even in random guessing situation.
Running Time Comparison

Another big advantage of the new model wasthat it ran alot faster than the 3PL
model when estimating item parameters using maximum likelihood estimation method.
The 3PL model has been notoriously slow in estimating item parameters because there
are three parameters in the 3PL model. The new model changed the guessing parameter
in the 3PL model into afunction of difficulty and discrimination parameters, so the new
model isstill 2PL plus a guessing function model in which there are only two item
parameters: difficulty and discrimination parameters. The process of estimating item
parameters can be reduced tremendously because of this, for example, alaptop with 4GB
ram memory was used to estimate item parameters for a 1000 sample size and 20-item

test and it took 72 hours to get the results using the 3PL model, but it took only 18 hours
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to get the results using the new model.
Convergence Problem for the 3PL Model

Although the optimization techniques used by SAS PROC NLMIXED are some of the
best ones available, for the 3PL moddl, it dways has difficult time in converging because
the 3PL model is more complex. To achieve convergence for the 3PL model, we took
some extra steps in SAS program such as changing the parameter initial values and using
boundary constraints to avoid floating-point errors and overflows. The new model,
however, could converge easily for all sample sizes under any condition.

In summary, the new model was a better model to estimate parametersif the
assumption that different ability examinees have different probability of guessing an item
correctly isviable. Even in the random guessing situation, the new model could estimate
the latent ability and discrimination parameter more accurately than the 3PL model. The
3PL model performed better than the new model in estimating difficulty parameter only
in the random guessing situation.

The new model successfully controlled the successful guessing probability between
the probability of random guessing and 0.5, estimated parameters more accurately, ran
much faster in estimating item parameters, and reflected the different probability of
successful guessing for examines of different ability. However, due to the highly time-
consuming estimation process of PROC NLMIXED, only 20-item short tests were
simulated with minimum sample size 100, this may lead to arestriction in the
generdizability of the new model.

Future Research Recommendations

Due to the limited designsin this study, there are a few directions for future research

that could be considered. First, Reynolds (1986) found that the normal ability distribution

estimated the difficulty parameter most accurately and the uniform ability distribution
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estimated discrimination parameter most accurately. The ability distribution was normally
distributed in this study, the effect of skewed ability distribution on parameter estimation

for the new model should be very interesting to explore.

Second, the difficulty parameter was controlled from -0.7 to 2.0 and the item
discrimination was controlled from 0.4 to 2.0 to simulate an achievement test or a high-
stake test, so it may be of interest to investigate the effect of expanded range (for
example, -2.0to 2.5 for difficulty parameter and O to 2.5 for discrimination parameter) on
the accuracy of estimating item parameters. Because we all know that some classroom
test items were made very easy on teacher’s purpose and students use guessing strategies
to answer those items that they do not know the correct answers, the expanded item

parameter range study will be crucial for the new model to apply to classroom tests.

SAS PROC NLMIXED was adopted to do marginal maximum likelihood estimation
because it provides one of the best optimization techniques. It should be enlightening to
use other statistical softwares such as R or Matlab to calibrate parameters using the new
model, and then compare their results to find which software can produce the most

accurate estimation and which one will have the worst estimation.

The number of options used in this study was 4 which is most popular in high-stake
tests. We know that as the number of options increases, the probability of guessing an
item correctly decreases. The number of options should have effect on guessing
strategies. If the number of options, theoretically, increased up to infinite, then the
probability of successful guessing would be zero. Therefore, the more the number of
optionsis, the less motivating the examinee will be because it is too time-consuming.
What will happen if the number of optionsisincreased up to athreshold that examinees

are not motivated to use partial knowledge to make a guess because there are too many
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options? In this situation, examinees just make random guess to those items that they do

not know the answers, thus we can simplify the guessing situation.
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Appendix A
The Deduction of Marginal Maximum Likelihood Function for the 2PL -
Guessing M odél

According to Bayes' theorem, the posterior ability distribution is given as (Baker & Kim,

2004):
P(QJ |Yj!1‘-7§)= P(Yj |9j!€)g(0j | 7) . (A1)
[PCY;10,.8)9(0; |7)do,
also,
0 0
—IP(Y; 16,81 =—[logP(Y, |6, 8)IP(Y, 16,.8), (A.2)
a 08,
then,

0 No N 4 0
20, 1090 =22 (10gP(Y, )] = X[P(Y,) a—&[jp(v,- 16,.)(6, 17)d6, ]

i
N
4 O
=P Pevifen ok, 1m0,
; _
becauseof relationin eugation A.2, we will have

= P01 - llogPer o, D)LY, 10, 2o, 1900,

N P(Y;16;.8)9(9; | 1)
JZ;J‘a%hOQP(Yjw,ﬁ){ ‘ P(f(j) i ]dé’j,

using equation A.1, resultin

- ijai;[log P(Y, |9;§)]|:P(9‘Yj 3= T)]dei ’

where P(YJ | 9]. ,F’) = ﬁ P| (9] )ywj Qi (9] )linj

0, let ¢; = 6 (for convenience)
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0 S 0 L Yij 1y
6—@(|09L)=§I£[|09HR(9) Q) " Ix[P(@]Y,,E, )]do

= ZJ.[ILI P, )] Yij Qi (49)1—)/\] ]—1 X%[lﬂ[ I::: 6) Vi Qi (H)l_y” 1[P(0 I Yj ,%,T)]d@, (A.3)

where

e[HP(e)y’ Q@ 1=[[[R(0)" Q,(0)" "o [P(e)yl Q™.

h#1
where

ZIRO"QO) - RO RO +RO)" [Q(0) ]
& 08, 03,

=y; R () y“l{ R©) }Q ) + P@)-Y;)Q )" yjl{a(glafe) }
Using therelationship QO) __ 62;:9) and we can get
[OP () | " R I VP SV
1S p@)io () i Ll
a _[ (0)™ Q (0) ]_R(e) Qi(e)}
_6P' (9)_ Y 1-y, i yij - P|(9)
| 1 7 P 9 i 0). 0 ij ,
a _[ (0)™ Q. (0) ]_—Pi(e)Qi(e):|
then,
Yi 1-y; Yi 1y, GP(H) yij_Pi(e)
—I[] |R@)" Q)™ P@)"Q &)™ : A4
.[H @)"Q) "= [H @@ "Il %8, ][Pi(e)Qi(e)] (A.4)

Put equation A.4 into equation A.3, we get the marginal likelihood equation for & can be

written as the follows:

y; —R(©,) . oR(0))
—(I ogl) = ZI[P(@ Q.0 )][ o8 =1IPO,; 1Y,.€,1)1d6,;,

letaﬂ(ej)

= Ka (for discrimination parameter), and

R (6))
ob

let = Kb (for difficulty parameter), and then we have
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yl] i )
—(I oglL) = ZI[P(Q Q.0 )][K allP(; 1Y;.&,7)1do (A.5)

Thelikelihood equation for b, is

ylj_ i )
—(| oglL) = ZI[P(Q Q.0 )][Kb][P(9 [Y;.8,7)]do, (A.6)

For Rasch-Guessing model, there is only item difficulty parameter, then (N is the number

of options for the following equations)

Kb — eZ(th) B e(Gﬁh) 1 e(b’; -b) 2NeZ(9ﬁh) ~ e(ﬂj -b)
[1+e“ ™2 1497 1+ oNe ™Y, 2Ne@™
(N-2 1+ == | o

2(0;-b) (6;-b) 1 (0;-H)
e 1 ﬁ+1 2N |
+7

N-2

For 2PL-Guessing model, (N is the number of options)
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Table B1

RMSD of Difficulty Parameter Estimates for the Rasch-Guessing Model (20 items)

Appendix B

Difficulty Parameter RM SD Estimates for the Rasch-Guessing Model

~

~

~

True b RMSD b RMSD b RMSD b RMSD
vaues
N=100 N=200 N=500 N=1000

-0.327 -0.283 0.303 -0.307 0224 -0.267 0205 -0.361 0.138
0.724 0.852 0.320 0.802 0287 0.864 0242 0798 0.165
167 1712 0.418 1651 0221 1652 0154 1689 0134
0413 0510 0.244 0441 0167 0361 0141 0399 0.134
0.032 -0.311 0.446 -0.048 0245 0020 0101 0.028 0.094
1.113 1173 0.370 1136 0230 1127 0109 1154 0.109
0.202 0293 0.341 0.157 0243 0192 0117 0182 0.103
0.986 0984 0.385 1036 0239 0954 0184 0983 0.103
1417  1.862 0.662 1495 0244 1378 0168 1357 0.108
1.843 2.058 0.397 2008 0260 1895 0156 1846 0.116
0.567 0546 0.317 0597 0142 0571 0105 0547 0.105
0.106 -0.104 0.312 0022 0183 0.032 018 0070 0.111
-0.67 -0.220 0.505 -0526 0371 -0629 0155 -0.626 0.138
2018 1917 0.358 1960 0275 2002 0193 1983 0.163
-0.245 -0.279 0.337 -0.284 0.200 -0.316 0.146 -0.280 0.092
0.116 0.084 0.316 0132 0262 0112 0169 0111 0.143
1.216 1.360 0.330 1234 0193 1251 0143 1216 0.095
1.682 1.793 0.425 1693 0242 1693 0170 1.696 0.118
0.291 0154 0.423 0.274 0301 0254 0168 0273 0111
0451 0483 0.241 0455 0116 0446 0109 0432 0.076
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Table B2

RMSD of Difficulty Parameter Estimates for the Rasch-Guessing Model (30 Items)

~

~

True hb RMSD  § RMSD Hh RMSD [  RMSD
values
N=100 N=200 N=500 N=1000
-0.327 -0213 0284 -0311 0186 -0407 0103 -0.394  0.108
0724 0785 0429 0687 0244 0710 0158 0734 0102
167 1751 0276 1716 0179 1705 0165 1638 0.155
0413 0502 0387 0565 0323 0539 0204 0451 0.119
0032 -0049 0312 -0019 018 -0008 0137 0030 0.116
1113 0999 0201 1032 0337 1101 0222 109%  0.102
0202 0287 0256 0250 0201 0234 0145 0228 0098
0986 1077 0215 0929 0207 0894 0154 0899 0133
1417 1587 0322 1668 0324 1445 0152 1422  0.080
1843 2040 0375 1837 0297 1773 0175 1799  0.099
0567 068 0278 0629 0221 0487 0187 0548 0077
0106 0115 0245 0067 0248 0092 0164 0084 0100
-0.67 -0584 0258 -0711 0204 -0.638 0172 -0670  0.062
2018 2276 0579 2064 0237 2059 0173 2039 0089
-0.245 -0243 0312 -0203 0254 -0294 0142 -0282 0.101
0116 0058 0282 0035 0215 0072 0114 0059  0.083
1216 1267 0335 1262 0157 1254 0124 1245 0.105
1682 1781 038 1736 0283 1763 0138 1758  0.095
0291 0369 0381 0329 0238 0306 0192 0290 0.112
0451 0465 0206 0476 0123 0490 0207 0460 0.111
046 0374 0312 0361 0228 0361 0164 0406 0.104
1419 1316 0350 1442 0170 1493 0125 1518 0.153
188 2125 0476 2017 0299 1937 0207 1945 0117
1169 1160 0340 1230 0261 1200 0133 1162  0.100
0944 0853 0601 0949 0307 0957 0166 0958  0.096
039 0340 0274 0320 0208 0345 0136 0336 0107
0046 -0.034 0205 0040 0220 -0019 0108 -0.007 0.083
0858 0.898 0168 0911 018 0842 0148 0862 0095
0734 0760 0200 0740 0193 0721 0103 0699  0.100
0258 0320 0255 0285 0254 0310 0141 0291 0126
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Table B3

RMSD of Difficulty Parameter Estimates for the Rasch-Guessing Model (40 Items)

~

~

True H RMSD b RMSD Hh RMSD [  RMSD
values
N=100 N=200 N=500 N=1000
-0.327 -0269 038 -0265 0265 -0.334 0098 -0326 0072
0724 0.804 0493 0712 0242 0730 0117 0669 0.092
1670 1584 0331 1537 018 1597 0216 1592 0127
0734 0906 0388 0765 0224 0815 0173 0764 0.127
0413 0393 0378 0401 0323 0383 0151 0382 0.089
0448 0399 0424 0465 0292 0461 0129 0427 0122
0032 -0015 0475 -0026 0310 0038 0113 0032 0058
0425 0369 0241 0369 0195 0450 0124 0415 0.125
0490 0460 0201 0506 0172 0504 0133 0446 0.092
1419 1652 0474 1525 0239 1464 0165 1410 0145
1113 1261 0430 1154 0234 1121 0107 1113 0.082
0202 0044 0321 0068 0207 0089 0182 0094 0.146
0983 1044 0331 0988 0202 1033 0163 1008 0.089
0986 1042 0503 1065 0275 1069 0182 098 0.083
0858 0785 0308 0745 0255 0808 0451 0838 0095
0451 0499 0441 0368 0346 0404 0130 0366 0.128
0046 0011 0216 0062 0227 0082 0121 0046 0.114
1417 1505 0283 1543 0219 1419 0089 1400 0.088
0460 0460 0339 0533 0304 0540 0193 0475 0.135
0315 0562 0360 039 0312 0347 018 0318 0.103
1843 2004 0371 2000 0317 1889 0210 1800 0131
1286 1267 0315 1330 0203 1338 0141 1320 0.108
0567 0658 0412 0563 0287 0552 0129 0565 0.109
0955 00946 0480 1022 0259 1006 0105 0999 0.074
1133 1143 0407 1096 0327 1177 0211 1139 0130
1118 1361 058 1153 0304 1154 0200 1128 0.098
0390 0310 0308 0228 0255 0349 0175 0367 0.116
0944 0813 0318 0883 0231 0950 0125 0923 0.090
0106 0008 0380 0069 0243 0025 0151 0080 0.108
1216 1150 0301 1092 0258 1179 0156 1180 0.1
-0.670 -0628 0279 -0.640 0270 -0.691 0127 -0692 0.081
0116 0050 0349 0131 0206 0140 0144 0111  0.059
1169 1283 0379 1224 0242 1130 0181 1152 0136
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Table B3 (continued).
RMSD of Difficulty Parameter Estimates for the Rasch-Guessing Model (40 Items)

~

~

True H RMSD b RMSD b RMSD [  RMSD
values
N=100 N=200 N=500 N=1000
0291 0080 0361 0138 0307 0194 0148 0207 0131
1682 1682 0524 1528 0324 1599 0201 1638 0135
-0.245 -0272 0465 -0311 0287 -0294 0115 -0270  0.097
0481 0360 0280 0484 0220 0465 0111 0413 0.119
0258 0183 035 0193 0236 0229 0130 0212 0.120
1886 1803 0393 1840 0264 1859 0253 1913 0.148
2018 1800 0636 188 0373 1982 0174 1967 0.113
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TableC1

RMSD of Difficulty Parameter Estimates for the 2PLG-2PLG (20 items)

Appendix C

RM SD of Each Item Parameter Estimatesfor All Methods

~

~

~

True b RMSD b RMSD b RMSD b RMSD
vaues
N=100 N=200 N=500 N=1000

-0.327 -0.322 0.282 -0.309 0.225 -0249 0193 -0.350 0.160
0.724 0.863 0.338 0.823 0242 0842 0204 0.756 0.151
1.67 1.747 0.455 1.691 0.361 1.808 0.324 1.749 0.240
0.413 0431 0.186 0.462 0159 0377 0.091 0414 0.096
0.032 -0.225 0.396 0.000 0253 0033 0130 0.036 0.097
1.113 1.089 0.523 1.026 0.216 1130 0136 1118 0.146
0.202 0.222 0.339 0.161 0274 0184 0144 0179 0.101
0.986 1.092 0.446 1.046 0309 0950 0.210 1.003 0.106
1417 1.718 0.519 1.576 0474 1519 0309 1422 0213
1.843 1.570 0.485 1.793 0352 1736 0347 1.740 0.231
0.567 0.632 0.384 0.561 0.112 0571 0117 0534 0.077
0.106 -0.029 0.506 0.036 0354 0.011 0419 0.063 0.257
-0.67 -0.163 0.588 -0.393 0369 -0587 0123 -0.578 0.133
2018 1943 0.230 2.029 0.068 2028 0.100 2032 0.104
-0.245 -0.304 0.351 -0.304 0229 -0316 0150 -0.269 0.089
0.116  0.067 0.262 0.106 0.198 0084 0140 0.092 0.126
1.216 1.619 0.621 1.410 0429 1366 0432 1.205 0.307
1.682 1577 0.390 1.618 0290 1623 0239 1701 0251
0.291 0.231 0.325 0.298 0250 0257 0142 0.269 0.103
0451 0431 0.479 0.495 0301 0455 0175 0397 0.120
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Table C2
RMSD of Discrimination Parameter Estimates for the 2PLG-2PLG (20 Items)

True a RMSD a RMSD a RMSD a4 RMSD
vaues

N=100 N=200 N=500 N=1000

0873 1101  0.547 0.976 0.280  0.968 0209 0908 0.156
1409 1435 0373 1.408 0362  1.395 0217 1476 0221
0831 0906 0.436 0.881 0295 0.764 0.156 0811 0.100
1676 1.605 0.430 1.522 0404 1.662 0263 1666 0.212
1218 1264 0452 1.155 0212 1184 0224 1201 0.164
1457 1693  0.453 1.675 0.347  1.455 0213 1533 0.216
1054 1.056 0417 1.030 0.352  1.100 0188 1039 0.127
1318 1385 0.532 1.454 0452  1.379 0223 1318 0.104
13 1452  0.449 1.429 0519 1277 0411 1273 0.250
0924 1461 0.676 1131 0394 1143 0465 1020 0.180
1378 1390  0.497 1.367 0214  1.402 0.162 1410 0.178
0.54 0.899  0.537 0.607 0.200 0.542 0.145 0530 0.102
0.833 0819 0.260 0.816 0216  0.823 0211 0884 0.186
1578 1423 0.420 1.413 0315  1.523 0245 1528 0.274
0964 0859 0.315 0.974 0.297  0.999 0119 1.021 0.116
13 1395 0.483 1.382 0380 1.430 0374 1350 0.228
0603 0551 0.122 0.589 0.138  0.601 0.165 0.648 0.123
1444 1675 0429 1.584 0.387  1.591 0344 1462 0272
1858 1757 0.335 1.741 0336  1.797 0215 1843 0.204
0599 0800 0.554 0.707 0342 0.625 0116 0595  0.087
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Table C3

RMSD of Difficulty Parameter Estimates for the 2PLG-3PL (20 Items)

~

~

~

True b RMSD b RMSD b RMSD b RMSD
vaues
N=100 N=200 N=500 N=1000

-0.327 -0.270 0.351 -0.560 0546 -0554 0.780 -0.49 0584
0.724 0.184 0.715 0223 0697 0265 0659 0149 0.756
167 1168 1.128 0.914 0997 0.728 1143 0805 1.052
0.413 -0.137 0.706 0.072 0.611 -0150 0700 -0.184 0.672
0.032 -0.204 0.578 -0.626 0.949 -0398 0.671 -0.247 0.3%
1.113 0487 1.018 0484 0752 0555 0617 0645 0512
0.202 -0.205 0.743 -0.461 0967 -0369 0840 -0.626 1.026
0986 0315 0.908 0229 0923 0.293 0808 0590 0.501
1417  1.277 0.769 0861 0788 0965 0583 0750 0.781
1.843 0.977 1.079 1.017 1.040 1059 090 1.207 0.711
0.567 0.064 0.698 0.141 0587 0145 0612 -0.086 0.775
0.106 -0.096 0.636 -0434 1.065 -0382 1129 -0.097 0.856
-0.67 -0.408 0.746 -1.011 0761 -169 1093 -1563 1.018
2018 1311 0.830 1270 0.834 1491 0.634 1541 0517
-0.245 -0.345 0.366 -0.465 0436 -0.882 0975 -0.704 0.812
0.116 -0.031 0.520 -0.318 0.803 -0271 0.702 -0.526 0.758
1.216 0504 1.472 0056 1420 0533 1257 -0.022 1.401
1682 1.122 0.846 1.030 0805 0918 0818 1.005 0.731
0.291 -0.133 0.684 0.067 049 -0.175 0607 -0.097 0.420
0451 0321 0.884 -0.107 1.039 0028 0943 -0405 1252
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Table C4

RMSD of Discrimination Parameter Estimates for the 2PLG-3PL (20 Items)

~

True a RMSD a RMSD a RMSD a RMSD
values
N=100 N=200 N=500 N=1000

0873 1346 0.713 0998 0378 1.09% 0400 1001 0.271
1409 1.331 0.529 1435 0441 1373 0462 1378 0418
0831 1120 0.724 1209 0795 0875 0537 0731 0.268
1676 1574  0.506 1632 0425 1559 0443 1384 0.399
1218 1571 0541 1.060 0417 1183 0214 1301 0.228
1457 1375 0.429 1529 0449 1278 0473 1412 0.348
1.054 1152 0.426 1151 0580 1.081 0227 0964 0.266
1.318 1.388  0.650 1327 0537 1220 0374 1245 0.386
1.3 1267 0644 1283 0395 1343 0459 1341 0484
0924 1234 0.720 0911 0517 1113 0666 1.037 0.268
1378 1372 0.560 1456 0485 1529 0429 1274 0.395
054 1119 0.803 0610 0.360 0563 0153 0517 0.126
0.833 0832 0.238 0787 0209 0723 0256 0.747 0219
1578 1222  0.740 1294 0604 1266 0523 1395 0.560
0.964 1006 0.429 1.149 0415 1.059 0350 1.046 0.246
1.3 1609 0.559 1425 0536 1567 0569 1.248 0.329
0.603 0995 0.762 0.641 0473 0707 0248 0565 0.146
1.444 1562  0.539 1.313 0633 1194 0568 1.047 0570
1.858 1.785 0.336 1792 0323 1685 0362 1787 0.303
0599 0921 0711 0853 0578 0727 0338 0.623 0.226
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TableC5

RMSD of Difficulty Parameter Estimates for the 3PL-3PL (20 Items)

~

~

~

True b RMSD b RMSD b RMSD b RMSD
vaues
N=100 N=200 N=500 N=1000

-0.327 -0.210 0410 -0423 0338 -0280 0323 -0414 0.336
0.724 0557 0361 0598 0370 0599 0353 0410 0.467
1.67 1.627 0.508 1.517 0.469 1.783 0.404 1441 0.486
0413 -0017 0538 0216 0435 0251 0393 0.214 0.363
0.032 -0092 0562 -0263 0519 -0111 039 -0.116 0.405
1113 0914 0484 0816 0478 1032 0299 1.040 0.271
0.202 -0.170 0571 -0256 0.601 -0.078 0595 -0.042 0.468
0986 0882 0375 0791 0455 0.743 0451 0.922 0.307
1417 1490 0642 1340 0482 1412 0462 1345 0.307
1843 1590 0545 1514 0570 1632 0477 1.750 0.249
0567 0244 0467 0214 0516 0310 0414 0.393 0.361
0.106 -0.186 0472 -0.052 0621 0.038 0447 0185 0.444
-0.67 -0370 0507 -0582 0271 -0.676 0041 -0.636 0.140
2018 1670 0495 1703 0535 1904 0323 2060 0.073
-0.245 -0.394 0362 -0.449 0343 -0404 0309 -0226 0.254
0.116 -0.015 0465 0.088 0.263 -0.032 0427 -0.109 0.390
1216 1109 0817 1046 0588 1087 0600 0.645 0.802
1682 1468 0562 1428 0379 1421 0330 1523 0.367
0291 0314 0369 0324 0320 0230 0297 0.282 0.127
0451 0789 0594 0572 0692 0273 0581 0260 0578
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Table C6

RMSD of Discrimination Parameter Estimates for the 3PL-3PL (20 Items)

~

True a RMSD a RMSD a RMSD a RMSD
values
N=100 N=200 N=500 N=1000

0873 1121 0578 1.002 0483 0920 0177 0.882 0.184
1.409 1.345 0.499 1.345 0418 1403 0450 1281 0.428
0.831 0796  0.499 1.026 0623 0.838 0379 0731 0321
1676 1526  0.487 1676 0406 1555 0417 1501 0.358
1218 1220 0.563 1153 0426 1189 0365 1122 0.181
1457 1539 0414 1.340 0544 1449 0393 1460 0.359
1.054 1.070 0.445 0849 0382 0969 0307 1003 0.256
1.318 1443 0.593 1.317 0438 1339 0432 1445 0.395
1.3 1060 0.663 1382 0694 1274 0518 1227 0.381
0924 1174 0691 1.033 0676 0.898 0467 1031 0.321
1378 1269 0.501 1160 0439 1229 0340 1356 0.297
054 0.832 0505 0498 0.141 0508 0.124 0530 0.084
0.833 0703 0.281 0790 0257 0793 0172 0.859 0.155
1578 0943 0.913 0.806 0952 0824 0940 0.861 0.904
0.964 0837 0.270 0943 0402 0995 0232 1000 0178
1.3 1574 0488 1562 0518 1459 0408 1244 0.289
0.603 0622 0.228 0.772 0435 0543 0155 0527 0.155
1.444 0933 0.772 1178 0767 0.902 0704 1129 0.598
1.858 1.896 0.213 1781 0285 1725 0393 1827 0174
0599 0691 0.506 0590 0257 0574 0155 0577 0.106
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TableC7

RMSD of Difficulty Parameter Estimates for the 3PL-2PLG (20 Items)

~

~

~

True b RMSD b RMSD b RMSD b RMSD
vaues
N=100 N=200 N=500 N=1000

-0.327 0423 0839 0341 0703 0368 0.714 0306 0.644
0.724 1298 0.657 1213 0539 1.202 0503 1.107 0.410
167 2244 0698 2187 0630 2362 0720 2368 0.718
0413 0719 0381 0770 0420 0.705 0316 0.747 0.350
0032 0454 0775 0485 0555 0513 0507 0513 0501
1.113 1.484 0.485 1.536 0.469 1.554 0.461 1.527 0.449
0202 0780 0725 0883 0737 0.765 0589 0.747 0.552
0986 1537 0666 1498 0588 1387 0476 1416 0.455
1417 2062 0806 180 0641 1853 0551 1875 0535
1.843 2075 0470 2239 0522 2323 0538 2366 0561
0567 0983 0.625 1008 0523 0964 0402 0924 0.359
0.106 0773 0.856 1253 1227 1354 1407 1265 1.281
-067 0502 1377 0202 0967 0.023 0713 0.031 0.711
2018 2315 0382 2358 0375 2419 0417 2457 0442
-0.245 0293 0662 0321 0618 0245 0512 0321 0575
0116 0445 0415 0492 0437 0489 0387 0522 0416
1216 2036 0894 2015 0909 2107 0981 2084 0928
1682 2167 0636 2109 0543 2147 0539 2129 0510
0291 059 0484 0654 0441 0.608 0329 0590 0.307
0451 1911 1606 1783 1485 1458 1052 1404 0.976
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Table C8

RMSD of Discrimination Parameter Estimates for the 3PL-2PLG (20 Items)

~

True a RMSD a RMSD a RMSD a RMSD
values
N=100 N=200 N=500 N=1000

0873 1193 0.628 1.077 0433 1024 0218 0971 0.179
1409 1654 0.455 1574 0325 1601 029 1665 0.321
0.831 1.078 0.429 1.078 0439 0917 0155 0934 0.158
1676 1786 0.328 1767 0285 1861 0261 1.809 0.184
1218 1.237 0.592 1.318 0486 1310 0315 1295 0.179
1457 1620 0.343 1583 0386 1534 0279 1592 0.269
1.054 1275 0475 1.086 0354 1173 0253 1160 0.182
1.318 1546 0.505 1620 0515 1555 0367 1477 0217
1.3 1759 0532 1678 0519 1486 0423 1405 0.293
0924 1640 0.823 1.405 0640 1244 0509 1112 0.291
1378 1521 0.526 1434 0334 1493 0214 1531 0194
0.54 0.888 0583 0577 0192 0535 0188 0557 0131
0.833 0712 0.357 0818 0276 0836 0211 0930 0.207
1578 1468 0.481 1515 0384 1636 0253 1592 0.238
0.964 0875 0.305 1.042 0386 1.09 0216 1064 0.181
1.3 1694 0.465 1631 0476 1556 0328 1447 0.244
0.603 0817 0461 0775 0315 0715 0230 0710 0.164
1.444 1617 0.486 1591 0445 1537 0311 1515 0.249
1.858 1.859  0.266 1742 0328 1804 0232 1859 0.139
0599 0759 0.622 0.650 0302 0.664 0.143 0667 0.121
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Appendix D

Biases of Each Item Parameter Estimates for All Estimation M ethods

TableD1
Difficulty Parameter Estimate Biases for the 2PLG-2PLG (20 Items)
Sample Size

True
values N=100 N=200 N=500 N=1000
-0.327 0.005 0.018 0.078 -0.023
0.724 0.139 0.099 0.118 0.032
1.67 0.077 0.021 0.138 0.079
0.413 0.018 0.049 -0.036 0.001
0.032 -0.257 -0.032 0.001 0.004
1.113 -0.024 -0.087 0.017 0.005
0.202 0.020 -0.041 -0.018 -0.023
0.986 0.106 0.060 -0.036 0.017
1.417 0.301 0.159 0.102 0.005
1.843 -0.273 -0.050 -0.107 -0.103
0.567 0.065 -0.006 0.004 -0.033
0.106 -0.135 -0.070 -0.095 -0.043
-0.67 0.507 0.277 0.083 0.092
2.018 -0.075 0.011 0.010 0.014
-0.245 -0.059 -0.059 -0.071 -0.024
0.116 -0.049 -0.010 -0.032 -0.024
1.216 0.403 0.194 0.150 -0.011
1.682 -0.105 -0.064 -0.059 0.019
0.291 -0.060 0.007 -0.034 -0.022
0.451 -0.020 0.044 0.004 -0.054
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Table D2
Discrimination Parameter Estimate Biases for the 2PLG-2PLG (20 Items)

Sample Size
True
values N=100 N=200 N=500 N=1000
0.873 0.228 0.103 0.095 0.035
1.409 0.026 -0.001 -0.014 0.067
0.831 0.075 0.050 -0.067 -0.020
1.676 -0.071 -0.154 -0.014 -0.010
1.218 0.046 -0.063 -0.034 -0.017
1.457 0.236 0.218 -0.002 0.076
1.054 0.002 -0.024 0.046 -0.015
1.318 0.067 0.136 0.061 0.000
1.3 0.152 0.129 -0.023 -0.027
0.924 0.537 0.207 0.219 0.096
1.378 0.012 -0.011 0.024 0.032
0.54 0.359 0.067 0.002 -0.010
0.833 -0.014 -0.017 -0.010 0.051
1.578 -0.155 -0.165 -0.055 -0.050
0.964 -0.105 0.010 0.035 0.057
1.3 0.095 0.082 0.130 0.050
0.603 -0.052 -0.014 -0.002 0.045
1.444 0.231 0.140 0.147 0.018
1.858 -0.101 -0.117 -0.061 -0.015

0.599 0.201 0.108 0.026 -0.004
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Table D3
Difficulty Parameter Estimate Biases for the 2PLG-3PL (20 Items)

Sample Size

True
values N=100 N=200 N=500 N=1000
-0.327 0.058 -0.233 -0.227 -0.169
0.724 -0.540 -0.501 -0.459 -0.575
1.67 -0.502 -0.756 -0.942 -0.865
0.413 -0.550 -0.341 -0.563 -0.597
0.032 -0.236 -0.658 -0.430 -0.279
1.113 -0.626 -0.629 -0.558 -0.468
0.202 -0.407 -0.663 -0.571 -0.828
0.986 -0.671 -0.757 -0.693 -0.396
1.417 -0.140 -0.556 -0.452 -0.667
1.843 -0.866 -0.826 -0.784 -0.636
0.567 -0.503 -0.426 -0.422 -0.653
0.106 -0.202 -0.540 -0.488 -0.203
-0.67 0.262 -0.341 -1.026 -0.893
2.018 -0.707 -0.748 -0.527 -0.477
-0.245 -0.100 -0.220 -0.637 -0.459
0.116 -0.147 -0.434 -0.387 -0.642
1.216 -0.712 -1.160 -0.683 -1.238
1.682 -0.560 -0.652 -0.764 -0.677
0.291 -0.424 -0.224 -0.466 -0.388

0.451 -0.130 -0.558 -0.423 -0.856
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Table D4
Discrimination Parameter Estimate Biases for the 2PLG-3PL (20 Items)

Sample Size
True

values N=100 N=200 N=500 N=1000

0.873 0.473 0.125 0.223 0.128
1.409 -0.078 0.026 -0.036 -0.031
0.831 0.289 0.378 0.044 -0.100
1.676 -0.102 -0.044 -0.117 -0.292

1.218 0.353 -0.158 -0.035 0.083
1.457 -0.082 0.072 -0.179 -0.045
1.054 0.098 0.097 0.027 -0.090
1.318 0.070 0.009 -0.098 -0.073
1.3 -0.033 -0.017 0.043 0.041

0.924 0.310 -0.013 0.189 0.113
1.378 -0.006 0.078 0.151 -0.104
0.54 0.579 0.070 0.023 -0.023
0.833 -0.001 -0.046 -0.110 -0.086
1.578 -0.356 -0.284 -0.312 -0.183
0.964 0.042 0.185 0.095 0.082
1.3 0.309 0.125 0.267 -0.052
0.603 0.392 0.038 0.104 -0.038
1.444 0.118 -0.131 -0.250 -0.397
1.858 -0.073 -0.066 -0.173 -0.071

0.599 0.322 0.254 0.128 0.024
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Table D5
Difficulty Parameter Estimate Biases for the 3PL-3PL (20 Items)

Sample Size

True
values N=100 N=200 N=500 N=1000
-0.327 0.117 -0.096 -0.280 -0.087
0.724 -0.167 -0.126 -0.125 -0.314
1.67 -0.043 -0.153 0.113 -0.229
0.413 -0.430 -0.197 -0.162 -0.199
0.032 -0.124 -0.295 -0.143 -0.148
1.113 -0.199 -0.297 -0.081 -0.073
0.202 -0.372 -0.458 -0.280 -0.244
0.986 -0.104 -0.195 -0.243 -0.064
1.417 0.073 -0.077 -0.005 -0.072
1.843 -0.253 -0.329 -0.211 -0.093
0.567 -0.323 -0.353 -0.257 -0.174
0.106 -0.292 -0.158 -0.068 0.079
-0.67 0.300 0.088 -0.006 0.034
2.018 -0.348 -0.315 -0.114 0.042
-0.245 -0.149 -0.204 -0.159 0.019
0.116 -0.131 -0.028 -0.148 -0.225
1.216 -0.107 -0.170 -0.129 -0.571
1.682 -0.214 -0.254 -0.261 -0.159
0.291 0.023 0.033 -0.061 -0.009

0.451 0.338 0.121 -0.178 -0.191
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Table D6
Discrimination Parameter Estimate Biases for the 3PL-3PL (20 Items)

Sample Size
True
values N=100 N=200 N=500 N=1000
0.873 0.248 0.129 0.047 0.009
1.409 -0.064 -0.064 -0.006 -0.128
0.831 -0.035 0.195 0.007 -0.100
1.676 -0.150 0.000 -0.121 -0.175
1.218 0.002 -0.065 -0.029 -0.096
1.457 0.082 -0.117 -0.008 0.003
1.054 0.016 -0.205 -0.085 -0.051
1.318 0.125 -0.001 0.021 0.127
1.3 -0.240 0.082 -0.026 -0.073
0.924 0.250 0.109 -0.026 0.107
1.378 -0.109 -0.218 -0.149 -0.022
0.54 0.292 -0.042 -0.032 -0.010
0.833 -0.130 -0.043 -0.040 0.026
1.578 -0.635 -0.772 -0.754 -0.717
0.964 -0.127 -0.021 0.031 0.036
1.3 0.274 0.262 0.159 -0.056
0.603 0.019 0.169 -0.060 -0.076
1.444 -0.511 -0.266 -0.542 -0.315
1.858 0.038 -0.077 -0.133 -0.031

0.599 0.092 -0.009 -0.025 -0.022
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Table D7
Difficulty Parameter Estimate Biases for the 3PL-2PLG (20 Items)

Sample Size

True
values N=100 N=200 N=500 N=1000
-0.327 0.750 0.668 0.695 0.633
0.724 0.574 0.489 0.478 0.383
1.67 0.574 0.517 0.692 0.698
0.413 0.306 0.357 0.292 0.334
0.032 0.422 0.453 0.481 0.481
1.113 0.371 0.423 0.441 0.414
0.202 0.578 0.681 0.563 0.545
0.986 0.551 0.512 0.401 0.430
1.417 0.645 0.433 0.436 0.458
1.843 0.232 0.396 0.480 0.523
0.567 0.416 0.441 0.397 0.357
0.106 0.667 1.147 1.248 1.159
-0.67 1.172 0.872 0.693 0.701
2.018 0.297 0.340 0.401 0.439
-0.245 0.538 0.566 0.490 0.566
0.116 0.329 0.376 0.373 0.406
1.216 0.820 0.799 0.891 0.868
1.682 0.485 0.427 0.465 0.447
0.291 0.305 0.363 0.317 0.299

0.451 1.460 1.332 1.007 0.953
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Table D8
Discrimination Parameter Estimate Biases for the 3PL-2PL (20 Items)

Sample Size
True
velues N=100 N=200 N=500 N=1000

0.873 0.320 0.204 0.151 0.098
1.409 0.245 0.165 0.192 0.256
0.831 0.247 0.247 0.086 0.103
1.676 0.110 0.091 0.185 0.133
1.218 0.019 0.100 0.092 0.077
1.457 0.163 0.126 0.077 0.135
1.054 0.221 0.032 0.119 0.106
1.318 0.228 0.302 0.237 0.159
1.3 0.459 0.378 0.186 0.105
0.924 0.716 0.481 0.320 0.188
1.378 0.143 0.056 0.115 0.153
0.54 0.348 0.037 -0.005 0.017
0.833 -0.121 -0.015 0.003 0.097
1.578 -0.110 -0.063 0.058 0.014
0.964 -0.089 0.078 0.132 0.100
1.3 0.394 0.331 0.256 0.147
0.603 0.214 0.172 0.112 0.107
1.444 0.173 0.147 0.093 0.071
1.858 0.001 -0.116 -0.054 0.001

0.599 0.160 0.051 0.065 0.068
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