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Sarus cranes (Grus antigone) are the tallest members of the crane family, Gruidae. 

They are found in four geographically distinct regions: northwest India (Indian Sarus- 

Grus antigone antigone), southeast Asia (Burmese Sarus- Grus antigone sharpei) and 

northern Australia (Australian Sarus- Grus antigone gillae). Although the three 

subspecies are morphologically distinct, their genetic distinctness is unclear. In this study, 

I focused on control region sequences of mitochondrial DNA (mtDNA) to assess the 

genetic and phylogeographic distinctness of Sarus subspecies. I used samples from four 

fragmented populations, seven from India, 16 from southeast Asia, five from Myanmar 

and eight from Australia. Phylogenetic trees were estimated using two Brolga crane 

sequences (G. rubicunda) as outgroups. All phylogenetic trees had low resolution, but 

AMOVA showed that all four Sarus populations are differentiated from each other. 

Nested clade phylogenetic analysis showed that most of the southeast Asian haplotypes 

are found at the center, suggesting that the Thai population includes the maximum 

number of ancestral haplotypes. Sarus cranes probably originated in southeast Asia and 

migrated both north towards India and south towards Australia during the last glacial 

maximum.  
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INTRODUCTION 

The Sarus crane (Grus antigone) is the tallest member of the crane family, 

Gruidae. Sarus cranes are found in northwest India, southeast Asia and Australia. Their 

range includes the plains of northern, northwestern, and western India, and the western 

half of Nepal’s Tarai lowlands. Indian Sarus cranes (G. a. antigone) are commonly found 

in the Indian states of Uttar Pradesh, Rajasthan, Gujarat, Haryana, Bihar and Madhya 

Pradesh. There are two small populations in southeast Asia, one in central Myanmar and 

another mostly in Cambodia, both known as Burmese Sarus (G. a. sharpie). The Burmese 

Sarus has also occasionally been reported during the breeding season in northern 

Myanmar, and a few individuals appear at the beginning of the monsoon season in the 

eastern Indian states of Tripura and Manipur (Ali 2002). The Australian Sarus (G. a. 

gillae) is currently found in northern Queensland, and in the vicinity of Port Roper, 

Northern Territory. 

The Indian and Burmese Sarus cranes were initially classified as distinct species 

on the basis of their body size and plumage (Blyth and Tegetmeier 1881).   White 

feathers make a collar between the reddish skin of the upper neck and the gray feathers of 

the lower neck in the Indian Sarus. The Indian Sarus have red flight feathers and have 

white tertiary remiges on the wings. The Indian Sarus is distinctly taller than its Burmese 

counterpart. Tertiary remiges are grey in the Burmese Sarus. Sharpe (1894) and Blanford 

(1895) gave Indian and Burmese Sarus subspecies status,  G. a. antigone and G. a. 

sharpei, respectively Sarus cranes were first observed in Australia in 1966. These cranes 

have grey tertiary remiges, and they are shorter than the Indian Sarus. The Australian 
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Sarus was initially considered to be  G. a. sharpei (Gill 1969, Archibald 1981). Later, on 

the basis of its darker plumage and larger ear patch, it was classified as a distinct 

subspecies, G. a. gillae (Schodde 1988).  

Although confidence in the anatomical and geographic distinctness of Sarus crane 

subspecies has increased in recent years (Meine and Archibald 1996), questions have 

arisen regarding their genetic distinctness and evolutionary history. Hence, 

phylogeographic study of these birds is essential. Phylogeography takes a population-

genetic and phylogenetic perspective on biogeography.   

 

PREVIOUS STUDIES  

           Dessauer et al. (1992) documented relatively low allozyme heterozygosity (H = 

0.024) in a sample of nine Australian Sarus, but did not assay the other subspecies. 

Krajewski and Wood (1995) studied sequence variation in the mitochondrial cytochrome-

b, tRNAThr and tRNAPro genes of Sarus cranes. This study revealed 0.7% to 1.5% 

sequence divergence among three individuals representing each of the subspecies. Wood 

and Krajewski (1996) added the ND6 (NADH dehydrogenase subunit-6) gene to the 

previous three genes as well as more Sarus individuals. The Brolga crane (Grus 

rubicunda), which is thought to be the closest relative of Sarus (Archibald 1976), was 

used as an outgroup. The 1,831-base-pair alignment consisted of nine unique haplotypes. 

Phylogenetic analysis revealed reciprocal monophyly among the nominal subspecies. 

Wood and Krajewski (1996) concluded that there may not have been any long-term 

isolation among subspecies, especially between the Indian and Burmese populations, 

which had a parapatric distribution until the mid-1900s.  
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Jones et al. (2005) studied the subspecific status of Sarus populations using 

microsatellite DNA markers. They genotyped 39 samples from India, Myanmar, Thailand 

and Australia. They reported that the Indian, Myanmar and Thailand (southeast Asian) 

populations were similar in terms of gene diversity (He), heterozygosity (Ho) and allelic 

richness (ranges 0.30–0.37, 0.27–0.35, and 2.15–2.53, respectively). In the Australian 

population, gene diversity (He), heterozygosity (Ho) and allelic richness were 0.21, 0.17 

and 1.78, respectively, and significantly lower than the other three populations. 

Moreover, Analysis of Molecular Variance (AMOVA) showed an overall Fst value of 

0.21 (p<0.05). Jones et al. (2005) showed the estimates of Fst were significantly lower 

between populations that are geographically closer to each other. They suggested that the 

Myanmar population is an introgression zone between Indian and southeast Asian 

populations. The Indian population had the highest number of private alleles, while the 

Australian population had a higher inbreeding coefficient (f=0.18).  

 

CURRENT STUDY 

In my study, the control region, a noncoding area of the mitochondrial genome, 

was sequenced. Light-strand replication of mitochondrial DNA starts in the control 

region (Fish et al. 2004). Although certain domains within the control region are 

conserved, it has large regions that are highly variable. This makes it useful for the study 

of recent evolutionary history (Larizza et al. 2002). The control region has been 

extensively used for this purpose in many vertebrate species, including Neotropical cats 

(Salzano et al. 1998) and humans (Saccone et al. 1992). Rhymer et al. (2001) used 

mtDNA control region to estimate the intra and inter population divergence of Sndhill 
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cranes. Later, Morozov et al. (2004) used 490 bp of the control region to evaluate inter- 

and intra-population divergence in Siberian cranes. My study uses a larger sample of 

individuals (36) than employed in the previous mitochondrial study of Sarus cranes. My 

goal was to assess the genetic and phylogeographic distinctness of the Sarus populations 

using highly variable domains in the control region. 

 

Objectives  

I analyzed the control region of the Sarus mitochondrial DNA to address the 

following questions: 

• Are the Sarus populations differentiated from each other?  

• Is the Australian population the only one that is genetically distinct?  

• Is there any discernable (statistically significant) differentiation between the 

Thailand and Myanmar populations?  

• Are genetic and geographic distances correlated among the four Sarus 

populations? 

• Do the control region data yield insight into historical range expansions and / or 

contractions?  
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MATERIALS AND METHODS 

SAMPLING DESIGN 

This study analyzed mitochondrial DNA variation in a sample of 36 Sarus cranes. 

These same animals were used in the microsatellite study of Jones et al. (2005). Five 

blood samples were collected from Myanmar and 16 were obtained from southeast Asia 

by International Crane Foundation (ICF) personnel. Other samples were donated by zoos 

in the United States and by the International Crane Foundation, including eight samples 

from India and nine samples from Australia (Table 1). Three other DNA samples−one 

from India (extraction number 262), one sample from Thailand (extraction number 56) 

and one from Australia (extraction number 73)−could not be amplified by PCR, and so 

were not used in this study. The Brolga crane (Grus rubicunda) was used as the outgroup 

because it has been shown to be the closest living relative of Sarus cranes (Krajewski et 

al. 2010). 

 

TECHNICAL PROTOCOLS 

DNA Extraction and Polymerase Chain Reaction (PCR) 

DNA from Sarus cranes was extracted by Wood and Krajewski (1996), who 

described the laboratory protocol. About one third of the control region (487 bp, 

including Domain I and part of Domain II) was amplified using PCR with the primer 

combination L16707 (5’-GTACTGGATTACATTCAG-3’) (C. Krajewski unpublished) 

and H0778 (5’-ACGAATACCATGTATGC-3’) (Rhymer et al. 2001). PCRs were carried 

out in 50µl, containing 25µl of 2X PCR Master mix (Promega Corporation, Madison 

WI), 5µl of 20µM stock solutions of each  primers, 4µl (10 ng/µl) DNA template and 
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16µl of dd H2O. The 2X PCR Master mix contained 0.05u/µl of Taq DNA Polymerase 

(recombinant), reaction buffer, 4 mM MgCl2, 0.4 mM of each dNTP (dATP, dCTP, 

dGTP, dTTP). Thermal cycling started with 5 min denaturation at 94°C, followed by 35 

cycles of denaturation (94°C, 1 min), annealing (50°C, 1 min) and primer extension 

(72°C, 1 min); PCR concluded with a terminal extension at 72°C (7 min) and final 

holding at 4°C. PCRs produced a single band of approximately 487 bp for all 36 Sarus 

samples. 

 

PCR Purification and DNA Quantification 

PCR products were purified using Qiagen QIAquick PCR Purification Kit 

(Qiagen Inc.) following the manufacturer’s protocol. PCR products were  quantified 

using a fluorometer (Hoefer DyNA Quant 200) following the manufacturer’s protocol. 

PCR products were sent to Functional Biosciences Inc., Madison, Wisconsin, for DNA 

sequencing using BigDye cycle sequencing chemistry on capillary auto sequencers. 

 

DATA ANALYSIS 

Sequence Alignment and Basic Statistics 

Sequences were aligned and edited using BioEdit (Ibis Biosciences, Carlsbad, CA 

92008). The number of polymorphic sites (S) was counted using MEGA 4.0 (Tamura et 

al. 2007). The diversity parameter θ, which is a product of the mutation rate across the 

entire DNA sequence and the effective population size was calculated both manually and 

with the help of Arlequin 3.1 (Excoffier et al. 2005). Estimates of the diversity parameter 

θ  were calculated manually from the estimates of number of polymorphic sites (S) and 
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the estimates of nucleotide mismatches (П) based on the expectations: E(S) = 

θ(1+1/2+1/3+…+1/n-1) where n is the number of sequences and, E(П) = θ. Comparing the S 

and ∏ estimates of θ is one of the ways to detect departures of the sequences from 

neutrality and steady state assuming the infinite-sites model (Tajima 1989a). The number 

of nucleotide mismatches (П), (defined as the average number of nucleotide differences 

between any pair of aligned sequences) was calculated in the same way. The nucleotide 

diversity (π) was also calculated by dividing the nucleotide mismatches (П) by the total 

length of sequence. The mean number of pairwise differences was estimated from the 

equation:  

 

Where  
^dij is an estimate of the number of mutations since the divergence of haplotypes i 

and j, k is total the number of haplotypes, pi is the frequency of haplotype i, and n is the 

sample size.  Because the sample size is below 50, the sampling bias was reduced by 

multiplying the estimate by n/(n-1). These pairwise genetic distances were averaged for 

all comparisons between haplotypes from different populations to obtain estimates of 

genetic distances between populations. The statistical significance of the genetic 

distances between populations was tested using permutations (Tajima 1993).  

To find out whether the DNA sequences are evolving neutrally or under selection, 

Tajima’s D was calculated and significance was tested using Arlequin 3.1. When 

demographic parameters are estimated from population genetic data, it is assumed that 

the genetic marker used is selectively neutral or, for practical purposes, can be considered 
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neutral. Tajima’s D (Tajima 1989a) is a commonly used statistical test to test whether the 

observed variability in DNA sequences conforms to neutral expectations. Tajima’s D is 

based on the difference (d) between the two estimators of θ, ∏ and S.  If the DNA 

sequences are evolving neutrally, then the two estimates of θ will be fairly close and as a 

result (d) will be a very small value.  

D is calculated by dividing d by the square root of its variance (standard 

deviation)   . So, D = d/ . The significance of Tajima’s D is tested by 

taking the null hypotheses of no selection, i.e., the sequences are evolving neutrally.  

The estimates of θ obtained can yield estimates of the effective population size 

(Ne) using the equation θ =2Neµ, where µ is the mutation rate across the entire sequence. 

The effective population size is the number of individuals in a theoretically ideal 

population having the same magnitude of random genetic drift as the actual population. 

Effective population size is directly proportional to the diversity parameter θ; for a given 

mutation rate, θ increases with increase in population size. 

Based on the effective population size, obtained in the above paragraph, a 

coalescent tree was drawn using Mesquite 2.72 software package (Maddison and 

Maddison 2009). 

Mismatch distributions (distributions of pair-wise substitution differences between 

pairs of haplotypes in a population) were analyzed using the demographic expansion 

model (Rogers and Harpending 1992).  If the population expansion is recent or the 

population is going through a bottleneck, a unimodal distribution will be seen, while 

long-term stable populations or slowly declining populations will show a multimodal 

mismatch distribution (Rogers 1995). The distribution of pairwise differences (mismatch 
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distribution) between pairs of haplotypes was obtained using Arlequin 3.1 and plotted 

using Excel. The mismatch distribution and population expansion model can be explained 

from the following equations: suppose, θ0 = 2N0µ; θ1 = 2N1µ; and τ = 2µt, where the 

initial effective population size, N0, suddenly changes in size to N1 at τ units of 

mutational time. τ can be estimated from µ, the mutation rate per generation of the entire 

nucleotide sequence studied and t, the number of generations since expansion.  So, the 

estimated number of generations (t) before which population expansion took place can be 

estimated from the equation: τ/2µ, if µ and τ are known. 

 

Phylogenetic Trees 

Minimum evolution and maximum parsimony trees were generated in MEGA 4.0. 

1000 bootstrap resamplings were performed for both trees. ModelTest (Posada and 

Crandall 1998) was used to choose the best-fitting model of nucleotide substitution for 

the data. The best model was selected on the basis of AIC (Akaike’s information 

criterion) and BIC (Bayesian information criterion) values. After model selection, the 

maximum likelihood tree was inferred with PhyML 3.0 (Guindon and Gascuel 2003). 

MrBayes 3.1 (Huelsenbeck and Ronquist 2001, Ronquist and Huelsenbeck 2003) was 

used for Bayesian analysis. For Bayesian analysis, the nucleotide substitution model 

option was changed to the best model suggested by the Model Test. The analysis was run 

for 1,000,000 generations with a sampling frequency of 10 to get at least 1,000 samples 

from the posterior probability distribution. The analysis was stopped when the standard 

deviation of split frequencies fell below0.01.  The default values were used for all other 

options. Two runs of the Bayesian analysis were carried out. 

http://mrbayes.csit.fsu.edu/wiki/index.php/References#Huelsenbeck2001
http://mrbayes.csit.fsu.edu/wiki/index.php/References#Ronquist2003
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Analysis of Molecular Variance (AMOVA) 

In order to find out whether the four Sarus populations are genetically distinct, 

Analysis of Molecular Variance (AMOVA) was implemented by Arlequin v 3.1. The 

question whether only the Australian population is significantly different and the other 

three Sarus populations are not differentiated, or whether all four populations are 

significantly differentiated from each other, was addressed by conducting AMOVA with 

and without the Australian population, and by comparing the Fst  The DNA sequences 

were entered in the form of a text file in Arlequin. In AMOVA settings of Arlequin, the 

distance option was changed to Nei’s pairwise difference. Arlequin calculates and makes 

a matrix of distances from the entered DNA sequences and yields sums of squares for the 

various hierarchical levels of the population. It then analyzes the sum of squares using 

nested ANOVA (Analysis of Variance). The variance components of this nested design 

are used to calculate F statistics (Fst,). Arlequin also  provided pairwise Fst values among 

the four populations. The statistical significance of these estimates was tested against the 

null hypothesis of no differentiation among the populations using Arlequin. 

 

Nested Clade Phylogenetic Analysis (NCPA) 

Nested clade phylogenetic analysis was performed using the Automated Nested 

Clade phylogenetic Analysis (ANeCA) software (Panchal 2007) in order to investigate 

phylogeographic patterns in the dataset. ANeCA uses TCS v 1.21 (Clement et al. 2000) 

to generate a haplotype network following an algorithm recommended in Templeton 

(1992). This algorithm not only estimates the unrooted haplotype tree but simultaneously 
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provides a 95% plausible set for all haplotype linkages in the unrooted tree. A nested 

cladogram is generated in which e individual haplotypes (referred to as “0-step clades”) 

separated by a single mutation are grouped together into “one-step clades” proceeding 

from the tips to the interior of the network, then one-step clades separated by a single 

mutation are grouped  in “two-step clades”, and so on, until all haplotypes are included in 

the network.   

Geodis (Posada et al. 2000) was used to examine whether there was any 

geographical association between the evolutionary history of the haplotypes as 

represented by the TCS network and the geographical locations of the haplotypes. 

GeoDis requires geographical information in the form of the latitude and longitude 

coordinates for each population. Exact geographical information for the Sarus crane 

samples is unavailable. Therefore, the latitude and longitude of the city or park that lies 

nearly at the center of each of the four populations were used as an approximation. For 

the Indian population, this landmark was Bharatpur, Rajasthan; for the Burmese 

population, it was Bagan, Central Myanmar; for the southeast Asian population, it was 

Nam Yuan, a city situated within the range of Kulen Prum Tep wildlife sanctuary (Laos); 

for the Australian population, it was Lakefield National Park, Queensland.  

 

Mantel Test 

A Mantel test was carried out to assess whether there is any correlation between 

geographic distances and genetic distances among the four Sarus populations. This 

procedures tests for an association between two or more independent dissimilarity 

matrices describe the same groups or entities. The first step in the Mantel test is to 
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calculate the sample correlation r for the two dissimilarity matrices. Then the values of r 

under the null hypothesis (of no association between the matrices) are generated using a 

randomization procedure, where the rows and columns of the matrices are randomly 

permuted and the significance is tested. In the current study, the two matrices were the 

genetic and geographic distance matrices. The geographic distances were calculated as 

for the GeoDis analysis (see above). Genetic distances were Nei’s average pairwise 

differences (Nei et al. 1979). 
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RESULTS 

SEQUENCE ALIGNMENT AND BASIC STATISTICS 

A total of 36 mitochondrial DNA sequences, 487 base pairs each, were obtained. 

The alignment revealed twenty polymorphic sites (S). The nucleotide diversity (П) was 

5.41(Table 2).  

The value of θ obtained from S was 4.83, and is fairly close to the П-based 

estimate of 5.41, suggesting neutral sequence evolution. 

In the current study, Tajima’s D was non-significant (overall D = 0.37768, P = 

0.67925), suggesting the sequences are evolving neutrally (Table 3).  

Using Rhymer et al.’s (2001) estimate of mutation rate [3.4x10-6 per nucleotide 

site] and S estimate of θ 

 Ne = 4.83/(2x3.4x10-6x487) ≈ 705882/487 ≈ 1449.  

The Ne computed above can be further used to obtain estimates of the total 

population size (census size). Because mitochondrial sequences are being used, the Ne 

value computed above estimates the number of breeding females in the Sarus population. 

In a typical Sarus population, breeding females constitute 30% (Wood and Krajewski 

1996). Thus, the total population size is (Nf x100/30) approximately 5,000 birds. This 

estimate considers that the generation time of Sarus cranes is 12.5 years but Sarus 

actually live longer than that. So, the census size is higher (20,000 birds worldwide) than 

that estimated from Ne. 

In the current study, the distribution of pairwise mismatches was unimodal 

(Figure 1). The graph shows 6 mismatches as the modal class. Using the equations from 
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mismatch distribution and population expansion model, described in the method section, 

the following numbers were calculated: 

If 3.4 x 10-6 = mutation per nucleotide site per generation (Rhymer et al. 2001),  

Then, µ = 3.4 x 10-6x 487 = 1.65 x 10-3 mutations in the entire nucleotide sequence 

studied per generation 

τ = 2µt, where τ = units of mutational time and t = number of generations since 

population expansion) 

τ = 5.37158 (from Arlequin output) 

So, t = τ/2µ = 5.37158/2x1.65x10-3 = 1627 generations 

So, 1627 generations back the initial effective population size N0 suddenly changed to 

N1. 

 

PHYLOGENETIC TREES 

Minimum evolution (Figure 2) and maximum parsimony (Figure 3) trees showed 

very little resolution. All nodes have small bootstrap values, particularly in the maximum 

parsimony tree. The smallest AIC and BIC values (Table 5) were obtained for the 

TrN+I+G model (Tamura and Nei model with gamma distributed rate variation across 

sites and a proportion of invariable sites. The maximum likelihood tree (Figure 4) also 

had extremely small bootstrap values on most nodes. Due to the absence of the TrN+I+G 

model in MrBayes (Huelsenbeck and Ronquist 2003; Ronquist and Huelsenbeck 2005), I 

used the next best model, HKY+I+G (Hasegawa, Kishino and Yano model with gamma 

distributed rate variation and a proportion of invariable sites (Hasegawa et al. 1985) with 

AIC = 2082.6287 and BIC = 2372.3904 (Figure 5).  
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ANALYSIS OF MOLECULAR VARIANCE (AMOVA) 

 AMOVA partitioned the total genetic variation in the sequence data into within- 

and between-population components. The differentiation between the four Sarus crane 

populations, represented by the overall Fst , was 0.22408 (P <0.0001). The within-

populations component of the total variance was 77%. AMOVA carried out without the 

Australian population produced a lower Fst of 0.16953 (P < 0.0001). Pairwise 

comparisons (Table 7) of fixation indices revealed that the Myanmar and southeast Asian 

populations are significantly differentiated from each other (Fst = 0.21, P < 0.0001).  Fst  is 

lowest for the Indian-southeast Asian pair (Fst = 0.094, P = 0.018) and highest for the 

Australian-Burmese pair (Fst = 0.389, P < 0.0001). 

 

NESTED CLADE PHYLOGENETIC ANALYSIS 

 The network of haplotypes produced by NCPA showed that  haplotypes from 

southeast Asia were mostly present at the center, while the haplotypes from the other 

three populations were commonly found in at or near the tips. One of the southeast Asian 

haplotypes (extraction number 65) gave rise to three clades and those three clades gave 

rise to the entire cladogram (Figure 6). 

 GeoDis revealed that there are two higher-order clades in the nested cladogram  

with significantly small (293.7016 and 594.6105, respectively) interior Dc (distance 

between clades) and Dn (distance between nested clades) values (508.128 and 1139.6241, 

respectively). The chi-square values of those two clades were 7.2727 (P <0.01) and 

56.9424 (P< 0.01), respectively. The nested cladogram does not show the pattern of 
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completely non-overlapping ranges within the nested clade series. The GeoDis inference 

key (Posada et al. 2006) suggests that this kind of condition may imply restricted gene 

flow between populations with isolation-by-distance or allopatric fragmentation. 

 

MANTEL TEST 

Pairwise geographic and genetic distances among the four Sarus populations are 

shown in Table 8 and Table 9, respectively. Mantel test revealed a correlation coefficient 

of 0.336 (bootstrap 95% confidence interval -0.68, 0.74) between the genetic and 

geographic distances of the haplotypes. The significance test for this correlation produced 

a non-significant P value (0.447). 

 

COALESCENT TREE 

The coalescent tree, based on the effective population size, drawn using Mesquite 

2.72 software package (Maddison and Maddison 2009) revealed that approximately 1650 

generations back population expansion took place (Figure 8). 
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DISCUSSION 

CONTROL REGION AS A MOLECULAR MARKER 

              Studies conducted on the mitochondrial genes cytochrome b and ND6 by 

Krajewski et al. (1995) and Wood and Krajewski (1996), as well as the microsatellite 

analysis by Jones et al. (2005), did not reveal any phylogenetic distinction among the 

four Sarus populations. In the current study, I used the control region, the most variable 

portion of the mitochondrial genome, to assess differentiation between populations. 

While the control region is the most variable part of mitochondrial DNA, it is less 

variable than microsatellite loci. The main advantage of using mitochondrial DNA for 

analyses of this nature is its inheritance pattern. Mitochondrial DNA is only inherited 

maternally. This avoids complications arising from recombination in biparentally 

inherited genetic markers, including microsatellites. The variations seen in mitochondrial 

DNA, especially in the noncoding control region, are potentially only due to drift and 

migration and, as a result, are more suitable for inferring past demographic processes.. 

 

DIFFERENTIATION OF SARUS POPULATIONS               

             All phylogenetic trees obtained in this study showed very low resolution. 

 This is expected because the subspecies represent recent divergences among populations. 

AMOVA, on the other hand, considers the evolutionary history of the haplotypes and 

their frequencies, which are affected by demographic history. Drawing phylogenetic trees 

may not be the best method for finding out variation between haplotypes, which are one 

or two mutations apart from each other, producing very low level of genetic variations 

among each other. Methods like AMOVA, which incorporates the demographic histories 
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of the haplotypes (Excoffier, 2005) worked better in this case showing that all Sarus 

populations are genetically distinct, which the control region phylogeny did not tell us.  

             There are, however, some limitations associated with AMOVA. First, 

AMOVA uses permutation tests to evaluate the null hypotheses of no population 

structure within and between groups. With few populations per group, between-group 

structure might be impossible to detect because only a few permutations of the sampled 

populations are possible (Fitzpatrick 2009).  The second limitation arises when the 

variance within population is very high. As a result, very large sample sizes are required 

to detect significant differences between populations (Hedrick 1999). High within 

population variance can be frequently encountered with highly variable genetic markers 

like microsatellites and the control region. In this study, I had 34 unique haplotypes and 

two shared haplotypes. There was a high level of variation within populations.The 

problem of higher within population variance did not affect the current study. 

Analysis of molecular variance with all four Sarus populations revealed a 

statistically significant Fst estimate; AMOVA without including the Australian population 

also produced a significant Fst, suggesting that the three Asian populations are  

genetically differentiated from each other. Pairwise Fst values corroborate this, showing 

that all four populations have differentiated from each other, including the Myanmar-

southeast Asian pair (Fst = 0.21, P < 0.0001). The latter is expected because currently 

these two populations have a very restricted distribution, one in a small area at Began in 

northwest Myanmar and the other in southern Thailand near the Thailand-Cambodia 

border. The aerial distance between these two regions is around 570 km. Being a non-

migratory bird, it is unlikely that Sarus disperse across this distance and interbreed. Also, 
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the rapid loss of wetland breeding areas in Myanmar over the last few centuries may have 

affected Sarus populations. Extirpation of the southeast Asian Sarus population (Barzen 

and Seal 2000) would have also caused a reduction of gene flow between the southeast 

Asian and Myanmar populations. The Indian Sarus population is vastly separated from 

the Myanmar population (aerial distance between Began and Bharatpur is approximately 

2500 km). Sarus cranes are absent in eastern India, with the exception of Tripura and 

Manipur where a few birds have been reported during the monsoon season, but these 

cranes are part of the southeast Asian population (Ali 2002). The isolation between 

Indian and Myanmar populations is probably very recent. These two populations 

maintained a parapatric distribution across the Yamuna River in Bangladesh until the mid 

1900s (Wood and Krajewski 1996). The rapid loss of wetlands and increasing wetland 

pollution in eastern parts of India is probably responsible for the extirpation Sarus 

populations there.  

A higher number of private alleles at microsatellite loci were seen in the Indian 

population (Jones et al. 2005), possibly because it has maintained a higher effective 

population size. The Indian population is the only Sarus population in Asia that is 

increasing in size (Archibald et al. 2003) and it is well adapted to humans. My results 

suggests that the Indian population is genetically closer to the southeast Asian population 

(pairwise Fst =0.094 and mean genetic distance = 0.43) than to the Myanmar population 

(pairwise Fst = 0.295 and mean genetic distance = 2.33). The nested cladogram also 

supports this, revealing that the Indian birds are one or two mutations away from the 

southeast Asian birds, but are at least four mutations away from the Myanmar population.  

India, Myanmar and Cambodia are all parts of the Asian mainland. In contrast, the 
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Australian  population is far from the southeast Asian population (aerial distance 

approximately 7800 km). Therefore, it is not surprising to find that the Australian 

population is significantly different from the other three. Sarus cranes are not found in 

Malaysia, Indonesia or New Guinea, which lie between Thailand and Australia.  

 

DIGGING THE PAST: ORIGIN AND RANGE EXPANSION OF SARUS 

             The mismatch was unimodal, suggesting a relatively recent population 

expansion. If we consider the average lifespan of Sarus as 12.5 years (Wood and 

Krajewski 1996), then the upper limit of the population expansion will be tentatively 

20,000 (1627 x 12.5) years ago, when the effective population size suddenly changed 

from N0 to N1 as described above. This falls within the timeframe of Late Pleistocene 

glacial cycles. This time period is also supported by the coalescent tree (Figure 8), which 

showed that all four Sarus populations shared a common ancestor nearly 1650 

generations back. The haplotype network from NCPA revealed that most of the ancestral 

(interior) haplotypes belong to the southeast Asian population. The nesting of haplotypes 

(Figure 7) showed that one-step clades are either exclusively  haplotypes from the same 

population or  only include southeast Asian haplotypes. For example, the Indian and 

Myanmar haplotypes are never seen together in either one-step or two-step clades. This 

clearly shows that the southeast Asian Sarus are genetically close to all other Sarus 

populations. The Sarus population probably  originated somewhere in southeast Asia and 

expanded northwards using the huge corridor of the Asian mainland during the Last 

Glacial Maximum (LGM), 20,000 years ago, when  Thailand and Indonesian islands as 

far east as Borneo and Bali were connected  in a landmass called Sundaland 

http://en.wikipedia.org/wiki/Indonesia
http://en.wikipedia.org/wiki/Borneo
http://en.wikipedia.org/wiki/Bali
http://en.wikipedia.org/wiki/Sundaland
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(Sathiamurthy and Voris 2006).  The Philippines were also connected to this landmass by 

the Sibutu Passage and the Mindoro Strait.  Sarus populations may have dispersed to 

Philippines too. The Sarus populations appear to be extirpated in Indonesia, Malaysia and 

Philippines (Madsen 1981).  

During LGM, Australia and New Guinea were connected, forming Sahulland. The 

width of water gaps between the two continents Sundaland and Sahulland, were 

considerably smaller than the current locations of Australia and southeast Asia 

(Sathiamurthy and Voris 2006), due to smaller water gaps in Wallacea (a group of 

Indonesian islands), which lie between Sundaland and Sahulland. Thus, dispersal of 

Sarus cranes from Sundaland to Sahulland may have occurred during the LGM. At the 

end of the LGM, the largely terrestrial connection between southeast Asia and Australia 

was lost and gene flow between these two populations may have stopped, resulting in 

their genetic distinction. The results of the GeoDis analysis support this, suggesting 

isolation among these populations took place due to distance or restricted gene flow 

(allopatric fragmentation).  

 

COMPARISON OF CONTROL REGION AND MICROSAT STUDIES 

            Control region results reported here agree with the microsatellite study by Jones et 

al. (2005) in terms of overall Fst values (Fst = 0.21 in microsat study and Fst = 0.224 in 

this study), suggesting genetic differentiation of the four Sarus populations. However, 

pairwise Fst values were quite different in the current study than those for microsatellites. 

The microsatellite study found that the pairwise values were lower between populations 

that are closer geographically (Fst for Indian-southeast Asian = 0.25 and Indian-Myanmar 

http://en.wikipedia.org/wiki/Sibutu_Passage
http://en.wikipedia.org/wiki/Mindoro_Strait
http://en.wikipedia.org/wiki/Australia
http://en.wikipedia.org/wiki/New_Guinea
http://en.wikipedia.org/wiki/Sahulland
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= 0.18), but in the current study  the Fst of the Indian-southeast Asian pair was 

significantly smaller (Fst = 0.09) than that of the Indian-Myanmar pair (Fst = 0.29) (Table 

7). Also, Jones et al. (2005) found very little micosatellite diversity among the Asian 

Sarus populations, especially between Myanmar and southeast Asia. However, the 

control region revealed significant differentiation between the Myanmar and southeast 

Asian populations (Fst = 0.21, P < 0.0001). 

 

CONSERVATION ASPECTS 

          The effective population size (Ne) estimated in this study is nearly 1500. As 

mentioned before, the Sarus populations appear to be extirpated in Indonesia, Malaysia 

and Philippines. Luzon Sarus (Grus antigone luzonica) is now extinct. IUCN has already 

given ”vulnerable” status to the Sarus crane and the population is declining. Its status 

may change to” critical”  in the near future if proper management plans are not 

implemented. Proper conservation measures should be taken immediately to protect these 

birds, especially in southeast Asia, where they are suffering from extensive population 

fragmentation caused by dramatic reduction of habitat.  Saving and conserving the 

wetlands in southeast Asia may be one major management step forward to save these 

birds. Conservation measures should also be taken to prevent further extirpation of Sarus 

from Southeast Asia. This study has shown that all four Sarus populations are genetically 

distinct from one another. Also, there are 34 unique haplotypes out of 36 samples used in 

this study. So, there is great variation within each Sarus population, Sarus populations 

should be conserved and managed as separate gene pools. As all four Sarus populations 

are genetically distinct from each other, the possibility of out-breeding depression exists 
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if the birds from two different populations are crossed. So, to avoid out-breeding 

depression, the crossing of birds between the different Sarus populations should be 

avoided until crossing becomes an absolute necessity to avoid more serious inbreeding 

depression. (Chalesworth and Charlesworth, 1987; Crnokrak and Roff, 1999; Frankham, 

2010). 
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Table 1. Scientific names and the sources of the samples used in this study. 

 

Species                              Extraction No.                              Specimen Data      

Grus antigone gillae                        5                                                         ICF1 8-28, UWZM2 630 

                                                        17                                                        ICF 8-39, UWZM 632 

                                                        46                                                        ICF 8-19, UWZM 646 

                                                        72                                                        ICF 8-28, UWZM 651 

                                                        73                                                        ICF 8-36, UWZM 652 

                                                        99                                                        ICF 8-32, UWZM 631  

                                                      100                                                        ICF 8-38, UWZM 689 

                                                      102                                                        ICF 8-37, UWZM 708 

                                                      103                                                        ICF 8-31, UWZM 705 

 Grus antigone sharpei               55-71                                                     13-17 

                                                    312-316                                                 Burma, #1- Burma, #5 

Grus antigone antigone               77                                                         ICF 8-45 

                                                     78                                                         ICF 8-44 

                                                    222                                                       St. Louis Zoo 

                                                    252                                                       A00225, Miami Metro Zoo 

                                                    253                                                       A03709, Miami Metro Zoo 

                                                    254                                                       80-757, Baltimore Zoo 

                                                    262                                                       ISIS 374 Sunset Zool Park 

                                                    263                                                       ISIS 375 Sunset Zool Park     

                                                       

1ICF stands for International Crane Foundation 

2UWZM stands for University of Wisconsin Zoological Museum 

3Arbitrary numbers assigned to blood samples from captive birds in Thailand. No voucher data. 

 

http://www.zoology.wisc.edu/uwzm/
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Table 2. Nucleotide diversity within and among four Sarus populations. 

 

                      No. of               No. of        Polymorphic    Nucleotide              
Population Samples        Substitutions      Sites           mismatches (∏)   θ from S   
  

  Indian                 7                  17                   16                  7.286                  6.53061         

  Southeastern     16                 15                   15                  4.467                  4.52048         

  Myanmar            5                   4                     4                  2.000                  1.92000           

  Australian           8                  11                  10                  4.357                   3.85675           

  Overall               36                                       20                  5.41                     4.83             
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Table 3. Tajima’s D test. 

 

                 Indian            Southeastern       Myanmar              Australian          Overall 

 

Tajima’s D 0.64161          -0. 04664               0.27345                   0.64229          0.37768 

P Value      0.76400             0.52400               0.67200                   0.75700          0.67925 
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Table 4. Population average pair-wise differences. 

 

                     Indian                         Southeastern             Myanmar            Australian 

                 

                 Indian              7.28 

 

                Southeastern    0.43 (P = 0.003)            4.47                  

                

                Myanmar         2.33 (P = 0.03)            1.22 (P = 0.34)              2.00              1.62 (P < 0.01)    

                

                Australian       1.61 (P <0.01)              1.62 (P < 0.01)             2.32 (P < 0.01)         4.36 

 

 

 

 

 

 

 

 

 

 

 

 



 28

Table 5. AIC and BIC scores for different ML models. 

                            

                          Model                 -lnL           K               AIC                BIC 

                           TrN+I+G         944.9846     9           2073.3383       2366.4654 

                           TIM2+I+G       944.0125     8           2074.2309      2370.7096 

                           TrN+I               949.1183     6           2078.7829      2368.5446 

                           HKY+I+G       951.0412     6           2082.6287      2372.3904 

                           GTR+I+G        948.0543     8           2088.0297      2391.1697 

                           HKY+I            955.5336     5           2088.8044      2375.1870 

                           TVM+I+G       950.1051     9           2089.2667      2389.0831 

                           GTR+I             951.2605     9           2091.5776      2391.3940 

                           K80+I+G         962.8741     3           2097.9080      2377.4915 

                           K80+I              966.0745     2           2101.5403      2377.7041 
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Table 7. Pair-wise Fst. 

 

                           Indian                      Southeastern            Myanmar             Australian 

                  
                Indian 

 

               Southeastern Fst = 0.09 (P = 0.02) 

 

               Myanmar     Fst = 0.29 (P = 0.01)    Fst = 0.21 (P<0.01) 

 

Australian    Fst = 0.22 (P <0.01)     Fst = 0.27 (P< 0.01)     Fst = 0.39 (P<0.01)       
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Table 8. Pair-wise geographical distances among four Sarus populations in km. 

 

                          Southeastern               Australian               Indian                 Myanmar 

Southeastern              

Australian        7274.1 

Indian               2493.9                           9677.8 

Myanmar         559.2                             7808.1                     1934.8 
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Table 9. Pair-wise genetic distances (Nei’s) among four Sarus populations.  

 

                         Southeastern                 Australian              Indian                  Myanmar 

Southeastern            

Australian        1.61935 

Indian               0.42738                          1.610714 

Myanmar         1.21667                          2.32143                  2.32857 
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Figure 1: Pair-wise nucleotide mismatch distribution, comparing the number of 
mismatches between a pair of sequences with the frequency of that mismatch in the 
population. 
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Figure 2: Minimum Evolution tree with bootstrap values. The nodes with less than 50% 
bootstrap support have been collapsed. S designates Grus antigone sharpei, G designates 
Grus antigone gillae, A designates Grus antigone antigone and R designates Grus 
rubicunda. The numbers associated with the haplotypes suggest the extraction numbers 
of those samples. 
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Figure 3: Maximum parsimony tree with bootstrap values. The nodes with less than 50% 
bootstrap support have been collapsed. S designates Grus antigone sharpei, G designates 
Grus antigone gillae, A designates Grus antigone antigone and R designates Grus 
rubicunda. The numbers associated with the haplotypes suggest the extraction numbers 
of those samples. 
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Figure 4: Maximum likelihood tree, using TrN+I+G model with bootstrap values. The 
nodes with less than 50% bootstrap support have been collapsed. S designates Grus 
antigone sharpei, G designates Grus antigone gillae, A designates Grus antigone 
antigone and R designates Grus rubicunda. The numbers associated with the haplotypes 
suggest the extraction numbers of those samples. 
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Figure 5: Bayesian phylogenetic tree, using HKY+I+G model with bootstrap values. The 
nodes with less than 50% bootstrap support have been collapsed. S designates Grus 
antigone sharpei, G designates Grus antigone gillae, A designates Grus antigone 
antigone and R designates Grus rubicunda. The numbers associated with the haplotypes 
suggest the extraction numbers of those samples. 
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Figure 6: Haplotype network of Sarus haplotypes. “A” designates Australian Sarus, “T” 
designates southeast Asian Sarus, “I” designates Indian Sarus and “B” designates 
Myanmar Sarus. The black balls designate the mutation steps. The numbers associated 
with the haplotypes are their extraction numbers. The haplotypes are given four different 
colors on the basis of the population, they belong to: Indian Sarus green, Australian Sarus 
yellow, Burmese Sarus red and southeast Asian Sarus have blue color. 
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Figure 7: Nesting of Sarus haplotypes. “A” designates Australian Sarus, “T” designates 

southeast Asian Sarus, “I” designates Indian Sarus and “B” designates Myanmar Sarus. 

The black balls designate the mutation steps. The numbers associated with the haplotypes 

are their extraction numbers. The one-step, two-step, three-step clades are separated by 

boxes. 

 

 

 

 

 

 

Figure 7: The nesting of Sarus haplotypes. “A” designates Australian Sarus, “T” 
designates southeast Asian Sarus, “I” designates Indian Sarus and “B” designates 
Myanmar Sarus. The numbers associated with the haplotypes are their extraction 
numbers. The one-step, two step and three-step clades are separated by boxes. The 
haplotypes are given four different colors on the basis of the population, they belong to: 
Indian Sarus green, Australian Sarus yellow, Burmese Sarus red and southeast Asian 
Sarus have blue color. 
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Figure 8: Coalescent tree for the four Sarus populations. “G” designates Australian 
Sarus, “S” designates southeast Asian Sarus, “A” designates Indian Sarus and “B” 
designates Myanmar Sarus. The numbers associated with the haplotypes are their 
extraction numbers. The side bar designates the generation time. 
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