Alumnus

Southern Illinois University Office of Alumni Services

Follow this and additional works at: https://opensiuc.lib.siu.edu/alumni_mag

Recommended Citation

This Article is brought to you for free and open access by the SIU Alumni Association at OpenSIUC. It has been accepted for inclusion in SIU Alumni Magazine by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
In Remembrance . . .

Ted Ragsdale, professor of elementary education at Carbondale and the only SIU alumnus ever to be named the Alumni Association’s Great Teacher, died November 5 after suffering a heart attack. He was 65. Dr. Ragsdale served as president of the Alumni Association in the 1940’s and received the coveted Great Teacher title with its $1,000 cash prize in 1969. He had been honored in June with a 45-year service award and had longer tenure than any other full-time SIU faculty member. “Dedication” and “love of teaching” were qualities mentioned often by alumni casting their Great Teacher ballots for him. A specialist in elementary school curriculum, he helped a number of southern Illinois schools improve their teaching programs in reading, science, and other areas. He joined the faculty in 1925, after receiving a two-year diploma from the institution. He received his bachelor’s degree from Southern in 1928, held a master’s degree from the University of Illinois and a doctorate from St. Louis University. Dr. Ragsdale is survived by his wife, the former Lydia Dietrich ’25–2, ’28; a daughter, Mrs. Stanley (Anne) Shinall ’58, Champaign; a brother, four sisters, and two grandchildren. He was a native of Galatia, Illinois.
Dear Alumni,

At its regularly scheduled meeting October 30, your Alumni Association Board of Directors approved a motion that Association members be invited to make suggestions regarding possible nominees for the SIU Board of Trustees. As a follow-up to this action, a committee has been named by the Alumni Board's executive committee to receive such suggestions and to present a list of names to Governor Richard B. Ogilvie for his consideration.

In addition to myself as Association president and Mr. Paul Gill as president-elect, the committee is composed of three distinguished alumni: Dr. Richard G. Browne, noted educator and former executive director of the Illinois Board of Higher Education; Mr. Maurice Clark, Western Springs school superintendent and incoming president of the Illinois Association of School Administrators, and Mr. Goffrey Hughes, civic leader and former educator who now is executive director of Southern Illinois, Inc.

SIU trustees are appointed to six-year terms by the governor, with advice and consent of the Illinois Senate. The Board has seven appointed members, in addition to the Superintendent of Public Instruction who serves ex officio. Terms of three current members (Mr. F. Guy Hitt, Mr. Melvin Lockard, and Mr. Lindell Sturgis) expire in January. At the governor's discretion, all are eligible for reappointment. It would seem appropriate, whether or not it is the governor's intention to reappoint current members, to make available to him a list of outstanding candidates for consideration both now and in the future.

Each of you is urged to weigh this matter very carefully. If you have names to suggest, please send them immediately to the Alumni Office or directly to me. My address is 1025 North Walnut, Springfield, Illinois 62702. We must have your suggestions by December 10. The committee will meet shortly thereafter to consider all names received. From these alumni suggestions a list will be compiled for forwarding to Governor Ogilvie.

Your suggestions need not be limited to SIU alumni. Any Illinois citizen is eligible. We would assume that, given the responsibilities of the office, only those with sufficient background, interest in education, and availability for service will be seriously considered. Please provide as much background material as possible with names you offer.

This is an opportunity for you to be of service, through the Alumni Association, to Southern Illinois University.

Yours truly,

David E. Elder, President
SIU Alumni Association
Alumnus

Cover Dr. Murray Gell-Mann, Millikan Professor of theoretical physics at the California Institute of Technology and 1969 winner of the Nobel Prize in physics, was among speakers appearing at SIU Carbondale in a mid-October conference on problems of population and environment. His convocations lecture in the Arena was a conference highlight. Photo by Rip Stokes.

Research Dr. George H. Gass (left) has received an Alumni Association research grant to support his study of a suspected link between milk and cancer and cardiac disease. The story of his potentially dramatic research project (and how funds contributed by alumni will help) is told in an article beginning on page 2.

Ecology One of the most impressive lists of speakers ever to visit the University for a single purpose gathered in a Centennial conference to discuss the overwhelming problems of population and environment we now face. Scientists such as keynoter Garrett Hardin (left) were joined by people from a wide range of other fields—but all with a common interest in man's survival. See page 4.

Cancer, Cardiac Diseases

Alumni Contributions to Help Support Study of Suspected Milk-Disease Link

SIU Alumni Association Research Grant goes to Dr. George H. Gass

Milk, long considered the near-perfect food, could take a smack right in the reputation by the time a research project underway in the laboratories of SIU’s Dr. George H. Gass is finished.

Kicked off with a $3,000 research grant from the Alumni Association—with funds contributed by alumni through the Annual Giving campaigns, including Telefund drives—the study will seek answers to some startling questions involving the relationship of milk to cardiac diseases and cancer.

Professor of physiology at SIU since 1964, Dr. Gass initiated establishment of the Endocrinologic Pharmacology Research Laboratory which he heads and which has been funded with monies exceeding a quarter-million dollars. He has co-authored two books and numerous articles for publication. It was a fellowship award, however, which led to the potentially dramatic research in which he is currently involved.

In 1968, Dr. Gass received an Alexander von Humboldt senior scientist fellowship to conduct a year of research at the Institut fur Physiologie in West Germany. While he was there, a Turkish diplomat requested that the institute investigate a problem that had appeared in Turkey.

During the Arab-Israeli six-day war, a shipment of dried milk from the United States on its way to India was caught in the Mediterranean Sea, and instead of being sent back or via another route to India, it was rerouted to Turkey. All the people receiving the dried milk from the U.S. became ill, while those in other areas receiving dried milk from other sources did not. Naturally, Turkish officials wanted to know why the American milk was making their countrymen sick, so they picked a “neutral” laboratory to assay it.

Work conducted by Dr. Gass in Germany revealed a previously unknown “factor” in milk and milk products. This “factor” appears to cause abnormal growth of the uterus in female mice and the seminal vesicles in male mice, increasing the secretion of sex hormones. Since sex hormones play an important role in both cardiac disease and in cancer of the genital tract and mammary glands, Dr. Gass is studying the relationship between the milk “factor” and those diseases.

More specifically, he hopes to 1) identify and describe the “factor”—show what it is and how it works; 2) assess the possibility of contamination of milk with a substance used by dairies or dairy farmers that may have adverse effects, and 3) determine the role of this “factor” with respect to increased sex hormone secretion and its effects on the cardiovascular system and the incidence of mammary cancer.

Dr. Gass’ method of studying the problem is twofold.

To study the relationship of milk to cancer, he will work with a strain of mice called C3H. Every female mouse in this strain gets breast cancer. There is a virus in the animal which the mother passes to her offspring through milk; however, only the females get breast cancer. Dr. Gass plans to feed dried milk to this sensitive mouse to see if there is an increase in the number of tumors occurring and to learn if these tumors appear earlier than usual.

To study the relationship of milk to cardiovascular diseases, Dr. Gass will feed dried milk to mice on certain diets. Some of the mice will then be sacrificed and the aortas will be split to see if hardening of the arteries is taking place.

Dr. Gass’ project, a cooperative venture between the U.S. and West Germany, was chosen by the National Academy of Sciences and the National Research Council as their international biological program project for 1970. While the Alumni Association research grant helped with early funding, the three- to five-year study needs support of approximately $25,000 annually. These additional funds still must be gained from outside agencies.

Cardiovascular disorders and cancer are among the chief afflictions of mankind today. Scientists and health officials recognize that contamination of the human body, in both children and adults, may be occurring in presently unknown ways. Evidence compiled through Dr. Gass’ work so far indicates that milk could be a vehicle for such contamination.

Once the mysterious “factor” in milk is identified and its implications for humans assessed, medical science will be in a far better position to evaluate the biological role of milk—which for so long has been considered a health food above criticism.
"Don't expect the oceans to feed the starving millions of the world."—Hardin
"Man may be included among the potentially endangered species."

Man's Endangered Existence

Not only the way of life we know, but the very survival of man is threatened. The problem is critical and immediate; if there is still hope it lies in prompt and earnest attention to the grave conditions we face. This is the warning an impressive lineup of national leaders concerned with problems of pollution and environment tendered throughout a mid-October SIU conference, presented as part of the University's Centennial Years program.

Gravity of the conference theme was set immediately when keynote speaker Garrett Hardin, professor of biology at the University of California at Santa Barbara, outlined his theory of the "Tragedy of the Commons"—that the oceans and the air, considered "common" property of all, are being polluted and exploited at a level which can lead only to environmental decay and the extinction of animal life. He couched population problems in the same terms, and said only compulsory birth control can stave off disaster. Then John Hanlon, M.D., assistant United States surgeon general, warned that unfettered population growth is the forerunner of human extinction. "From a biological viewpoint," Dr. Hanlon said, "one can now state that man may be included among the potentially endangered species."

In an opening-day afternoon session, St. Louis newscaster Bob Hardy called upon all communications media to help tell the story of the environmental crisis. James D. Kehner, assistant Illinois attorney general and chief of the Southern Illinois Division, Air and Water Pollution Control, discussed problems of enforcing anti-pollution laws. Illinois problems were further discussed by William L. Rutherford, Peoria attorney and conservationist.

U.S. Senator Charles H. Percy, Illinois Republican, cited public indifference as the greatest threat to our environment. He called for a commitment to winning the war on pollution and cited his own extensive efforts in Congress.

Sessions to this point had progressed primarily at a level of informative, instructional presentation. But that level was forgotten when Hugh Itis, plant ecologist from the University of Wisconsin, took the platform. A scientist of note, Itis expressed his compassion with the beauty of a poet, the emotional persuasion of an evangelist. His plea for preservation of what diversity is left in man's environment was an eloquent and moving presentation.

Carl Flemister, Planned Parenthood director for the New York City area, addressed the conference on "Population Control and the Black Revolution." Calling for protection of the environment and improvement in the life situation of "minorities of color," he said such gains surely would help solve problems of all the poor. Noting that "present methods of contraception are too far from the excellence we need," he said medically safe abortion should be made available to any woman who desires to terminate a pregnancy. Flemister was followed by Evalyn Gendel, M.D., assistant director of the division of maternal and child health, Kansas State Department of Health. Dr. Gendel explored the social climate which "applauds the large family and wonders silently about the childless couple." She called for vastly expanded sex education and birth control programs.

Carl L. Klein, U.S. assistant secretary of the interior for water quality and research, outlined the Nixon Administration's overall environmental action program as it relates to water quality control.

A mid-conference highlight was an address by Murray Gell-Mann, Millikan Professor of theoretical physics at the California Institute of Technology and winner of the 1969 Nobel Prize in physics. Text of Gell-Mann's address appears elsewhere in this section.

The Rev. Frederick Elder of Harvard University's Center for Population Studies, called for the "old religion" to make itself a viable force in curing the world's ecological ills.

U.S. Representative Kenneth J. Gray, Democrat from southern Illinois, told the conference he is co-author of a legislative package which includes bills to tighten pollution and strip mining laws, aid industries and towns that have been served "cease-and-desist" orders.

CONTINUED 5
on pollution, and provide more federal wilderness and public recreation areas.

Lonny Myers, M.D., Chicago anesthesiologist and founder and past chairman of Illinois Citizens for the Medical Control of Abortion Laws, called for a radical change in society's present model for the "fulfilled and socially responsible woman." Many millions of "wanted" babies are "wanted" because that is what society expects of women, she said.

The Rev. Donald C. Shaw, former executive director of Episcopal Charities, Diocese of Chicago, and Midwest vice president of Zero Population Growth, spoke of a new "ecological religion." If we define "love" as a genuine concern for all things and all people and the wellbeing of all creation, he said, then love could become the basis for such a new philosophy.

If any doubt about seriousness of the problems faced by present and future generations still existed in the mind of any conference participant, it must have been erased by the concluding speaker. That was Wayne H. Davis, University of Kentucky zoologist and widely published author of articles on problems of population and environment. Davis' hour-long address included fact on disturbing fact. In a voice that was calm but somewhat tense with concern, he told a stilled audience that time simply has run out, that world population growth cannot go on at the present rate.

The SIU Conference on Problems of Population and Environment played to a packed house in the University Center at Carbondale. Sponsors and participants have said it may mark a significant accomplishment in the struggle to save our world. It brought together a remarkable grouping of expertise, of individuals from a broad array of scientific and humanistic fields with common concerns for the future of man. Their contributions are barely sampled here.

"I think the world population problem is the most serious problem mankind has ever faced. . . . I think that human population growth is going to bring our civilization to a close, and soon."

—Davis

Myers:

"There is no intellectual objection to the desirability of preventing unwanted births; there is a great deal of controversy over the desirability of limiting the number of wanted births. Beware of our enemies who try to lure us into inaction by putting these two aspects of population control in one basket and calling the whole matter too controversial for action.

"My point is that the prevention of unwanted babies is relatively simple; limiting wanted babies is extremely complex. There is direct immediate action we can take to prevent virtually all unwanted births. There is no direct action that will immediately limit wanted births.

"When a person decides not to have a baby we should run to her aid. We should be pleased and offer services with enthusiasm and appreciation. It is past time to start concerning ourselves with the decision to have a baby and stop, cease, and desist from interfering with anyone's decision not to have a baby."

"Unwanted fertility among those who practice family planning, as well as those who are indifferent or careless, accounts for close to one million births a year."—Flemister
It should be perfectly clear from the introduction how unqualified I am to discuss the subject I'm going to talk about. My professional work on the theory of particles is part of an attempt to understand the ultimate structure of matter at the level of the very small. That hardly qualifies me to discuss the future of our society. However, as a result of some years of extra-curricular contacts with some of these problems—with national problems—I have formed some opinions that may be worth sharing with you.

The mastery of nature for the benefit of man is a principal theme of history. Largely as a result of the application of technology, an advanced country, especially ours, has reached the point of relieving most of its people (although unfortunately not all yet) of the old pressures and burdens of disease, terribly hard labor, narrow horizons, lack of freedom. We know that some of our people are still not included in this, and we must pursue as hard as we can the war on poverty. However, that doesn't seem likely to consume the bulk of our resources; rather, it's a question requiring skill and empathy and greater understanding of people and society.

Our country has shown particular skill converting technical possibilities into realities and ingenuity and enterprise, with institutions that facilitate and encourage new projects—whether they be factories or dams or roads or ski resorts or whatever. Now in the future, to what extent are we going to devote this enormous technological-industrial momentum? Where should our affluence carry us in the future? Further in the direction of an electric shoe polisher for every citizen? Or, if we read the comic strips, a magnetic air car for every citizen?

We must look at a second factor: The affluent society has not only come close to achieving the old, great dream, but it has also achieved the capability of affecting our planet by change of the order of 100-percent—change of the order of its own magnitude. We can blow up, if we really try very hard, large chunks of the planet. We can change its climate, perhaps in a generation, by a series of methods. We can chop down the forests. We can kill off species of animals. We are no longer a perduration on the environment as we were long ago, when there was a planet and there was human interference with the planet but the planet went on mostly the way it had before and human interference was a minor factor. This is no longer true.

The negative effect of many of these changes by existing technology are very well known. Effects on the atmosphere, for example—complex, interrelated effects like carbon dioxide, aerosals, water vapor, heat sources of the cities, smog and other forms of air pollution. All of these things, as an example, can affect the world climate. Very probably—although scientific research is not being done at a sufficient rate on this subject to provide an answer yet—very probably the earth is
"Of course the interest in pollution is not a passing fad. It cannot be. Because it's going to get worse and it's going to hit everybody."

—Davis

warming up as a result of the interplay of all these things, and conceivably at a rate such that the change of a few degrees in average temperature can take place in a generation. That's the amount that makes the difference, for example, between an ice age and our present climate. If the earth heats up by that amount, it can produce the reverse of an ice age. That's just an example.

Everyone is conscious these days—because people in the last year or two have made a great fuss about it—of water pollution, problems of persistent pesticides, noise, visual pollution, more pavement and less chlorophyll. Some of my friends extrapolate to the future to an entirely paved United States packed with wall-to-wall people, with perhaps one tree with a railing around it and huge parties of school children bussed daily to see the tree.

It has become popular in the last few years to consider these effects on the environment of increasing population and increasing propensity to monkey with the environment and greatly increased technical capability to monkey with the environment. Obviously, it has become rather urgent, even in a highly developed and not obviously over-populated country like ours, to keep the population limited as much as we can. But we needn't think that if we simply limit the population to something that is politically feasible that this will solve the problem, because the environmental interference is the product of several factors in which one is total population. There are others, like the capacity and propensity per person for damaging the environment through everyday life, particularly through our increasing affluence. So we have to work on all of these factors, and not only on population.

Ecology, the study of total environment, in cooperation with other scientific disciplines like economics, law, and so on, is achieving its rightful place. The notion of technological assessment and control, though, is not confined to environmental questions. It's much wider. We have heard earlier about weapons potentialities, the need for arms control. That's also a form of technological assessment and control.

All of these things that we discuss are largely from applications of physics and chemistry. But in the future we can see a great many possible applications of recent work in biology that may raise important questions of good and evil: interference with genetic transmission of characteristics, for example. The explicit design of people and other organisms may become possible. Total reproduction, which will make it possible to make individuals identical with their parents—many individuals. For example, Lyndon Johnson could make twenty copies of himself!

In the far future we can imagine applications of future developments in applied psychology: temperament conditioning, direct control of behavior—conceivably in the further future the direct coupling of people and computers to each other, or the coupling of many people's minds to each other to make a collective consciousness. All of these things are conceivable, part of the gradual conversion of science fiction into science reality. And all of these raise very serious problems; not only problems of the environment, but problems of the individual human being and of society—the relationships between man and man.

An obvious consequence, I think, of all of this increasing power to do things, is that as time goes on we will want to realize a smaller and smaller fraction, a narrowing cone, of all the rich profusion of projects for the deployment of new technology and the widespread application of all the old technology. Let's remember that many of these changes for good and bad often come about mainly not from the introduction of new things, but from the widespread diffusion of all the old things. For example, the automobile: If there were just a few automobiles, the automobile would not be a serious problem for us. It's the fact that we all have automobiles, practically. The enormous number then creates the problem. We must not forget that. It is not a question of introducing or not introducing a technology, but also a question of the scale on which the technology is deployed. I think the idea of choice will be the dominant one, and that renunciation of deployment of various possible things will be the rule rather than the exception. In the past, if the cost was at all bearable, things if they could be done tended to be done. I think in the future we will find that often, even though things can be done we will choose not to do them. We will try and pick
out the small fraction, the narrow­
ing cone, that actually seem de­
sirable to do, or to do on a
large scale. Some people, for
example, are now proposing that
flights of supersonic transports
over land be an example of re­
nunciation of technology—or
conceivably even the building of
supersonic transports.

Now, let’s look for a moment
at the Defense Department. It is
not usually taken as an example
to be followed these days in the
intellectual community. But I think
here they have a lesson to teach
us. During the sixties, the United
States Department of Defense found
itself, willy-nilly, I think not en­
tirely by design, in a position
of doing research and development
on a huge number of projects and
deploying only a few. Many op­
tions were kept open, but only a
narrow choice was actually made
of projects to be deployed. They
were criticized very heavily (and
still are) for this kind of behavior.
I think, in fact, that this should
be a model for our whole society,
that we should keep enormous num­
bers of technological options open
precisely so that we can select only
a very few that seem to us wise
to use or to deploy on a large
scale. Careful choice will have to
be made by our society of which
ones have potential benefits that
outweigh their dangers.

In the example of the Depart­
ment of Defense, however, we know
this: that the choice, using cost
benefit analysis, is made on the
basis largely of easily quantifiable
factors with the necessary values put
in at the beginning—and they are
not terribly complicated in the
question of something like strategic
weapons. But in other decisions,
enormously complex social and
technical problems, complicated
further by the existence in our so­
ciety of many conflicting values
... the choices clearly involve
values very difficult to quantify but
nevertheless very important. The
development and understanding
and diffusion of these values is

Percy:

“In Congress, we have seen bipartisan
commitment to a cleaner environment.
But repairing our environment is a
cause which must involve everyone, for
everyone is responsible for the unhappy
state in which we find ourselves to­
day...”

“Legislative remedies to environmen­
tal problems are important and neces­
sary. Yet they will have little chance
for success unless combined with ef­
forts to stem population growth. The
reason is simple: The capacity of our

If technological assessment and
control in fields other than defense
is to be done, it must have some
of the features of systems analysis,
because systems analysis means that
you study all features of the problem
and take account of many inter­
actions of many different kinds of
things. But is shouldn’t be classic
systems analysis, where the emphasis
is on easily quantifiable things—
hard parameters, hard analysis. An
awful lot of it has to be soft. And
this is a challenge to our ingenuity
to figure out how to do that.

In the words I would like to
to use, “narrow rationality” must give
rise to “humane rationality.” In
the environmental field, for example,
if a highway were to be driven
through something—through a
forest, through an old village,
through archaeological remains; if
a dam was to be built in a
beautiful valley, analysis was always
done: combined technical and
economic analysis. But the factors
difficult to quantify, like the im­
portance to us of some continuity
with the past, the importance to us
of a beautiful wild valley, the im­
portance to us of not interfering
irreversibly with a certain habitat,
all of these things necessarily were
assigned value zero because they
were very difficult to quantify.

That’s the classic form of systems
analysis. Other things were given
value. For example, in the case
of the lake formed by a dam, it’s
customary to calculate the benefit
from that lake by calculating the
sum of all the investments that
will be made: the marinas, the
roads, the boats to be carried to the
lake. The cost of losing the original
valley is obviously zero in the
classical form of systems analysis.
Something better than that needs
to be developed in accordance with
what I call humane rationality.

The revolt of some young people
in many parts of the world right
now has as one theme a wave of

CONTINUED 9
irrationality, a distaste for science and technology, a devotion to artistic criticism without interpretation, a rage for astrology and other forms of superstition. In part, I interpret this as a reaction to the pervasiveness of narrow rationality, of stupidly programmed computers that tell us we haven’t paid our bills when we know we have, of many other manifestations all around us of narrow rationality. I think that it is essential, it is imperative for us today to cultivate humane rationality as a middle way, as an alternative to narrow rationality and to mindless irrationality.

Specifically, in regard to preserving the quality of the natural environment, we need three kinds of participation: First of all, we need enormously greater amounts of scientific research and monitoring in order to find out what is happening and what the laws are that govern what is happening. At the other end of the spectrum, we need political action by people who are engaged in this kind of thing, who are anxious to push in our society proposals for preventing excessive deterioration of the environment. But in between there is a huge field that is neither explicitly political nor purely scientific. It has to do with strategic planning, with formulating plans involving some technical work, some appreciation of society and its problems, some notion of what laws can possibly be passed. This kind of thing has to be done by interdisciplinary teams, using holistic methods—systems analysis if you like, but systems analysis infused with humane rationality and not just analysis that reduces people to personnel and animals and forest to resources.

These teams would have to include engineers, scientists, economists, lawyers, humanists, medical men, other kinds of social scientists. They must consider problems in all their complexity. Take a relatively simple one, for example: The generation of power shows some of the interrelatedness of environmental problems. Conventional fuels frequently lead to air pollution; hydro-electric power frequently leads to excessive dambuilding, nuclear plants to thermal pollution of rivers. With the aid of cooling towers, with the aid of strict controls on radioactive contamination, one can perhaps reduce the undesirable effects of nuclear plants. Cooling towers, however, give water vapor pollution. But then we find that interference with different parts of the environment has different tolerances. The environment can stand loading in one place better than in another. In most climates, water vapor pollution by cooling towers is not a serious problem. Nuclear plants equipped with such—at some expense, which somebody must pay—and equipped with elaborate safeguards against excessive radioactive contamination, such a thing might conceivably be a reasonable solution.

But it’s expensive. Then we have to work out who plays for it and how. Can we make the cost progressive, so that people who use a great deal of energy pay more rather than less per unit? That involves a combination of making the customer pay for abating the pollution that he causes and some redistribution of income to prevent the poor from bearing excessively the burden of this kind of paying.

All this sort of thing we’re talking about goes far beyond academic research in universities. In universities it is very hard to get any kind of interdisciplinary research accomplished because of the discipline structure of the university—which I think on the whole is a good thing. I think the disciplines are worth preserving and worth teaching and the university does a pretty good job of generating and diffusing knowledge about the disciplines. . . . But they’re not particularly good for interdisciplinary programs. Maybe they will be, given some encouragement. But there is another difficulty: The university is not a fantastically suitable place, in my opinion, for problem-oriented research, problem-oriented discussion. The reason is two-fold: If the universities monkey too much in politics, they will lose a lot of their independence, a lot of their authority, a lot of their traditional use as market places of ideas. On the other hand, if these proposals are made without much regard to the political structures of society, they won’t be much use.

So I think new organizations are needed, and some are being set up, on the fringes of the academic community—places where professors and students can go and work, but which are not necessarily tied administratively directly to individual universities. Such places on the fringes of the university community, I think, are much more suitable for doing problem-oriented, interdisciplinary studies such as the strategic studies about the environment. They can be carried out by permanent staff
with help from professors and students on leave, on summer vacation; consultants, people from industry, people on leave from government, people on leave from citizens groups and clubs, and so on. I think it’s possible in this way to make some progress in this middle job of providing strategic planning—not only for the environment, but also for other problems in technological assessment and control relating to the individual, the effect of technology on the individual, and the effect of technology on society.

We do need, also, to study changes in our institutions—those very elements in our society that have made us great in this country. The whole system of incentives that has made us great may require some modification if we’re not to come to a sordid end. For example, in government the whole pattern of bureaucratic inertia, regulation, subsidies, tax incentives, tax penalties—all these things still are oriented principally toward traditional issues of exploitation and much less toward the newer ones of environmental quality or in general a quality of life—exploitation of nature rather than protection of nature.

This is beginning to change now, in part because of the fashionable interest in this kind of thing, which may or may not persist for very long. Crudely speaking, the burden of proof in our society rests on those who would like to stop a new project. But gradually this is changing, and to some extent the burden of proof is shifting toward people who want to start a new project. They must justify it and present some argument that the potential benefits will in fact outweigh the dangers. That’s probably not bad if it doesn’t go too far. Increasingly, people will have to justify new or newly widespread deployment of technology. Also, I think there will be increasing emphasis toward support and subsidy for things like this: finding new ways of carrying out old industrial or agricultural tasks with less damage to the environment; finding new livelihoods for those whose present way of life is too destructive; learning to repair the environment when the damage is not irreversible.

We need to study models of prosperity—national prosperity and local prosperity—based on stable population and stable natural environment and increasing quality. We nowadays see mostly models that depend on boosting, or attracting more people or producing more stuff, not on stability. We all want prosperity, nevertheless; we don’t want to sacrifice prosperity completely in order to have a more tolerable quality of life. We have to find strategies for obtaining both of them together, for making them compatible.

People have used a useful phrase in this connection, but it doesn’t mean anything yet. They have said that we must look for an economy of quality rather than quantity, increasing quality rather than increasing quantity in order to provide prosperity for the future. But that’s a phrase and we don’t yet really know what it means. People have to work hard on trying to figure out what it can mean in detail on strategies and programs that...
"The power to produce babies is still with the family but responsibility for keeping them alive is now in the hands of the community. No system works well if you separate power and responsibility. It is inherently unstable. As long as this prevails there is no chance of solving the population problem."

—Hardin

would clothe those bones with flesh.

We can all think of obvious things: putting power lines underground; picking up beer cans; craftsmanship—work more satisfactory to the worker and to the consumer; satisfying our curiosity—exploration and pure scientific curiosity—through work with telescopes, accelerators, exploration of the planets. But here we think of exploration of the planets precisely not for the advertised reasons, like the earth resources satellite, but just for the sheer joy of having the human race understand what goes on out there. Because the resources satellite, if successful, can possibly flood us with information on resources in wild and distant places that our institutions are too immature to let us use wisely.

Work is needed on extensions and applications of economics in some unconventional directions. We've named one: the design of a stable and prosperous economy. But we also need other designs, other examinations, and other extensions. For example, economists have gone in heavily now for studying two of their concepts which they've had for a long time but not until recently studied very extensively. One of these is the internalization of externalities. That is to say, making people pay explicitly when they buy things for the cost that buying that thing will impose on their fellow citizens through pollution and through many other effects.

They also are beginning to study the cost of information. That's what is involved when the consumer doesn't know enough about what he's buying to make a wise marketplace choice.

But there are other notions in economics which have not been followed up to the same extent—like the social rate of interest, which is the technical term that refers to the debt between the generations. Are our institutions now such that we are really prevented from grabbing things today and stealing from the future. The simplest notion in economics is that the interest rate takes care of that and that's obviously not true. It's much more complex than just the interest rate. And so they invented the term "social rate of interest," which means the real measure of the extent to which we are grabbing things today and stealing from our children and grandchildren.

Further account needs to be taken of irreversibility. It seems to me that many economic analyses lack sufficient attention to the irreversibility of many interferences with natural processes that go on through our industrial expansion. Also of the value of diversity in the world—a thousand identical, prosperous communities, each one maximizing some kind of economic parameter, may not actually be as desirable for us as a thousand communities with some distribution of interests and some distribution of landscape so that we have one big wild area, a large agriculture area, urban complex of critical mass, and so on, rather than just a lot of local optimization of economic criteria.

Now, the effects on the rest of the world—I've spoken more or less as if our nation were isolated. The developing countries, like our own poor, seem to me to afford an excellent opportunity for using our resources, namely to share our resources to some extent with the poor of the world as we should share them with our own poor—especially in constructive ways as seed money to encourage people to build things of their own. The developed countries pose, in the language of my talk, more problems because rivalry with other developed societies—Western Europe, Eastern Europe, Japan, someday others perhaps—this rivalry is notorious in making very difficult the control of, for example, weapons potentiality. And the same is true with respect to agreements vis-a-vis the environment. That is, control of large scale technological deployment like the SST involves elements of international commercial rivalry just the way the control of arms involves elements of international military rivalry. It may be that negotiations in these two different fields will actually be mutually helpful, that for example if we can successfully negotiate a strategic arms treaty with the Soviet Union, it may help to negotiate a treaty on fish and whales or on the use of the oceans. And if we can make progress on whales perhaps we can make progress on other kinds of weapons.

Nevertheless, it must be said that both military and commercial rivalry
massively impedes acts of technological renunciation and makes imaginative re-direction of our economy much less likely. Still, some progress is being made, and the conference in a year and a half, sponsored by the United Nations, may give us some reason for hope in the international sphere.

A more serious worry is that our propensity to multiply unduly and our simian, monkey-like tendency to interfere with the world are very deep biological characteristics that will be hard to eradicate. But that’s far from proved and we may hope that it’s not so. I think we don’t really know to what extent it’s so and to what extent it isn’t.

We have spoken of several things. We have spoken of the need for more scientific research and more engineering development. We have spoken of careful study by Hanlon:

"Too many people today assume glibly that the whole thing boils down to a simple ‘search and destroy’ mission against some ecologic villains, or the stringing up of the ten most wanted polluters. What it does involve is something far more difficult. It involves initiating in our society a new national conscience and culture upon which to develop an orderly and effective system of making choices that, so far as I can tell, has no precedent in all of human history.

"It must be apparent to all that the decisions that shaped the world of the present—at least in its physical aspects—were not the result of any painful weighing of alternatives, nor did they, for the most part, involve society as a whole. They were decisions made by individuals or groups on the basis of what, in their time and place, seemed clear-cut and valid—but limited—goals. Society was not called upon to make considered judgements"

interdisciplinary groups infused with humane rationality, of processes of assessment and control with the technology so developed so that only that small fraction that seems on balance to be beneficial can be adopted or widely diffused. We’ve spoken of the need for change in our institutions. We know that in a democracy many reforms are initiated through human storms, set out when a crusader, who may treat the facts carefully or carelessly but who stirs up human emotions, points up the crucial issue.

Ralph Nader, Rachel Carson, Linus Pauling, others with varying degrees of scientific responsibility but with great effectiveness in stirring up the public, have done this. That’s another important means for getting things done. . . .

In the longer run, though, it may require more a spiritual, or in a sense a religious, revolution. The notion of a world made for human beings to play with in any way they like is a common one in the West and part of our Judeo-Christian heritage. Let me give an example of a prayer for road builders:

"Oh, Almighty God, who has given us this earth and has appointed men to have domination over it, who has commanded us to make straight the highways, to lift up the valleys and to make the mountains low, we ask Thy blessings upon these men who do just that."

Somehow this seems an increasingly inappropriate and dangerous set of values. Twenty years ago, Albert Schweitzer spoke of his philosophy of reverence for life. In a wider sense, we may need to cultivate a reverence for the Universe—for its beauty and diversity, its symmetrical laws as revealed by science, its wonder as revealed by art—and to cultivate a sense of modesty about our position in the Universe and a sense of responsibility for living in harmony with it.

"Today we can no longer run away from pollution and other waste problems the way early Americans did when the problems became unmanageable."—Klein

"The bluebird joined the bald eagle last year on the endangered list."—Percy

"Man has stomped across the landscape and a desert has followed."—Ilitis
'Man's Olympian Arrogance'

"Our tradition has taught us that we have been given dominion over the beasts of the field, the birds of the air, and the fish of the waters. It seemed to be self-evident that the abundant created order was solely for our use and enjoyment. But from the beginning we rejected our creatureliness, seeking first to be as wise and free as God himself and coveting His immortality.

"Suddenly prophets have been raised up from outside the usual structures of the Church. Many biologists, physicists, demographers, and anthropologists have left their classrooms and laboratories to share with us their disturbing discoveries. They fear for man's survival if he continues to abuse and exploit nature.

"Already our air and water are fouled. Even the vast oceans are suffering critically from man's abuse. Suddenly, we who sing, 'Holy, Holy, Holy, Lord God of Hosts, Heaven and Earth are Filled with Thy Glory;' see ourselves participating with the rest of mankind in the sordid and selfish exploitation and destruction of the earth and the polluting and cluttering of the heavens.

"With an Olympian arrogance, man has regarded himself as above nature. All of this must change. We must accept in a new and radical way our creatureliness. We must humbly and thankfully return to our proper place in the sacred web of nature—no longer to subdue, to exploit, and to desecrate. . ."

—Shaw

"We can stop the countdown. We can stop spending $70-billion on defense and spend more than the billion we now are on clean air. Then the clouds will pass away and the sun will shine. It is not impossible to have a reordering of our priorities."

—Gray

"Now we are at a time when, if everything in the world were divided equitably, nobody would have enough of anything."—Shaw

"Beyond two children, adopting should become a way of life in America."—Percy

"We must sanctify abortion as an ecological necessity . . . We cannot continue to let people make money out of the ecological miseries of others."—Ilitis

"Why in an over-crowded country we still tolerate forced childbirth is beyond me."—Myers

"Unless we can find some realistic answers to the population problems, all the rest are academic."—Rutherford

"It is no longer a matter of how many children a couple wants or how many children a couple can afford. It is a question of how many children the planet can afford."—Shaw

Keehner:

"It is an axiom of law that enforcement is always as good as the people demand, or as bad as they will tolerate. We therefore solicit the support of all concerned citizens in this anti-pollution commitment. . . . What the major industries throughout the state should soon understand is that we hear these thousands of calls for help and intend to offer our assistance to the people whom we represent . . .

"Those pollutors who react to our program with sincerity and prompt attention to the correction of their problems will receive our full cooperation and encouragement. Those who fail or refuse to show such concern will find themselves before our courts—the proper forum to hear and determine such matters when compromise or discussions fail . . .

"We recognize the burdens of the task we have assumed, but we submit to this assembly that the future welfare of all citizens, young and old, demands the maximum effort, which we now extend."
Davis:

"The problem of feeding people is a problem in agricultural economics. And the reason that the farmer is poor and that we have our farm surplus problems and we have our farm subsidy programs is because every man on earth is the farmer's customer—and half the people on earth cannot afford the cost of raising wheat. . . .

"You cannot solve a hunger problem by feeding hungry people. When you feed hungry people they reproduce. And they reproduce at the biologically maximum rate. . . .

"We are living on borrowed time. I think that today in this country with our affluent society that we have now more people than we can support at today's level of affluence with the resources that we have. And I think our choice that we must make in the very near future, before the entire system collapses, is that we must either lower the number of people, or the level of affluence, or both."
Campus Planning

What will the Edwardsville Campus become by 1980? If projections in a proposed long-range plan developed by the faculty and administration and under study by the Board of Trustees materializes, the coming decade should see:

- An enrollment growing to 25,000 students by 1980. Enrollment was frozen at 13,700 this fall because of a severe shortage of classroom space and a moratorium on construction. With these restrictions lifted, however, and with the Metro-East area seen as a major population growth area, enrollment is expected to climb steadily.
- A faculty and staff enlarged to 3,455 to serve the student population.
- Formation of a series of problem-oriented academic units with limited enrollments to help overcome "bigness" and meet the needs of students for face-to-face relationships with faculty and other students. These academic units would be formed to help solve important problems of society. The long-range plan calls for formation of three problem-oriented areas—multi-disciplinary programs aimed at environmental control, urban studies, and educational problems.
- Tripling of the amount of research on campus, with creative problem-solving research elevated to equal status with pure research. The long-range plan warns that the University will avoid research arrangements which would allow outside agencies to exercise control over the operation of the University.
- Construction of a centralized research facility where faculties from many disciplines could work together on common problems.
- Greatly increased emphasis on graduate education, a keystone to any growing research program. The plan envisions thirty doctoral-level programs, thirty-two master's pro-

grams, and twenty-two bachelor's degree programs which could be operating by the end of the decade.
- Development of additional professional schools. The School of Dental Medicine is expected to admit its first students in September, 1971. What is now the Division of Education is expected to become a School of Education within the decade. The Faculty of Engineering is projected as a School of Engineering prior to 1980.
- Expanded continuing education programs for mature students and for professional men and women needing retraining. The School of Dental Medicine is beginning continuing education programs this year to help area dentists upgrade their professional skills.
- Greater use of mechanical and electronic devices to aid classroom instruction. The plan envisions use of remote terminal computers, an expanded audio-visual center, and individual study carrels for students in a Learning Resources Center. The carrels would have dial-access tape decks. There would also be multimedia teaching centers in each classroom building.
- Expansion of the Deans College, which now enrolls 260, to an enrollment of approximately 1,200. The Deans College program provides exceptionally gifted students more freedom of choice in course selection. Students work with faculty advisors to develop academic programs tailor-made to their interests.
- An increase in independent study and colloquia. The plan also calls for beginning of an instructor-evaluation program with a system of rewards for quality teaching.
- Establishment of a clinical center for problems in psychological, education, speech, hearing, and special education areas. A speech and hearing center already is in operation, but the plan envisions a separate building for all these purposes.
- A data bank for regional and
urban information systems. Remote terminal computer systems would provide service to primary and secondary schools and junior colleges.

- Data processing services for small businesses.

The long-range plan is a flexible document which will be reviewed annually for updating and adaptation based on actual experience and new educational, research, and service opportunities which arise.

It indicates that the Edwardsville Campus will continue to be primarily for commuter students, and recommends that the University cater to the special needs of commuters who may have classes scattered throughout the day but lack appropriate space in which to study and relax.

The plan recommends that temporary living facilities be erected for commuter students who may not want to live on campus for an entire quarter but need overnight or daylong facilities for brief periods of time.

Under the long-range plan, major focus of the Edwardsville Campus is to remain that of a diversified, multi-purpose institution oriented toward the St. Louis metropolitan area. However, the plan says, "the campus assumes that it not only has a regional and state responsibility, but national and international obligations" and it "will not limit its programs to the immediate campus, but, with the approval of appropriate authorities, shall offer its instructional, research, and service programs throughout the world."

Since its founding, the Edwardsville Campus has drawn most of its students from Madison, St. Clair, Macoupin, Clinton, and Montgomery counties in Illinois. In the fall of 1969, nearly 80-percent of the students enrolled came from these five counties. This trend is expected to continue.

A major construction program is envisioned to accommodate the projected growth in enrollment. Highest priority buildings will be an immediate addition to the Communications Building, general classroom buildings for business and education, a physical education building, a fine arts building, and a multi-media undergraduate classroom center.

Other buildings projected include a health and clinical center, a life sciences research building, a four-story addition to Lovejoy Library to accommodate a million volumes by 1980, a business research center, a physical sciences research center, a health service building, and a medical, dental, and nursing building.

On-campus housing, the report indicates, will continue to be in the form of apartments for married students. A total of 1,240 apartments are planned during the decade.

Building’s Impact

"The impact of this building on our biological sciences programs will be immense," said SIU President Delyte W. Morris in 1968 after setting the cornerstone for a new $10-million Life Science Building "addition" on the Carbondale Campus.

Seconds later the freight-train rumble of an earthquake shook the massive building to its brand new foundations.

"I didn’t realize the impact would be that literal," said Morris.

Today, as only finishing touches remain to be completed, Life Science II stands as a highly promising testament to Morris’ evaluation. The men who are taking occupancy of its 141,000 square feet of research laboratories stretching the length of a football field can see that impact.

The structure was designed almost entirely for advanced research and graduate teaching in the biological sciences and psychology. Most of its older and smaller sister building will be freed for undergraduate instruction in these fields.

"Fantastic," says Robert Mohlenbrock, chairman of the botany department which will occupy most of the five-floor building's top level. "I doubt that there is a finer botanical..."
New Life Science II on the Carbondale Campus dwarfs older Life Science Building at bottom of picture. The new structure, completed at a cost of $10-million, houses research and graduate studies and frees the older building for undergraduate classes. Lawson Hall classroom building is at upper right.

floor at any university. I've never seen a better one."

For faculty members and graduate students in botany, the new building means such heretofore non-existent research facilities as walk-in growth chambers and batteries of sophisticated equipment to carry out detailed analyses of plant physiology. The chambers—sixteen of them—will allow the department for the first time to conduct plant experiments in any kind of controlled environment, from arctic to equatorial.

A photographic suite will vastly improve the department's publications program. A storage room for radioactive isotopes will mean stepped-up studies in fields such as mineral uptake by plants.

The department's collection of thousands of plants, moved about in the past decade to no fewer than four temporary herbariums, will have a permanent home where temperature and humidity are rigidly controlled.

To replace the three botany teaching laboratories in the "old" building, operated in the past from morning to night, the new floor has six.

Zoology, physiology, microbiology, and psychology—the other departments moving in—are no less excited about the change.

Harvey Fisher, zoology department chairman, says his faculty members and graduate students will have five times as much space as they have had in the much smaller Life Science I.

Fisher and other chairmen cite the modern new facilities for experimental animals as one of the brightest aspects of their new quarters. Almost all the ground floor core is a compartmented, latticed network of cages and rooms for every type of living thing from viruses to primates.

Special quarantine sections will house animals afflicted with diseases or parasites. A huge central sterilization unit allows whole racks of cages, equipment, and feed trays to be rolled in for automated, push-button cleaning.

Flight cages for birds and built-in aquaria for fish are two other features of the new building totally lacking in the department's old quarters.

Fisher says a series of constant temperature rooms will permit sophisticated environmental experiments in genetics and mammalian and amphibian physiology not previously possible. Researchers also will be able to order custom-made equipment from a shop included in the building.

Life Science II will free the old animal building—unsuitable for many kinds of experimental animals, including monkeys—for use as a central facility for electron microscopes.

Fisher says his department will now be under one roof for the first time, although the Cooperative Wildlife Research Laboratory will continue to maintain office and field quarters outside the big building. In
addition to its Life Science quarters, zoology previously used nine other barracks and temporary buildings.

The new building also represents the first permanent home for the psychology department, which began this school year scattered across campus in twenty different houses—even though the department's research and graduate training talents earned it the first Ph.D. program at SIU.

Chairman David Ehrenfreund sees that talent boosted significantly with resources in the new building.

"We'll be tremendously improved in terms of facilities for research in animal and human behavior," he says. Included in these facilities are blocks of two-way mirrored observation rooms; others with sound, temperature, and humidity controls, and still others like bank vaults, electrically shielded in lead, copper, and stainless steel for studies of brain stimulation and perception.

Ehrenfreund says a computer installation will enable researchers to monitor experiments in progress.

Germ-free animal quarters will mean multiple pluses for the virus-cancer research of microbiologist Hassan Rouhandeh, whose work with rhesus monkeys so far has been handicapped by inadequate housing. And Chairman Maurice Ogur of the microbiology department points to studies such as the biochemistry of microorganisms as fields which can be explored in much greater depth and detail in the new building.

Much of the work in a microbiology laboratory is simple dishwashing: sterilizing the hundreds of petri dishes and flasks used for samples each day. The department has been using four small sterilizers picked up from surplus property warehouses.

In the new building, microbiology is blessed with dishwashers, dryers, and a whopping sterilization unit.

"That," says Ogur, "is what I call impact."

AS THE END OF A HIGHLY SUCCESSFUL football and soccer season approaches, SIU sports fans can turn with an equal enthusiasm toward the Winter sports scene. Basketball will be the big draw, of course, but things look pretty exciting in some other sports, too.

At Carbondale, where sale of season tickets for Saluki basketball have almost doubled over the past two years, nucleus of the 1970-71 squad is a group of five returning lettermen who started the last three games last year. They won two of those contests, over Indiana State 90-81 and Evansville 81-67, and lost the other to eventual NIT champion Marquette, 75-68.

The Saluki schedule is an attractive one; 13 of the 23 games are slated for the SIU Arena. Highlight, perhaps, will be the January 30 appearance of Georgia Tech in a game which will be regionally televised over a wide area. Tech, of course, is led by the former Benton prep ace, Rich Yunkus, who is set for All American honors this season.

IN OTHER KEY HOME GAMES, the Salukis will face Arkansas, St. Louis, Kentucky Wesleyan, Texas, and Wisconsin. And the other four members of the new Midwestern Conference--Northern Illinois, Illinois State, Indiana State, and Ball State--all will make Arena appearances.

Other home games are with Winston-Salem, a club which won the NCAA college division championship the same year the Salukis captured the NIT; Northern Iowa, and Evansville. All are capable teams.

A near-capacity crowd of 9,900 fans saw the Salukis battle Marquette in the finale of the 1969-70 season, and it's a good bet that most remember the game as one of the most exciting ever played in the Arena. The Salukis led by seven at one point and trailed by a single marker at half-time. With just two minutes gone in the second half, Marvin Brooks, who had been working the boards quite well for SIU, picked up his fourth
personal foul and that proved the turning point.

The fact that Brooks is back, along with Greg Starrick, Stan Powles, L. C. Brasfield, and John "Mouse" Garrett, has Saluki fans already thinking in terms of a really great season.

ANOTHER FACTOR IS THE NATURAL curiosity that goes with the arrival of a new coach. The Salukis will be guided this season by newcomer Paul Lambert.

A run-and-shoot advocate, Lambert has promised fans they will be seeing a different style of ball this season and hopes it proves as successful as the more deliberate style of his predecessor, Jack Hartman.

Asked about comparisons, Lambert says:

"Please try to keep in mind that Coach Hartman and I basically try to accomplish the same goal. That is winning ball games. We simply go about it in different manners. That doesn't mean that he's wrong and I'm right, or vice versa. Much depends on one's upbringing and it so happens that I learned the game under a fast-break advocate and prefer the running game."

PRACTICE SESSIONS FOR the Salukis have indicated that the Lambert style of Saluki basketball will attempt to exploit the shooting and passing skills of individual players. Lambert feels that a player such as Starrick— noted as one of the finest prep shooters ever to be developed in southern Illinois—will take the change in stride.

"Switching to a running game increases necessity for every player to become a better ball handler and passer, but in Greg's case it will simply provide an opportunity to make use of his best skills far more often," the Saluki coach explains.

No question about it; Starrick will have more opportunities to shoot the ball. And that's what many Saluki fans are waiting to see.

But those who are concerned with retention of defensive skills developed so well by Saluki teams of recent years will be pleased to know that Coach Lambert shares that concern.

Powles may be a questionable starter in the season's opener after being sidelined for several weeks in October due to a minor knee operation. Should he be unable to go full strength at the start of the season, the nod in all probability will go to Nate Hawthorne, Mt. Vernon sophomore.

Hawthorne shows great promise and could be one of SIU's finest if he develops the determination and dedication necessary to further the skills he already has.

There appears little doubt—barring injury, of course—that Brasfield, Starrick, and Brooks will be in the lineup. All have been performing well and look ready to go.

Others who are just a step behind are John Marker, Martyn Bradley, and Mike Hessick, with Alan Crews expected to help once he becomes eligible January 8.

IN OTHER SALUKI WINTER SPORTS, the wrestlers once again this season will be challenging a rugged schedule which pits them against many of the top teams in the nation.

Coach Linn Long, in his third season at SIU, is quite excited about the prospects despite the fact that 75 percent of his squad is composed of underclassmen.

"We're awfully young and inexperienced," Long says, "but don't let anyone try to take us on a short breath or he may be in for a surprise."

In gymnastics, the return of eight lettermen and addition of three high school state champions are reasons SIU Coach Bill Meade is optimistic about the Salukis' chances of capturing their fourth NCAA crown.

Largely responsible for the favorable outlook is the return of three performers who were high finishers in last year's NCAA meet: ring specialist Charles Ropiequet (2nd), side horse man Ron Alden (4th), and all-around gymnast Tom Lindner (6th on the parallel bars, 10th all-around).
The three state prep champions who will make valuable additions are Gary Morava, Illinois all-around champ, and Nick Woolls (all-around) and Jeff Clark (floor exercise), both from Indiana.

In swimming, Coach Ray Essick will field the strongest team he's ever had at SIU this winter. Eleven lettermen return, but the strength of the team lies in the fact that only four seniors and two juniors are on the roster. The rest are talented freshmen and sophomores.

Best of the lot is sophomore Rob Dickson, who is the SIU record holder in the 200-yard butterfly and 200- and 400-yard individual medley.

Other returning record holders are Bruce Steiner in the 500-, 1,000-, and 1,650-yard butterfly; Bill Tingley in the 100- and 200-yard backstroke, and the entire 800-yard freestyle relay team of Vern Dash, Bob Shoos, Bruce Windeatt, and Fernando Gonzalez.

AT EDWARDSVILLE, WHERE the Cougar soccer squad entered the four-team Midwest NCAA post-season playoffs with high hopes of surviving through to the national finals to be held at Edwardsville early in December, basketball coach Jim Dudley opened varsity practice sessions with 20 prospects for this year's squad.

Included were five lettermen from the 7-16 Cougars of last season: John Summers, Rich Essington, Jack McDole, Dennis Carroll, and Mike Moore.

Summers, who played forward last season and paced the team with a 22.47 points per game, will be trying for a guard spot this year. Essington, also a guard candidate, was third highest scorer for the Cougars last year with a 15.32 points per game figure.

Also among contenders for starting spots were four junior college transfers who played for Dudley last year at Lake Land Junior College, Mattoon. The four, 6'3" forward Jerry Bloemer, 6'8" center Gene Bounds, 6'1" guard Denny Throneburg, and 6'2" forward Otis Ward, helped Dudley raise his career record at Lake Land to an impressive 65-22.

On hand, too, was Roy Witthoft of Cobden, a 6'4" forward who led the Cougar freshmen in scoring last year.

Sure to play key roles in Cougar hopes for a winning season are several other JC transfers. Perhaps the outstanding prospect is Jim Lee Brown, a robust 6'6", 230-pound center from Chillicothe who played the last two seasons at Wabash Valley Junior College in Mt. Carmel.

Two other rugged players who caught Dudley's attention in early workouts were John Nelson, a 6'4", 200-pounder from Ritenour High School in St. Louis who was leading scorer last season at State Fair JC in Sedalia, Mo., and sturdy 6'2" Gayland Lightfoot, another Missourian and a teammate of Nelson.

Another top JC transfer is Roger Muncy, 6'4", 210-pound forward from Pawnee who led all scorers at Lincoln Land JC in Springfield last year with a 20 point average.

The Cougar cagers are playing their fourth season of intercollegiate competition and first under Dudley. The new coach replaces Harry Gallatin, who relinquished the coaching job because of more and more demanding duties as director of intercollegiate athletics.

New to the Cougar schedule this year are Tennessee at Martin, Tennessee State, Wisconsin at Milwaukee, Culver-Stockton, and Lincoln University of Jefferson City, Mo.

COACH LARRY KRISTOFF'S Cougar wrestling squad also has seen some early competition for positions in preparation for the season opener December 1 against Southeast Missouri.

"The team seems to be coming along real well," Kristoff says.

"We have a good many inexperienced boys, as half of them are freshmen. The main thing facing us in early sessions is to get the kids to learn our techniques. But we should have a solid team."

Early practice sessions led to some minor injuries, but no serious losses were included.
Complexities of Dealing With Students Told

Complexities of dealing with students in today's society were vividly outlined in a session of the Alumni Association's annual Fall Club Officers' Workshop by a panel of faculty members who face this challenge daily.

Panel members were Ramon Williamson, Edwardsville Campus dean of students, and three from the Carbondale faculty: Edward Hammond, associate dean of student services and assistant to the chancellor for student relations; Wilbur Moulton, dean of student services, and Jerre Pfaff, director of admissions.

Pfaff, after thanking alumni for their participation and assistance in a series of summer meetings with parents, outlined changes made or in progress which the University believes will help improve some of the past problem areas.

Among changes cited were tightened admissions and transfer regulations, a more rigid scholastic probation policy, and tougher re-admission requirements.

At the same time, Pfaff said, the University is seeking to improve both the curriculum and the instructional program. He said every effort is being made to return more senior faculty members to the undergraduate classroom and that methods for evaluating teaching ability are under review.

Dean Moulton said he feels that people have changed little through the years, though conditions have changed a great deal. Today's students, he said, are better prepared and have a greater social concern.

"What happened in May at SIU was not exclusive here," Moulton said, "but a national problem in a time when youth have had great difficulty." Even in Illinois, he emphasized, other universities had greater disruptions in terms of property damage and amount of police force used than did SIU at Carbondale.

It is difficult in the large university for a student to find individual identity, Moulton said. With students' declining interest in vocational training and greater social concern, happenings outside the classroom are becoming increasingly important. Education, he said, "must also be emotionally satisfying."

Dean Williamson said campus unrest caught America unprepared, despite the fact that there was ample warning as it spread through the rest of the world. To blame college administrators for the troubles, he said, is not sufficient; university governance does not lead to easy, quick decisions.

Williamson called for a new look at programs designed for minority students, especially at the Edwardsville Campus with its urban orientation. SIU has established itself as a leader in serving minority students, he said, "and let's not let a repressive mood end a good thing."

Hammond, the final panel speaker, said today's student has had completely different past experiences than previous generations. "We have allowed them an extended period of idealism," he said.

Hammond called for a "community concept" of education. He said such a concept includes the roles of students, faculty, administration, parents, and alumni. Not only financial support is needed from alumni, he said, but also support of the institution's public image.

Nominations Open

Nominations are now open for 1971 Alumni Achievement Award recipients, to be honored on Alumni Day next June. Deadline for nominations is February 15.

All SIU graduates and former students are eligible for Achievement Awards except present faculty members, members of the Board of Trustees, and the current Alumni Association president.

Awards are given both for outstanding professional achievement and for service to the University, the Alumni Association, or both.

Any Association member may make nominations. Names of nominees and brief supporting material should be sent to the Alumni Office.

The Alumni Association

Larry C. Jacober '62, M.S. '65, has been named to the Alumni Association board of directors to fill the year remaining in the term of Maurice P. Clark '38, M.S. '53. Clark, a past president of the Association, resigned because of pressures of professional commitments. Jacober is principal of Lincoln Junior High School in Carbondale and a board member and past president of the Jackson County Alumni Club.
Club Leaders in Fall Workshop

Representatives of sixteen local SIU alumni clubs were among those attending the Alumni Association’s annual Fall Club Officers’ Workshop, held this year in the University Center at Carbondale.

A dozen members of the Association board of directors also were included among the ninety-nine people attending.

The workshop opened with a noon luncheon at which Carbondale Campus Chancellor Robert G. Layer and coaches Paul Lambert and Dick Towers were guest speakers.

David Elder, Alumni Association president, moderated an afternoon session reported in separate articles elsewhere on these pages. Elder also outlined responsibilities of current board committees and talked briefly on the new Constituent Societies program.

Featured at a workshop dinner in the evening was presentation of a $3,000 research grant to Dr. George Gass, professor of physiology and director of the SIU Endocrinologic Pharmacology Research Laboratory. The grant was made possible by alumni contributions. More information about Dr. Gass’ work is given in an article beginning on page 2 of this issue.

Climax of the workshop was the Saluki-Youngstown football game in McAndrew Stadium—a 45-20 SIU victory.

Council Described

SIU’s new University Administrative Council was described to alumni leaders in the Alumni Association’s annual Fall Club Officers’ Workshop as a “planning group,” responsible primarily for making recommendations regarding distribution of various units within the institution.

Clarence Stephens, Council chairman, said in his view the Council is an appropriate administrative agent during an “interim period” but it would not be suitable for long-range governance of the University.

Dr. Stephens said he felt the work of the Council will lead to increased responsibilities for the chancellors. He said he believes he and the systems vice presidents, on the other hand, eventually will “work ourselves out of a job” simply by doing the work the Council was formed to do.

“No one,” he told the alumni group, “is attempting to build an empire or to retain an empire.”

The Administrative Council was formed by the SIU Board of Trustees September 1 to serve as chief administrative authority of the University following elimination of the office of University president. The change marked the beginning of a three-year “transitional period” during which all aspects of University governance and administration are to be evaluated.

Alumni Activities

SUNDAY, November 15
Bond-Clinton Counties Alumni Club meeting.

FRIDAY, November 20
SIU Alumni Coffee in conjunction with Illinois Health, Physical Education, and Recreation Association meetings, 8–9 a.m., Pick Congress Hotel, Chicago. St. Louis Area Alumni Club meeting.

SATURDAY, November 21
Bus trip to SIU-Arkansas State football game, sponsored by Jackson and Union counties Alumni Clubs. Monroe County Alumni Club meeting.

SUNDAY, November 22
Saline County Alumni Club meeting.

SATURDAY, January 9
Alumni Association Regional Club Officers’ Workshop, Belleville.

SUNDAY, January 10
Alumni Association Regional Club Officers’ Workshop, Lincoln.

SATURDAY, January 16
Alumni Association Regional Club Officers’ Workshop, Carmi.

SUNDAY, January 17
Alumni Association Regional Club Officers’ Workshop, Herrin.
1965 Mr. and Mrs. Steven C. Gerlach (Judith Ulaynne Smith ’64) and their two children, Catherine and Steven, make their home in Urbana. Gerlach is a graduate student and teaching assistant at the University of Illinois. He formerly taught for four years at Elmhurst.

Bernard Kaminiski has been promoted to claim superintendent at State Farm Mutual Automobile Insurance Company’s Villa Park claim service office. Joining State Farm in 1965, he formerly served as a field claim representative. He and his wife, Sally, and their two sons, Bernie and Bradley, live in Dolton.

Mylan M. Malina is a chemist with Service Master Industries. He and his wife, Sue, have two sons, Robert and Eric, and make their home in Westmont.

Alumni,

here, there...

1966 Staff Sgt. Lawrence W. Carroll has received the U. S. Air Force Commendation Medal at Laughlin AFB, Tex. Sgt. Carroll was cited for his work as an air operations specialist with the 6200th Air Base Wing at Clark AB, Philippines, and is now stationed at Laughlin.

Roger S. Cichorcz, M.A., is an analytical chemist with the Rocky Flats, Colo., division of Dow Chemical Company, a prime contractor for the U.S. Atomic Energy Commission. He and his wife, Rita, had their second child, Alyssa Ann, in April. They make Boulder, Colo., their home.

Charles R. Edelhofer is a field claim representative for State Farm Insurance Company. He and his wife, Linda, make their home in Riverdale.

Dorothy A. Evans, Ph.D. ’68, is assistant professor of psychology at the University of Maryland, College Park. She has completed two years of post-doctoral work at the University of Rochester Medical Center in the department of psychiatry. Beltsville, Md., is her home.

Capt. Arthur G. Hicks Jr. has received the U.S. Air Force Commendation Medal for meritorious service as chief of the quality control, training, and standardization branch in an Air Force support unit at Ankara, Turkey. He is now stationed at Scott AFB, Ill., with a unit of the Air Force Communications Service.

Ernest Lynn Johnson is an associate scientist with Mead Johnson Pharmaceutical Company. He and his wife, Janet, and their two sons, Michael and Erin, make Evansville, Ind., their home.

Capt. William H. McBee Jr. has been named Outstanding Junior Officer of the year at Laughlin AFB, Tex. Capt. McBee, selected for leadership, devotion to duty, and professional performance, is commander of the 3646th Organizational Maintenance Squadron there. He was commissioned through the Air Force R.O.T.C. program at SIU.

Willow Springs is the home of Mr. and Mrs. Edward F. Petka (Phyllis A. Hadfield ’65, M.S. ’66). Petka is a student at John Marshall Law School, Chicago, while Mrs. Petka teaches home economics at Argo Community High School. They were married a year ago this month.

Charles R. Rozyczki has been promoted to district sales manager of Pyle National Company in Broadview. His home is in Winnetka.

1967 Susan Jacqueline Akkeron, Melrose Park, received an M.S.E. degree from Northern Illinois University, DeKalb, in June.

Charlotte A. Cacioppo is a personnel officer at the University of Illinois campus in Chicago, where she makes her home.

Chi-Ying (Jim) Chu, M.S. ’67, Ph.D. ’70, is assistant professor in mass communications at Chico (Calif.) State College. As a doctoral student he served as a part-time writer in SIU News Services covering the “international beat.” Before coming to SIU he had worked five years as editor of English publications for the Government Information Office, Republic of China. He holds degrees from National Taiwan University and Chengchi University, both in Taipei. Mr. Chu and his wife, Ruth, have a year-old daughter, Alice. Mrs. Chu also holds a master’s degree from SIU.

First Lt. Michael R. Herider is a supply officer assigned to Korat Royal Thai AFB, Thailand. Commissioned through the Air Force R.O.T.C. program at SIU, he previously served at Seymour Johnson AFB, N. C.

BARRY LAMDEN is a financial accountant with Quaker Oats Company. He lives in Evanston.

Donald M. Mikula, Ph.D., has been named professor and chairman of the philosophy department at Austin Peay State University in Clarksville, Tenn. He holds bachelor’s degrees from Whittenberg University and Betheny Theological Seminary and a master’s degree from Washington University. He and his wife, Carolyn, have three children.

Richard Eugene Tesar received an M.S.E. degree from Northern Illinois University in June. He and his wife, Diane Dawn Tesar ’66, M.S. ’68, make their home in South Holland.

Jerry L. Webb, M.S. ’68, is an industrial arts teacher at Mendota High School. He and his wife, Marjorie, and their two children, Jill and Jack, make their home in Sterling.

First Lt. Kenneth R. Wheat is a radar maintenance officer on duty at Nakhon Phamom Royal Thai AFB, Thailand. He previously was stationed at North Charleston Air Force Station, S. C. He was commissioned through the Air Force R.O.T.C. program at SIU.

1968 Raymond Bruzan received an M.S. degree in biological science from Illinois State University, Normal, in August.

Earl Davis has joined the faculty of the University of the South in Sewanee, Tenn., as an instructor of French and physics. He formerly taught French at Centralia High School and recently conducted a tour of students in France.

Mr. and Mrs. Kenneth Felker,
M.S. (Sally Glish Felker, M.S.) received Ph.D. degrees in August from Kent State (Ohio) University. Both received bachelor's degrees in 1966 from Wisconsin State University.

Mr. and Mrs. James Furner and their two daughters, Christine and Tracy Lynn, make their home in Carpentersville. Furner is a film director with Allstate Insurance Company at their home office in Northbrook.

Susan Kaye McClary and Edwin Murphy both received advanced degrees from Harvard University in June, Miss McClary a master of arts degree and Murphy a master's degree in public administration. Both are life members of the SIU Alumni Association, having been awarded complimentary memberships upon graduation with highest honors.

Melvin H. McDonough is a medical technician at St. Francis Hospital in Peoria, where he and his wife, Betty, make their home.

Beaufort, S. C., is the home of Lt. and Mrs. Richard E. McLane II (Ronna Mary Hudson, VTI). Lt. McLane is an F4 Phantom pilot in the U. S. Marine Corps. Mrs. McLane taught during the summer at Pere Marquette Boys' School near Grafton. The couple was married in July in Carrolton.

Christie Kay Pearson, VTl, is a medical secretary with Eli Lilly and Company, a pharmaceutical firm. Her home is in Indianapolis, Ind.

Tommy Ross is an industrial engineer with Arnold Engineering Company. He and his wife, Janice, have a daughter, Wendy, and live in Rockford.

Richard E. Smith has been named property manager of Park Forest Cooperative Apartments, a division of Romanek-Golub and Company, Chicago real estate and development firm. He will administer policies and procedures for the two cooperative corporations that own the 680 units located in Park Forest. Mr. Smith previously was with the Bank Securities Division of the Continental Illinois National Bank and Trust Company.

James Joseph Zupanci teaches physical education and health and is track coach at Edwardsville Junior High School. He also teaches adult education classes. He and his wife, Gloria, and their three children, Lori, Kimber, and Thomas, live in Edwardsville.

Petro Honored

Walter Petro, a teacher at Normandy, Missouri, High School, has been named outstanding coordinator of distributive education in Missouri. He will represent that state at the American Vocational Association convention in New Orleans in December.

Petro, a 1959 SIU graduate who received a master's degree in 1964, works with students interested primarily with going directly into the "working world" after high school. The students attend class a half-day, spending the other half in a cooperative training program involving marketing, retailing, and salesmanship.

In his role as coordinator of the program, Petro is advisor to the students, visits them on the job, and evaluates their individual performances.

1969 George F. Astling is assistant horticulturist at the University of Illinois. He and his wife, Patricia, make Genoa their home.

Airmen Robert W. Buhr has completed basic training at Lackland AFB, Tex., and is assigned to Chanute AFB, Ill., for training in the flight training equipment field.

Robert D. Cureton, M.A., has been commissioned a second lieutenant in the U. S. Army upon graduation from Officer Candidate School at Ft. Sill, Okla.

Larry Allen Green is assistant director of the National Association of College Admissions Counselors. His home is in Waukegan.

Gerald R. Huge is a warehouse manager for Candles by Waxcraftsmen, Inc. He lives in Hoyleton.

Roy A. Judge is a private in the U. S. Army, serving a tour of duty in Vietnam.

Donald W. O. Karnuth, M.S., is a rehabilitation counselor for the state of Illinois. He and his wife, Joan, and their four children, Leif, Kirk, Franz, and Dietrich, live in Walsh.

Anthony H. Koester is with Monsanto Company as a senior engineer of computer systems design. He previously served as an electronic technician at McDonnell Aircraft and as an industrial engineer at Granite City Steel. He and his wife, Joan, and their two children, Angela and Christopher, live in St. Louis.

C. Peter Kula is undergoing advanced individual training with the Illinois National Guard at Ft. Leonard Wood, Mo. He was an elementary teacher in the Chicago public schools during the past school year.

El Paso, Tex., is the home of Mr. and Mrs. Richard Leo Lanigan Jr., Ph.D. Lanigan is professor of speech at the University of Texas. He holds both B.A. and M.A. degrees from the University of New Mexico.

Mrs. Andrew C. Lemler (Jessie A. Lemler) is a third grade teacher at Dorris School in Collinsville, where she makes her home with her husband and their four children.

Vincent S. Margerum is director of admissions at Belleville Area College. He and his wife, Audrey, and three children, Carol, Dale, and Michael, live in Belleville.
Leslie Miley Jr., M.F.A., is associate professor and chairman of the art department at the University of Evansville. He and his wife, Jo Anne, have two daughters, Elizabeth and Martha.

Antero Pietila, M.A., lives in Baltimore, Md., where he is a reporter for the Baltimore Sun. He holds a bachelor’s degree from the University of Tampere in Finland.

Robert Lee Richardson received an M.S. degree in education from Northern Illinois University in DeKalb earlier this year. His home is in Crete.

Second Lt. Michael A. Saylor has been graduated from U. S. Air Force Officer Training School at Lackland AFB, Tex. Selected for O.T.S. through competitive examination, he now is assigned to Vance AFB, Okla., for pilot training.

Leopold A. Schmidt is with the United Parcel Service as an office supervisor. He and his wife, Carol, have a son, Douglas Steven, and live in Clinton.

Pvt. John M. Stafford has completed the pay and disbursing specialist course at the U. S. Army Finance School, Ft. Benjamin Harrison, Ind. He completed his basic training at Ft. Leonard Wood, Mo.

Pamela A. Thier is a secretary with Taylor Publishing Company. Her home is in Murphysboro.

Gary R. Wilson is on the faculty of the Police Training Institute at the University of Illinois. He is a former training officer of the SIU Security Police.

Second Lt. Harold G. Zemner has been graduated from the training course for U. S. Air Force weapons controllers at Tyndall AFB, Fla., and assigned to the 4643rd Ground Environment Squadron, Duluth International Airport, Minn. He was commissioned through the Air Force R.O.T.C. program at SIU.

1970 William S. Bigard, Ph.D., has joined the staff of the American Chemical Society Chemical Abstracts Service in Columbus, Ohio, as an associate indexer in the organic indexing department. Chemical Abstracts Service has a staff of 1,000 scientists and supporting personnel which organizes and indexes all of the world’s published reports of chemical research and development. Bigard holds a B.S. degree from Eastern Illinois University.

Mr. and Mrs. Gerald E. King (Twylaah Ruddell King ’69) make their home in Mt. Carroll. He is guidance counselor at Chadwick and Thomson high schools and Mrs. King is special education teacher for Whiteside and Carroll counties. Both Mr. and Mrs. King are working toward master’s degrees at SIU.

Scott R. Leitner has been commissioned a second Lieutenant in the U. S. Air Force upon graduation from Officer Training School at Lackland AFB, Tex. He was selected for O.T.S. through competitive examination.

Michael J. Mustari has joined the physical therapy staff of Christ Community Hospital in Oaklawn, where he makes his home.

Lee (Skip) Pitlock, former Saluki baseball star, completed the season as a pitcher with the San Francisco Giants. Graduating from SIU “in absentia”, he began his major league career the night of June 12 in his debut against the St. Louis Cardinals.

Marriages

Dianne Reiman, Carbondale, to Charles Anders Jr., VTI ’69, Sidney, August 15.

Vicky Diane Williams, West Franklin, to John Oliver Beimfohr ’65, Carbondale, August 22.

Faye Klein ’70, Moro, to Walter P. Bruder ’68, Granite City, June 27.

Mary Carol Christoffel ’68, to Fred S. Bruha ’66, Cicero, May 16.

Nancy Reynolds ’69, Indianapolis, Ind., to Brian Lee Carlson March 28.

Susan Zeman, VTI ’69, to David F. Cignetti ’69, Peoria, July 13.

Jackie Freshwater to Carl J. Conceller ’68, Columbus, Mo., July 24.

Margaret K. Roney ’70, Sullivan, to Stephen Lee Crabtree ’70, Harrisburg, June 14.

Donna Lee Eckert to Mark A. Danardun ’68, Kinnelon, N. J., August 23.

Donna Lee Dick to Paul E. Finley ’69, Davenport, Iowa, May 23.

Linda Lee Jolly ’69, Wood River, to Gary Dean Farnsworth, Potomac, June 6.

Bonnie Lynn Opp ’69, Tamaqua, to Monte L. Franklin ’69, Herrin, June 27.

Darla Suzanne Lane to F. William Fromme, VTI ’69, New Berlin, August 16.

Larnita Bingley to Thurman C. Gills Jr. ’66, Chicago, August 15.

Mona Lynette Parini ’70, Herrin, to Mike Goin, Herrin, August 22.

Cheryl Carlson to Julius Golnik III ’68, Chicago, May 30.

Nina Lynn Darakjian, Granite City, to Loyal Evrin Gunderson ’68, Granite City, July 25.

Beverly Lou Jackson ’66, Granite City, to Robert Joseph Hartenbach, St. Louis, August 15.

Palmira Anne Petty, Collinsville, to Douglas Arnold Hartmann ’69, Collinsville, July 4.

Mary K. Nuetzel ’68, Belleville, to David P. Hasenstab, June 26.

Sue Ellen Eichhorn, Edina, to William Francis Hay ’70, Herrin, July 11.

Kathy Weilmaester to Richard D. Heil, VTI ’65, ’67, Marissa, April 25.

Judy Jones ’70, Gibson City, to Dennis Helton ’70, Shelbyville, July 11.

Evelyn M. Spizoul to Robert D. Hewes ’67, Polo, May 16.

Ellen Jean Haynes, Bement, to Frederick Charles Hickle ’70, Mahomet, July 11.

Mary Ann Srogus ’69, Belleville, to William P. Hohs Jr. ’69, Skokie, August 8.

Linda Sue Lawrence to Gerald Wayne Hough ’70, Belleville, June 27.

Gloria Jean Kubelka, Madison, to Gary Joseph Kaspovich ‘68, Madison, August 8.

Janice Kay Scott ’69, Carlisle, to Paul A. Kauling, June 6.

Antoinette Alvarado ’70, Granite City, to Terry Kerneneth ’69, M.S. ’70, Odell, August 22.

Nancy Louise Melton to Walter L. Koerte ’69, Olney, March 25.

Brenda Marie McAdamis ’69, Carbondale, to William John Krauklis ’70, Cicero, August 15.

Mary Jo Varno to Jerry E. Lawrence ’69, Eldorado, June 13.
Cheryl Annette Cockrell '70, Granite City, to Barry D. Lackey, Cahokia, July 31.
Mary Ann McElligott '69, Belleville, to Ronald Edward Lanterman '69, Belleville, July 3.
Mary Helen Hagen, Jerseyville, to Georges Pierre LeFaivre '69, Grafton, August 14.
Debra A. Levin '69, Chicago, to Edward List, June 25.
Janie Howell '69, Peoria, to James F. Lobig, August 16.
Kay Paulette Kobler '69, Marion, to James Martin Luchansky '70, Chicago, July 25.
Carolyn Hilferty '69, Tuscola, to Bill McCord, April 11.
Cherie Lynn LeFevre '69, Springfield, to John C. McCrosky '70, Henry, September 12.
Elaine Munal to Fred C. McDavid '65, Bloomington, February 26.
Frances Irene Dimnick, West Frankfort, to Ronald Dean Mings '70, West Frankfort, August 22.
Peggy L. Brinegar to Bradford A. Miracle '69, Lexington, Ky., July 11.
Jeanette A. Bartison '69, Cerro Gordo, to Donald G. Moniz, Falmouth, Mass., May 31.
Patricia E. Greenfield '66, Rolling Meadows, to Daniel J. Morrissey, July 11.
Sharyn Adele Gottlieb to James Ellis Musselman '68, July 25.
Jo Dougherty '70, Carbondale, to Alan Hunt North '70, Carbondale, August 15.
Joan M. Oltman to Lewis E. Osterman '68, Dana, April 4.
Barbara Lewis to Louis R. Pechan Jr. '69, Berwyn, July 25.
Phyllis Ann Green '70, Murphysboro, to Thomas A. Philabaum '70, Elyria, Ohio, August 1.
Mary Ellen Janello, Carbondale, to James Russell Pogue '69, Decatur, August 8.
Dianne Lombard to Richard Popdan, VT1 '69, Oswego, April 4.

Floyd C. Smith '35, M.S. '51, left, Flora high school principal, receives Distinguished Service Award in public school administration from Ian Beattie, M.S. '67, Ph.D. '69, president of the Gamma Lambda Chapter of Phi Delta Kappa, professional education fraternity. Smith was among some 300 southern Illinois educators honored by the chapter for thirty years or more of professional service. Beattie is on the elementary education faculty at SIU, Carbondale.

Rosemary Shaeffer '70, Smithton, to Fred G. Rakers '68, Breeze, June 20.
Patricia D. Braeutigam to Thomas B. Range '69, Freeburg, June 27.
Phyllis A. Singmaster to Dennis E. Rice '69, Creve Coeur, Mo., March 27.
Margaret B. Cissell to Larry N. Richards '68, New Albany, Ind., June 27.
Betty Lambrinos to Mark Rudd '68, Chicago, April 11.
Diana Yedinak '67, Mascoutah, to Eldon Paul Sauerwein, Bunker Hill, August 1.
Margo Ann Ammann '70, Highland, to William C. Schaefner, Granite City, July 18.
Janet Kay Carlson, Urbana, to Harold Erwin Schlarau '70, Addison, June 27.
Alice Stewart to Lt. Jerome E. Schill '68, New York, April 18.
Mary Ann Hopkins '70, Sparta, to James L. Schillinger '70, Marion, July 24.
Clair A. Nelson to Michio Takeda '68, Chicago, April 18.
Gayla Lolar, Marion, to Loren Taylor '70, Creal Springs, June 26.

Jennifer M. C. James to Cecil E. Terry '66, St. Louis, June 8.
Donna Elizabeth Conner, Alton, to Robert A. Watson '70, Alton, August 10.
Terry Rene Gain, Belleville, to James Lee Weidemann '70, Belleville, June 27.
Carolyn Sue Miller '68, Eldorado, to William E. Weigel Jr., July 12.
Deborah Kaye Shaffer, Dongola, to Ronald Joe Westerfield '67, M.S. '69, Carbondale, August 21.
Lenore Ann Nelke to Ralph Alden Wilkinson '67, M.A. '69, August 22.
Marianne Dirks, Sabula, Iowa, to Paul Wolters '57, M.M. '58, Steele­ville, June 6.
Pamela Piper '69, Woodlawn, to Bill Wright '66, Carbondale, August 15.

Births

To Mr. and Mrs. David R. Baldwin '68 (Jane Eubanks '67), a daughter, Sarah Jan, April 21.
To Mr. and Mrs. Steven Belsa (Lin-
DA J. BELAUS, VTI '67, San Rafael, Calif., a son, Steven Paul, March 15.

To Mr. and Mrs. Eldon M. Bigham '64, M.S. '69, Edwardsville, a daughter, Jennifer, April 29.

To Lt. and Mrs. Ronald G. Brohammer '67, Scott AFB, a son, Michael George, March 12.

To Mr. and Mrs. James M. Buckler '65 (Marilyn Kay Busch '64), Savannah, Ga., a daughter, Laurie Ann, February 13.

To Mr. and Mrs. Roger Cichorz '66, Boulder, Colo., a daughter, Alyssa Ann, April 9.

To Mr. and Mrs. Thomas D. Dollinger (Ruth Ann Chappell '67), Savannah, Ga., a son, Brent Thomas, August 4.

To Mr. and Mrs. Gary D. Dunbar '69, St. Louis, a daughter, Elizabeth Carol, March 6.

To Mr. and Mrs. Ronald H. Durbin '62 (Suzanne Guebert '62), Manchester, Mo., a daughter, Nancy, April 10.

To Mr. and Mrs. David A. Eccleston (Nancy Crickman Eccleston '56), a son, Daniel Ross, May 9.

To Mr. and Mrs. Richard C. Edmundson '61 (Mary Groethe, ex), St. Louis, twin sons, Randall Joseph and Ronald James, May 2.

To Mr. and Mrs. Kenwic N. Frazier '68 (Elizabeth Pillers '69), Sparta, a daughter, Ellen Lea, May 24.

To Mr. and Mrs. Jerry Gorman '68, Forest Park, a son, Jason Edward, July 4.

To Mr. and Mrs. Dennis T. Grubb '62, Concord, Calif., a son, Keith Dennis, February 27.

To Mr. and Mrs. C. E. Heiligenstein (Carol A. Blust '65), Belleville, a daughter, Julie Lynn, April 22.

To Mr. and Mrs. Bernard L. Hemker '62 (Joan Ann Hemker '63), Northville, Mich., a son, Henry Lyn, June 9.

Adopted by Mr. and Mrs. Dennis Herbert '63 (Susan Muelhauser Herbert '65), Alton, a daughter, Kate Elise, June 22.

To Mr. and Mrs. David W. Hindman '69, Hurst, a son, Derek, June 5.

To Mr. and Mrs. Dennis D. Hunt (Sharon Kay Myers '63), East Alton, a son, Darin Mitchell, May 6.

To Mr. and Mrs. Kenneth A. Kappie '67, San Antonio, Tex., a daughter, Julie Ann, June 19.

To Mr. and Mrs. Russel B. Lenz '67, M.S. '69, Chicago Heights, a son, Bradley Scott, April 30.

To Dr. and Mrs. Stanley A. Levin, '63, London, Ont., a son, Scott Emery, August 5.

To Mr. and Mrs. Michael B. Levitt '61, Chicago, a son, Daniel Reed, May 21.

To Mr. and Mrs. Jeffrey J. Magill '69, Belleville, a daughter, Elizabeth June 30.

To Mr. and Mrs. George J. Maier Jr. (Donna Kay Satterfield '66), Springfield, a son, Matthew Michael, June 18.

To Mr. and Mrs. James Mackall '58, Palmer, a daughter, Jaymie, August 6.

To Mr. and Mrs. Stephen C. Marlow '69, Herrin, a daughter, Melissa Jo, April 5.

To Mr. and Mrs. James A. Mertz '68, Waterloo, a daughter, Dawn, February 27.

To Mr. and Mrs. Robert Montgomery '69, Evansville, a daughter, Quincy Rae, July 2.

To Lt. and Mrs. John S. Nosari '67, Hill AFB, Utah, a son, Nathan John, April 25.

To Mr. and Mrs. Franklin A. Phillips '69, Evansville, Ind., a daughter, Cynthia Dawn, August 9.

To Mr. and Mrs. George Prewett (Mary L. Meyer '59, M.S. '65), Marshall, a daughter, Lauretta Rea, April 3.

To Mr. and Mrs. Peter A. Procopi '69 (Marsha Gayle Santee '69), Binghamton, N. Y., a son, Alex Christian, July 31.

To Mr. and Mrs. Robert D. Rothley '66 (Gayle M. Mensinger '65), Belleville, a daughter, Beth Ann, July 12.

To Mr. and Mrs. Richard C. Schultz Jr., VTI '64, '66, Brush, Colo., a son, Jeff, March 27.

To Mr. and Mrs. Richard D. Seibach '59, Taylorville, a daughter, Elizabeth Marie, May 5.

To Mr. and Mrs. James A. Sobczak '66, Chicago, a son, James Anthony, July 14.

To Mr. and Mrs. Roger L. Stevenson '69, Phoenix, Ariz., a daughter, LeAnne Sue, February 24.

To Mr. and Mrs. John F. Truitt '69, New Lenox, a son, Michael Jay, July 24.

To Mr. and Mrs. John E. White (Karen E. Ozment '65), Bellevue, Neb., a son, Jeffrey Douglas, January 22.

To Mr. and Mrs. James B. Williams '59 (Mary Evelyn Kessler '57), Arlington Heights, twin daughters, Sharen and Karen, February 12.

To Mr. and Mrs. Thomas A. Wilson (Rita Ann Ziegler '68), Arlington, Va., a son, Scott Randolph, January 5.

To Mr. and Mrs. Robert E. Wing '67 (Nancy Maxwell '66), Peoria, a son, Robert Michael, August 14.

To Mr. and Mrs. Albert L. Wylie (Patricia Ann Holtgrave '69), Columbus, a son, Lawrence Edward, July 11.

Deaths

Two Carbondale Campus faculty members well known among alumni, Sherwin F. Abrams and Hugh D. Duncan, died in August. Abrams, associate professor of theater, died August 27 at age 47 after a five-year illness. Duncan, professor of sociology and English, died August 8. He was 60.

The Alumni Office also has learned of the death on August 23 in Champaign of Fred P. Barnes, training school supervising teacher at SIU from 1938-40.

1916 Sidney Parker, 2, Texico, a retired educator, public official, and farmer, died August 26 at age 78. Mr. Parker was 1916 Class Representative to the Alumni Association Legislative Council and also had been a director of the Jefferson County Alumni Club. He was a former five-term member of the Illinois House of Representatives. Survivors include his wife, Veda Stills Price '27-2, '57, '60; two sons, a daughter, two brothers, and seven grandchildren.

1929 Amos D. Coleman, 2, '32, Springfield, died September 17. Before his retirement he had been a supervisor for the Illinois Vocational and Education Department. Survivors include his wife, Emma, and a sister.

1942 LaVerne Armstrong, Lawrenceville, died August 16. She was a teacher at Carthage for 40 years.

1948 William McBride, M.S. '49, died September 1 after a three-month illness. He was curriculum director at Carbondale Community High School, had formerly been Carbondale high school superintendent and also had served five years as head basketball coach. He is survived by his wife and two sisters.

1970 David Lee Bonnell, VTI; Flat Rock, died in an auto accident near Robinson July 18. He is survived by his parents, grandparents, and a brother.
Honorable & Mentionable . . .

Born to the life of the campus, Burnett H. Shryock Sr. has ended an association with SIU which spanned two-thirds of his sixty-six years and cast him as student, teacher, and administrator.

Shryock retired at the end of the summer from his post as dean of the School of Fine Arts. It was a time for reminiscing. He recalled walking to campus as a small boy with his father, Henry William Shryock, then head of the English department, and “picnicking” in his father’s office in Old Main.

He told of entering the “training school” as a first grader, and of playing the piano for visiting dignitaries who were entertained in the Shryock home during the twenty-two years his father served as president of the institution.

After completing the two-year college program offered by then Southern Illinois Normal University in 1922, Shryock transferred to the University of Illinois for his degree. He then spent two years at the Chicago Art Institute and later received a master’s degree in painting from Columbia University.

After a successful career as a portrait painter in New York and Chicago and a teaching stint at Southern and other schools, Shryock returned to Carbondale in 1950 as art department chairman. He became director of the Division of Fine Arts three years later and was named dean of the new School of Fine Arts when the latter was organized in 1955.

Actually, he holds the unique distinction of being the only dean of the School of Fine Arts; at the time of his retirement that unit was merged into the new College of Communications and Fine Arts.

During his years as dean, Shryock witnessed a tremendous growth in the departments comprising fine arts. In 1950, the art department counted only about fifty majors, music about a hundred. There was no design department. In 1969, some 200 students were majoring in music, about 150 in design, and more than 800 in art.

It was Shryock who brought to campus SIU’s first artist-in-residence, Aaron Borod. He also recruited such noted faculty members as R. Buckminster Fuller and Miss Marjorie Lawrence and brought the well known French music educator, Nadia Boulanger, to SIU twice as visiting professor.

In addition to his painting, Shryock is keenly interested in music and the theater, and has a broad acquaintance with people of all areas of the fine arts. He says he was enamored of the theater from childhood, and one year accompanied his parents to Europe only by coercion because he didn’t want to miss the serial then playing at the local theater. “I took piano lessons because I wanted to play jazz like the girl at the Yale Theater,” he recalls. “I learned to play jazz, all right. In fact I learned it both on the piano and the violin.” (He later joined a band which played towns all over southern Illinois.)

In the fall of 1969, Dean Shryock was granted a sabbatical leave to concentrate on painting and to write a book of reminiscences. His leave was abruptly interrupted when he and his wife were in an automobile accident and seriously injured. He was hospitalized two months, Mrs. Shryock longer.

With that ordeal over, he expects to complete his book, to spend more time painting, and—for the present at least—to continue to serve on the Illinois Arts Council at the request of council members.
If you have to pay more for your life membership it's your own fault!

Beginning January 1, 1971, cost of Life Membership in the SIU Alumni Association is going up. Instead of the present $100, a single Life Membership will be $125. A Family Life Membership (husband and wife both alumni) is to be increased from $125 to $150. Minimum annual installment payments at the new rate will be $12.50 on a single Life Membership and $15 on a Family Life Membership, compared to the present $10 and $12.50, respectively. All membership applications received before January 1 will be processed at existing rates. So if you have been thinking of joining the 1,200-plus alumni who now hold Life Membership in the Association, now is the time to act. Remember, the $$$ you save will be your own!