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Abstract We compute that the index set of PAC-learnable concept classes
is m-complete Σ0

3 within the set of indices for all concept classes of a rea-
sonable form. All concept classes considered are computable enumerations of
computable Π0

1 classes, in a sense made precise here. This family of concept
classes is sufficient to cover all standard examples, and also has the property
that PAC learnability is equivalent to finite VC dimension.
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1 Introduction

A common method to characterize the complexity of an object is to describe
the degree of its index set [5–8,10,13,17]. In the present paper, we carry out
this computation for the class of objects which are machine-learnable in a
particular model. In doing so, we solve a problem related to one posed by
Linial, Mansour, and Rivest in 1991 [16].

There have been several models of machine learning, dating back at least
to Gold’s seminal 1967 paper [12]. In Gold’s basic model, the goal is that the
machine should determine a Σ0

1 -index for a computably enumerable set of nat-
ural numbers — that is, an index for a computable function enumerating it,
by receiving an initial segment of the string. Of course, many variations are
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possible, involving, for instance, the receipt of positive or negative information
and the strength of the convergence criteria in the task of “determining” an
index. This family of models has been studied by the recursion theory commu-
nity (see, for instance, [11,14,21]), but is not the primary focus of this paper.
One particular result, however, is of interest to us.

Theorem 1 (Beros [1]) The set of Σ0
1 indices for uniformly computably enu-

merable families learnable in each of the following models is m-complete in the
corresponding class.

1. TxtFin — Σ0
3

2. TxtEx — Σ0
4

3. TxtBC — Σ0
5

4. TxtEx∗ — Σ0
5

1.1 PAC Learning

The model of learning that concerns us here (PAC learning, for “Probably
Approximately Correct”) was first proposed by Valiant in [22]. Much of our
exposition of the subject comes from [15]. The idea of the model is that it
should allow some acceptably small error of each of two kinds: one arising
from targets to be learned which are somehow too close together to be easily
distinguished, and the other arising from randomness in the examples shown to
the learner. Neither aspect is easily treated in Gold’s framework of identifying
indices for computable enumerations of natural numbers by inspecting initial
segments — neither a notion of “close” nor randomness in the inputs.

In the present paper, we will describe a framework in which to model PAC
learning in a way which is suitable for recursion-theoretic analysis and which
is broad enough to include many of the benchmark examples. We will then
calculate the m-degree of the set of indices for learnable concept classes.

Definition 2 (Valiant)

1. Let X be a set, called the instance space.
2. Let C be a subset of P(X), called a concept class.
3. The elements of C are called concepts.
4. We say that C is PAC Learnable if and only if there is an algorithm ϕe

such that for every c ∈ C, every ε, δ ∈ (0, 1
2 ) and every probability distri-

bution D on X, the algorithm ϕe behaves as follows: On input (ε, δ), the
algorithm ϕe will ask for some number n of examples, and will be given
{(x1, i1), . . . , (xn, in)} where xj are independently randomly drawn accord-
ing to D, and ij = χc(xj). The algorithm will then output some h ∈ C so
that with probability at least 1− δ in D, the symmetric difference of h and
c has probability at most ε in D.

This is a well-studied model — so well-studied, in fact, that it is more usual
to talk about the complexity of the algorithm (in both running time and the
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number of example calls) than about its existence. Of course, in many learning
situations, PAC learning is still impossible without regard to resources. For the
present paper, we restrict ourselves to the problem of whether PAC learning
is possible. Several examples are well-known.

Example 3 Let X = 2n, interpreted as assignments of truth values to Boolean
variables. Then the class C of k-CNF expressions — that is, the class of propo-
sitional formulas on k Boolean variables, in conjunctive normal form — is
PAC learnable (where each expression c ∈ C is interpreted as the set of truth
assignments that satisfy it).

Example 4 Let X = Rd. Then the class C of linear half-spaces (i.e. of subsets
of Rd, each defined by a single linear inequality) is PAC learnable.

Example 5 Let X = R2. Then the class of convex d-gons is PAC learnable
for any d.

1.2 The Vapnik-Chervonenkis Dimension

An alternate view of PAC learnability arises from work of Vapnik and Cher-
vonenkis [23]. Again, we follow the exposition of [15].

Definition 6 Let C be a concept class.

1. Let S ⊆ X. Then ΠC(S) = |{S ∩ c : c ∈ C}|.
2. The Vapnik-Chervonenkis (VC) dimension of C is the greatest integer d

such that ΠC(S) = 2d for some S with cardinality d, if such an integer
exists. Otherwise, the VC dimension of C is ∞.

For example, if C is the class of linear half-spaces of R2, and if S is a set
of size 4, suppose that k is the least natural number such that all of S is
contained in the convex hull of k ≤ 4 points of S. If k < 4, take a set S0 of
size k such that the convex hull of S0 contains S. The subset S0 ⊂ S cannot
be defined by intersecting S with a linear half-space. If k = 4, then let S0 be
a diagonal pair, which again cannot be defined by intersection with a linear
half-space. Consequently, the VC dimension of C must be at most 3. One can
also show that this bound is sharp.

The connection between VC dimension and learnability is a theorem of
Blumer, Ehrenfeucht, Haussler, and Warmuth showing that under some rea-
sonable measure-theoretic hypotheses (which hold in all examples shown so far,
and in all examples that will arise in the present paper), finite VC dimension
is equivalent to PAC learnability [3].

Definition 7 (Ben-David, as described in [3]) Let R ⊆ P(X), and let D
be a probability distribution on X, and ε > 0.

1. We say that N ⊆ X is an ε-transversal for R with respect to D if and only
if for any c ∈ R with PD(c) > ε we have N ∩R 6= ∅.
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2. For each m ≥ 1, we denote by Qmε (R) the set of x ∈ Xm such that the set
of distinct elements of x does not form an ε-transversal for R with respect
to D.

3. For each m ≥ 1, we denote by J2m
ε (R) the set of all xy ∈ X2m with x and

y each of length m such that there is c ∈ R with PD(c) > ε such that no
element of c occurs in x, but elements of c have density at least εm

2 in y.
4. We say that a concept class C is well-behaved if for every Borel set b, the

sets Qmε (R) and J2m
ε (R) are measurable where R = {c4b : c ∈ C}.

This notion of “well-behaved” is exactly the necessary hypothesis for the
equivalence:

Theorem 8 ([3]) Let C be a nontrivial, well-behaved concept class. Then C
is PAC learnable if and only if C has finite VC dimension.

In [16], Linial, Mansour, and Rivest asked for the complexity of computing
the VC dimension of a finite family of concepts over a finite instance space.
They showed that this problem can be solved in time O(rnlg(r)), where r
is the number of concepts in the class, n is the number of elements in the
instance space, and lg(r) denotes the base 2 logarithm of r. Schäfer [19] later
showed that the analogous problem in a different representation system was
ΣP

3 -complete. Schäfer’s instance spaces and concept classes are still finite,
which is a severe limitation in view of the ubiquitous examples one finds in
the literature (linear half-spaces of Rd, for example) in which both the instance
space and the concept class are infinite.

2 Concepts and Concept Classes

The most general context in which PAC learning makes sense is far too broad
to say anything meaningful about the full problem of determining whether a
class is learnable. If we were to allow the instance space to be an arbitrary set,
and a concept class an arbitrary subset of the powerset of the instance space,
we would quickly be thinking about a non-trivial fragment of set theory.

In practice, on the other hand, one usually fixes the instance space, and
asks whether (or how efficiently, or just by what means) a particular class is
learnable. This approach is too narrow for the main problem of this paper to
be meaningful. The goal of this section, then, is to describe a context broad
enough to cover many of the usual examples, but constrained enough to be
tractable.

Many of the usual examples of machine learning problems can be system-
atized in the framework of Π0

1 classes, which will now be introduced. The
following result is well-known, but a proof is given in [9], which is also a good
general reference on Π0

1 classes.

Theorem 9 Let c ⊆ 2ω. Then the following are equivalent:

1. c is the set of all infinite paths through a computable subtree of 2ω
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2. c is the set of all infinite paths through a Π0
1 subtree of 2ω (i.e. a co-c.e.

subtree)
3. c = {x ∈ 2ω : ∀n R(n, x)} for some computable relation R, i.e. a relation

R for which there is a Turing functional Φ such that R(n, x) is defined by
Φx(n).

This equivalence (and other similar formulations could be added) gives rise
to the following definition:

Definition 10 Let c ⊆ 2ω. We say that c is a Π0
1 class if and only if it

satisfies one of the equivalent conditions in Theorem 9.

Example 11 There is a natural and uniform representation of all well-formed
formulas of classical propositional calculus, each as a Π0

1 class. We regard 2ω

as the assignment of values to Boolean variables, so that for f ∈ 2ω, the value
f(n) = k indicates a value of k for variable xn. Let ϕ be a propositional
formula. We construct a Π0

1 subtree Tϕ ⊆ 2ω such that f ∈ Tϕ if and only if
f satisfies ϕ. At stage n, for each σ ∈ 2<ω of length n, we include σ ∈ Tϕ if
and only if there is an extension f ⊃ σ such that f |= ϕ. This condition can
be checked effectively. Consequently, Tϕ is a Π0

1 subtree of 2ω — intuitively,
an infinite path f may fall out of Tϕ at some point when we see a long enough
initial segment to detect non-satisfiability, but unless it falls out at some finite
stage, it is included.

Example 12 There is a natural and uniform representation of all closed in-
tervals of R with computable endpoints, each as a Π0

1 class. We take the usual
representation of real numbers by binary strings. Let I be a closed interval
with computable endpoints. We construct a Π0

1 tree TI ⊆ 2ω such that the
set of paths through TI is equal to I. At stage s, we include in TI all binary
sequences σ of length s such that there is an extension f ⊃ σ with f ∈ I. This
condition can be checked effectively, by the computability of the endpoints of
I. Consequently, TI is a Π0

1 subtree of 2ω.

Example 13 There is a natural and uniform representation of all closed lin-
ear half-spaces of Rd which are defined by hyperplanes with computable coef-
ficients, each half-space as a Π0

1 class. We encode Rd as 2ω in the following
way: the ith coordinate of the point represented by the path f is given by the
sequence (f(k) : k ≡ i mod d). Now we encode a linear subspace into a subtree
in the same way as with intervals in the previous example.

Example 14 There is a natural and uniform representation of all convex
d-gons in R2 with computable vertices, with each d-gon represented by a Π0

1

class. A convex d-gon is an intersection of d closed linear half-spaces, and
so we exclude a node σ ∈ 2ω from the tree for our d-gon if and only if it is
excluded from the tree for at least one of those linear half-spaces.

Note that the requirement of computable boundaries of these examples is
not a practical restriction.
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Proposition 15 For any probability measure µ on Rd absolutely continuous
with respect to Lebesgue measure, any ε > 0, and any hyperplane given by
f(x̄) = 0, there is a hyperplane given by f̄(x̄) = 0 where f̄ has computable
coefficients, and where the linear half-spaces defined by these hyperplanes are
close in the following sense: If Hf is defined by f(x̄) ≤ 0, if H0

f is defined

by f(x̄) < 0, and Hf̄ is defined by f̄(x̄) ≤ 0, then µ
(
Hf4Hf̄

)
< ε and

µ
(
H0
f4Hf̄

)
< ε.

Proof Since a hyperplane has Lebesgue measure 0, it suffices to show that

we can achieve µ
(
Hf4Hf̄

)
< ε, since µ

(
Hf4H0

f

)
= 0. Let Fµ(x̄) be the

cumulative distribution function, that is,

Fµ(x̄) = µ ((−∞, x1]× (−∞, x2]× · · · × (−∞, xd]) .

Now lim
x̄→(−∞,...,−∞)

F (x̄) = 0 and lim
x̄→(+∞,...,+∞)

F (x̄) = 1, so that for each

i there are x′i,` and x′i,u such that

lim
ȳ→(−∞,...,−∞)

F (y1, y2, . . . , yi−1, x
′
i,`, yi+1, . . . , yd) <

ε

4d

and
lim

ȳ→(+∞,...,+∞)
F (y1, y2, . . . , yi−1, x

′
i,u, yi+1, . . . , yd) > 1− ε

4d
.

Since computable points are dense in Rd, we can find x̄i,` and x̄i,u which also
satisfy these inequalities.

We then let B ⊆ Rd be the d-orthotope with vertices
{
b̄ : bi ∈ {xi,`, xi,u}

}
.

Note that µ(B) > 1− ε
2 .

Now either f(x̄) = 0 has empty intersection with the interior of B, or it
intersects at least d faces of B. In the first case, we may take f̄ to be such
that f̄(x) = 0 contains the face of B nearest f(x̄) = 0 (of course, it is possible
that the nearest point of B to f(x̄) = 0 has more than one incident face, e.g.
if it is on an edge, in which any of the incident faces will suffice). Then the
symmetric difference of Hf and Hf̄ is contained in the complement of B, and
so has measure less than ε

2 .
In the second case, let Φ1, . . . , Φd be the faces of B which intersect f(x̄) = 0.

Note that d points, one taken taken from Φi −
⋃
j 6=i

Φj for each i, are sufficient

to determine a hyperplane.
Since computable points are dense in R, we can find, in each face Φi, a

computable point āi so close to f(x̄) = 0 that if f̄(x̄) = 0 is the hyperplane
determined by the set of points {āi : i ≤ d}, then

µ
((
Hf4Hf̄

)
∩B

)
<
ε

2
.

Although there are, of course, infinitely many choices for these ai, one could
determine them by starting with any computable points (a0,i : i ≤ d) in the
relevant faces, and then as long as the inequality above fails, find the i such
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that at,i is farthest from f(x̄) = 0 and replacing it with at+1,i which is less
than half as far away from f(x̄) = 0, while setting at+1,j = at,j for all j 6= i.

The coefficients of f̄ are computable since the points āi are computable.
Furthermore,

µ
(
Hf4Hf̄

)
<
ε

2
+ (1− µ(B)) < ε.

Examples could be multiplied, of course, and it seems likely that many of
the more frequently encountered machine learning situations could be included
in this framework — certainly, for instance, any example in [2], [15], or [18].

We will work, for the purposes of the present paper, with instance space 2ω

and with concepts which are Π0
1 classes. Unless otherwise noted, we use the

standard product topology on 2ω. It remains to describe the concept classes
to be used. We make the following preliminary definitions:

Definition 16 1. Let f, g ∈ 2≤ω. Then d(f, g) is defined to be 2−n where n
is the least natural number such that f(n) 6= g(n).

2. Let f ∈ 2≤ω and r ∈ R. We denote by Br(f) the set {g ∈ 2≤ω : d(f, g) < r}.
3. Let S ⊆ 2ω. We say that S is computable if and only if there is a com-

putable function fS : 2<ω ×Q→ {0, 1} such that

fS(σ, r) =

1 if Br(σ) ∩ S 6= ∅
0 if B2r(σ) ∩ S = ∅
0 or 1 otherwise

Part 3 of the definition is standard for metric spaces which, like 2ω, may
be given a computable structure (see [4,24]).

Lemma 17 The following conditions on a set S of paths through a computable
tree T ⊆ 2ω are equivalent:

1. S is computable
2. S is the set of paths through a computable tree T ′ with no dead ends.

Proof Suppose first that S is computable. We form T ′ by using fS to examine
each finite string σ ∈ T , as well as its immediate successors, σ0 and σ1. If
fS(σ, 2−|σ|) = 0, we exclude σ from T ′. If

fS(σ0, 2−|σ|−1) = fS(σ1, 2−|σ|−1) = 0

then we exclude σ from T ′. Otherwise, we include σ in T ′.
We now show that T ′ has no dead ends and has the same infinite paths as

T . Suppose that σ ∈ T . If fS(σ, 2−|σ|) = 1 then either σ extends to an infinite
path in T , or there is some τ such that τ extends to an infinite path in T and
d(σ, τ) ≤ 2−|σ|+1 (corresponding, respectively, to the first and third clauses of
the definition of fS , above); that is, τ differs from σ at the |σ| − 1 place, so
that τ and σ share an immediate predecessor. Similarly, if f(σ, r) = 0 for some
r > 0, then σ does not extend to an infinite path. Now if σ was included in T ′,
then we have both fS(σ, 2−|σ|) = 1 and at least one of fS(σ0, 2−|σ|−1) = 1 and
fS(σ1, 2−|σ|−1) = 1. Without loss of generality, say fS(σ0, 2−|σ|−1) = 1. Then



8 Wesley Calvert

either σ0 extends to a path or σ extends to a path. In either case, σ extends to a
path. On the other hand, if σ extends to a path in T , then both fS(σ, 2−|σ|) = 1
and at least one of fS(σ0, 2−|σ|−1) = 1 and fS(σ1, 2−|σ|−1) = 1, so that σ is
included in T ′.

Suppose, on the other hand, that S is the set of paths through a computable
tree T ′ with no dead ends. We define a function fS to witness that S is
computable. Let σ ∈ 2<ω and r ∈ Q. If r ≥ 1, then set fS(σ, r) = 0 if S
is empty, and fS(σ, r) = 1 if S is nonempty. If r < 1, let s be a natural
number such that 2−s < r < 2−(s−1). Let Us = {τ ∈ 2<ω : |τ | ≤ s}. Note that
Us is finite.

To compute fS(σ, r) where r < 1, we check all τ ∈ US . If there is a
τ ∈ US such that d(σ, τ) < r and τ ∈ T ′, then set fS(σ, r) = 1. Otherwise, set
fS(σ, r) = 0.

To show that this function works, note that if g ∈ S with g ∈ Br(σ), then
there is some restriction τ ⊆ g in Us such that d(σ, τ) < r, and it will have
caused us to set fS(σ, r) = 1. On the other hand, if d(σ, s) ≥ 2r, then for any
τ ∈ Us with d(σ, τ) < r, the element τ in 2<ω cannot extend to an infinite
path in S, so that τ /∈ T ′.

There is an unfortunate clash of terminology in that the concept classes
will have, for their members, Π0

1 classes. In this paper, we will never use the
term ambiguously, but because both terms are so well-established it will be
necessary to use both of them.

Definition 18 A weakly effective concept class is a computable enumeration
ϕe : N→ N such that ϕe(n) is a Π0

1 index for a Π0
1 tree Te,n.

Naturally, we interpret each index enumerated as the Π0
1 class of paths

through the associated tree. We also freely refer to the indices (or trees, or Π0
1

classes) in the range of a concept class as its elements.
This definition is almost adequate to our needs. We would like, however,

one additional property: that a finite part of an effective concept class C should
not be able to distinguish a non-computable point of 2ω from all computable
points, in the sense that if y ∈ 2ω is noncomputable, then any finite Boolean
combination of members of C containing y should also contain a computable
point. This is reasonable: it would strain our notion of an “effective” concept
class if it should fail. And yet it can fail with a weakly effective concept class:
our classes may have no computable members at all, for instance. For that
reason, we define an effective concept class as follows.

Definition 19 An effective concept class is a weakly effective concept class
ϕe such that for each n, the set cn of paths through Te,n is computable as a
subset of 2ω.

Note that for the set cn to be computable, it is not necessary (or even
likely) that all of its elements are computable.

In addition to the useful property mentioned above, which we will soon
prove, there is another reason for preferring this stronger definition: Typically
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when we want a computer to learn something, it is with the goal that the
computer will then be able to act on it. Computability of each concept is a
necessary condition for this. The restriction corresponds, in the examples, to
the restriction that a linear half-space, for instance, be defined by computable
coefficients. The classes we consider in this paper will be effective concept
classes.

Proposition 20 Let C be an effective concept class, and let c1, . . . , ck ∈ C.
Then for any y ∈ 2ω, there is a computable x ∈ 2ω such that for each i ∈
{1, . . . , k}, we have x ∈ ci if and only if y ∈ ci.
Proof Let y, c1, . . . , ck be as described in the statement of the Proposition. Let
I be the set of i such that y ∈ ci and J be the set of i such that y /∈ ci.

Suppose first that y is not in the boundary ∂ci of ci for each i. Then

y ∈ N :=

(⋂
i∈I

c◦i

)
∩

(⋂
i∈J

(ci)
◦

)
,

where S◦ denotes the interior of s and S̄ the complement of S. Since I and J
are finite, N is open. Since y ∈ N , the set N is nonempty, and must contain a
basic open set of 2ω, and so must contain a computable member, x, as required.

Now suppose that y is in ∂ci for some i. Then we can compute y, using
the function fci , so that y is itself computable and we take x = y.

We note that all of the examples given so far are effective concept classes.

Example 21 The class of well-formed formulas of classical propositional cal-
culus, and the class of k-CNF expressions (for any k) are effective concept
classes, by the example above. Whether a given y ∈ 2ω satisfies a particular
formula can be determined by examining only finitely many terms of y.

Example 22 The class C of linear half-spaces in Rd bounded by hyperplanes
with computable coefficients is an effective concept class. Recall that each linear
half-space with computable coefficients is a computable set, since the distance
of a point from the boundary can be computed.

Example 23 The class of convex d-gons in R2 with computable vertices is an
effective concept class.

Again, it appears that any example in any of the standard references is an
effective concept class.

A pleasant feature of the effective concept classes is that they are always
well-behaved.

Lemma 24 A weakly effective concept class has finite VC dimension if and
only if it is PAC learnable.

Proof Let C be an effective concept class. In [3], a proof of Ben-David is given
that if C is universally separable — that is, if there is a countable subset
C∗ such that every point in C can be written as the pointwise limit of some
sequence in C∗ — then C is well-behaved. Since an effective concept class
is always countable (i.e. it contains only countably many Π0

1 classes), C is
trivially universally separable. By Theorem 8, the conclusion holds.
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3 Bounding the Degree of the Index Set

We now turn toward the main problem of the paper, which we can now express
exactly.

Problem 25 Determine the m-degree of the set of all natural numbers e such
that ϕe is a PAC-learnable effective concept class.

One minor refinement in the problem remains: the difficulty of saying that
e is the index for an effective concept class competes with that of saying that
this concept class is learnable. Indeed, since determining that n is an X-index
for an X-computable tree is m-complete Π0

2 (X) (see [13,20]), it follows that
determining that n is a Π0

1 index for a Π0
1 tree is m-complete Π0

3 .
Since we will see that finite VC dimension can be defined at Σ0

3 , a driving
force in the m-degree described in the problem above will be that it must
compute all Π0

3 sets. This tells us nothing about the complexity of learnability,
but only about the complexity of determining whether we have a concept class.
The usual way to deal with this issue is by the following definition.

Definition 26 ([5]) Let A ⊆ B, and let Γ be some class of sets (e.g. Π0
3 ).

1. We say that A is Γ within B if and only if A = R ∩B for some R ∈ Γ .
2. We say that S ≤m A within B if and only if there is a computable f : ω →

B such that for all n we have n ∈ S ⇔ f(n) ∈ A.
3. We say that A is m-complete Γ within B if and only if A is Γ within B

and for every S ∈ Γ we have S ≤m A within B.

We can now present the question in its final form.

Problem 27 Let L be the set of indices for effective concept classes, and K
the set of indices for effective concept classes which are PAC learnable. What
is the m-degree of K within L?

The solution to the problem will have two parts. In the present section, we
will show that K is Σ0

3 within L. In the following section, we show that K is
m-complete Σ0

3 within L.
We first reduce the problem to one where dimension is witnessed by com-

putable paths through 2ω.

Proposition 28 An effective concept class C has infinite VC dimension if and
only if for every d there are (not necessarily uniformly) computable elements

(xi : i < d)

such that ΠC (xi : i < d) = 2d.

Proof Let (yi : i < d) witness that C has VC dimension at least d, and denote
by D1, . . . , D2d elements of C which distinguish distinct subsets of (yi : i < d).
For each i < d, there is a computable element xi such that for every j ≤ 2d

we have xi ∈ Dj if and only if yi ∈ Dj , by Proposition 20. Then x1, . . . , xd
witness that C has VC dimension at least d. The converse is obvious.
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Proposition 29 The set of indices for effective concept classes of infinite VC
dimension is Π0

3 within L.

Proof We begin by noting that if f is a computable function and T is a Π0
1

tree, then it is a Π0
1 condition that f is a path of T , and a Σ0

1 condition that it
is not, uniformly in a Π0

1 index for T and a computable index for f . Further,
if C = ϕe is an effective concept class, then for any k ∈ ω, the condition that
k ∈ ran(ϕe) is a Σ0

1 condition, uniformly in e and k.

Let (x1, . . . , xn) be a sequence of computable functions, S ⊆ {1, 2, . . . , n},
and c a Π0

1 class, represented by a Π0
1 index for a tree in which it is the set of

paths. We abbreviate by [c �n= S] (x̄) the statement that for each i ∈ {1, . . . n},
we have xi ∈ c if and only if i ∈ S. Now c �n= S is a d-Σ0

1 condition, uniformly
in the indices for the xi and c.

We now note that C = ϕe has infinite VC dimension if and only if∧
n∈N

∧
∃x1, . . . , xn

∧
S⊆(n+1)

∃k [ϕe(k) �n= S] (x̄).

From the comments above, this definition is Π0
3 .

4 Sharpness of the Bound

The completeness result in this section will finish our answer to the main
question of the paper.

Theorem 30 The set of indices for effective concept classes of infinite VC
dimension is m-complete Π0

3 within the set of indices for effective concept
classes, and the set of indices for effective concept classes of finite VC dimen-
sion is m-complete Σ0

3 within the set of indices for effective concept classes.

Proof It only remains to show completeness. For each Π0
3 set S, we will con-

struct a sequence of effective concept classes (Cn : n ∈ N) such that Cn has
infinite VC dimension if and only if n ∈ S. In the following lemma, to simplify
notation, we suppress the dependence of f on n.

Lemma 31 There is a ∆0
2 function f : N→ 2 such that f(s) = 1 for infinitely

many s if and only if n ∈ S.

Proof It suffices (see [20]) to consider S of the form ∃∞x∀yR(x, y, n), where
R is computable. Now we set

f(x) =

{
1 if ∀yR(x, y, n)
0 otherwise

.

This function is ∆0
2-computable, and has the necessary properties.
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Now by the Limit Lemma, there is a uniformly computable sequence

(fs : s ∈ N)

of functions such that for each x, for sufficiently large s, we have fs(x) = f(x).
We now define a set of functions that will serve as the elements that

may eventually witness high VC dimension. Let {πs,t,j : s, t, j ∈ N, j < s} be
a discrete uniformly computable set of distinct elements of 2ω such that
πs,t,j(q) = πs,t′,j′(q) whenever q < min{t, t′}.

We also initialize Gs,0 = ∅ for each s. Denote by Pt a bijection

Pt : P ({1, . . . , t})→ {1, . . . , 2t}.

At stage s of the construction, we consider fs(t) for each t ≤ s. If fs(t) = 0,
then no action is required.

If fs(t) = 1, then we find the least k such that k /∈ Gt,s. Let {et,i : i < 2t}
be Π0

1 indices for trees such that Tet,i consists exactly of the initial segments
τ of πt,k,j where j = Pt(S) for some S ⊆ {1, . . . , t} and |τ | is less than the first
z > s such that fz(t) = 0. This can be done effectively exactly because we are
looking for Π0

1 indices, and the search is uniform. We then let is be the least
such that Cn(is) is undefined, and take Cn(is + `) = et,` for each ` < 2t. We
also set Gt,s = Gt,s−1 ∪ k.

Now for each t with f(t) = 1, there will be some s such that fs′(t) =
fs(t) = 1 for all s′ > s. Then at stage s we have added to Cn the Π0

1 indices
{et,i : i < 2t} guaranteeing that {πt,k,j : j < t} is shattered for some k.

For each t such that f(t) = 0 and each s such that fs(t) = 1, there is some
later stage s′ such that fs′(t) = 0, so any indices added at stage s will be
indices for a tree with no paths — that is, for the empty concept.

Note that if the same t receives attention infinitely often — that is, if
infinitely many different sets of classes are added to Cn to guarantee that the
VC dimension of Cn is at least t, this does not inflate the VC dimension beyond
t. Indeed, the sets of witnesses will be pairwise disjoint, so no concept in Cn
will include any mixture of witnesses from different treatments; the resulting
sets will not be shattered.

We further note that all the Π0
1 classes in Cn are computable. Indeed, each

c ∈ Cn consists of finitely many (perhaps no) computable paths. Thus, Cn is
an effective concept class.

Now if n /∈ S, then f(s) = 1 for at most finitely many s, so that the VC
dimension of Cn is finite. If n ∈ S, then f(s) = 1 for infinitely many s, so that
the VC dimension of Cn is infinite (since sets of arbitrarily large size will be
shattered).
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