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Comment on “The Expectation Of

Independent Domination Number

Over Random Binary Trees”

L.H. Clark and J.P. McSorley
Department of Mathematics

Southern Illinois University Carbondale
Carbondale, IL 62901-4408

Lee [3] purportedly derives an asymptotic formula for the expected inde-
pendent domination number of a uniformly random binary tree. We review
the derivation in [3] of an asymptotic formula for the expectation using
the notation therein, then we point out and correct several errors in the
derivation.

The number of binary trees with 2n + 1 vertices is

y2n+1 =

(
2n
n

)

n + 1

Let µ(2n + 1) denote the expected value of the independent domination
number of a binary tree chosen uniformly at random. The ordinary gen-
erating function for {µ(2n + 1) y2n+1} is M = M (x) =

∑∞
n=0 µ(2n +

1) y2n+1 x2n+1. Then

M (x) =
2x√

1 − 4x2 (1 +
√

1 − 4x2) (2 −
√

1− 4x2)
,

hence,

M∗(u) :=
∞∑

n=0

µ(2n + 1) y2n+1 un

=
2√

1 − 4u (1 +
√

1 − 4u) (2 −
√

1 − 4u)
.

Then
A(u) =

2
(1 +

√
1 − 4u) (2 −

√
1 − 4u)

1



has power series in u with radius of convergence ρ1 = 1/4 which converges
absolutely at u = 1/4, and,

B(u) =
∞∑

n=0

bn un =
1√

1 − 4u
=

∞∑

n=0

(−4)n

(
−1

2

n

)
un

has radius of convergence ρ2 = 1/4, bn > 0 for all n, and limn→∞ bn−1/bn =
1/4. At this point the following result in [3] is used.

“ To determine the asymptotic behavior of µ(2n + 1)/(2n + 1), we need
the following lemma, which is a slight modification of Theorem 2 in [1]; we
omit the proof.

Lemma 5. Let A(u) =
∑∞

n=0 an un and B(u) =
∑∞

n=0 bn un be power
series with radii of convergence ρ1 ≥ ρ2, respectively. Suppose that A(u)
converges absolutely at u = ρ1. Suppose that bn > 0 for all n and that
bn−1/bn approaches a limit b as n → ∞. If

∑∞
n=0 cn un = A(u) B(u), then

cn ∼ A(b) bn. ”

The author then applies Lemma 5 to M∗(u) = A(u) B(u) with ρ1 = ρ2 =
1/4 to find an asymptotic formula for µ(2n+1) y2n+1, hence, for µ(2n+1).

Unfortunately Lemma 5, as we will demonstrate, is false in general for
any ρ1 = ρ2 > 0 : the condition “ρ1 ≥ ρ2” must be replaced with “ρ1 > ρ2”
and the condition “A(b) 6= 0” must be added in which case the conditions
“ A(u) converges absolutely at u = ρ1 ” and “ bn > 0 for all n ” may be
omitted. See Bender [1; Theorem 2] for a correct statement and a very
brief indication of a proof or see Odlyzko [4; Theorem 7.1] for a correct
statement without proof. Consequently, the derivation in [3] of an asymp-
totic formula for µ(2n + 1) is not valid.

Counter-examples to Lemma 5 for any ρ1 = ρ2 = r > 0 are readily
found.

Fix r > 0. Let

A(u) =
∞∑

n=0

un

rn (n + 1)2
= B(u)

which have radius of convergence r. Then A(u) converges absolutely on
the circle of convergence |u| = r and A(r) = ζ(2) = π 2/6. In addition,
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bn = 1/rn (n + 1)2 > 0 for all n and limn→∞ bn−1/bn = r. Here

A(u) B(u) =
∞∑

n=0

{ 1
rn

n∑

k=0

1
(k + 1)2(n − k + 1)2

}
un =

∞∑

n=0

cn un.

Further
n∑

k=0

(n + 2)2

(k + 1)2(n − k + 1)2
=

n∑

k=0

{ 1
k + 1

+
1

n − k + 1

}2

= 2
n∑

k=0

1
(k + 1)2

+ 2
n∑

k=0

1
(k + 1) (n − k + 1)

.

Now f(x) = 1/(x + 1)(n − x + 1) decreases on [0, n/2] and increases on
[n/2, n]. For integer ∆ ∈ [1, n/2],

n∑

k=0

1
(k + 1) (n − k + 1)

= 2
∆−1∑

k=0

1
(k + 1) (n − k + 1)

+
n−∆∑

k=∆

1
(k + 1) (n − k + 1)

≤ 2 ∆
n + 1

+
n − 2 ∆ + 1

(∆ + 1)(n − ∆ + 1)
.

Setting ∆ = d
√

n e, for example, gives

0 ≤
n∑

k=0

1
(k + 1) (n − k + 1)

≤ 2
√

n + 2
n + 1

+
n − 2

√
n + 1

(
√

n + 1)(n −
√

n)
→ 0 as n → ∞.

Consequently,

rn (n + 2)2 cn =
n∑

k=0

(n + 2)2

(k + 1)2(n − k + 1)2

= 2
n∑

k=0

1
(k + 1)2

+ 2
n∑

k=0

1
(k + 1) (n − k + 1)

→ π2

3
as n → ∞,

which implies

rn (n + 1)2 cn =
(n + 1)2

(n + 2)2
rn (n + 2)2 cn → π2

3
as n → ∞,
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i.e.,
cn ∼ 2 A(r) bn as n → ∞

and not
cn ∼ A(r) bn as n → ∞

as claimed in Lemma 5 in [3] (r = b here). Further counter-examples are
given by

A(u) =
∞∑

n=0

un

rn (n + 1)s
= B(u) (s − 1 ∈ P).

We now give a correct derivation of an asymptotic formula for µ(2n+1).
Darboux’s Theorem (cf. Odlyzko [4; Theorem 11.7]) evidently does not ap-
ply since A(u) in [3] is not analytic in a neighborhood of u = 1/4 for any
branch of

√
1 − 4u. We use a transfer theorem of Flajolet and Odlyzko

[2; Theorem 5] (cf. Odlyzko [4; Section 11.1] for definitions, notation and
statement of Theorem 11.4).

Consider the closed domain ∆ = ∆(1, π/8, 1) and the function L(u) = 1
of slow variation at ∞. Then

M∗

(
u

4

)
=

2√
1 − u (1 +

√
1 − u) ( 2 −

√
1− u)

is analytic on ∆ − {1} where we take the principal branch of the square
root. Consequently,

M∗

(
u

4

)
∼ 1√

1 − u
= (1 − u)−1/2 L

(
1

1− u

)

uniformly as u → 1 on ∆ − {1}. Then Theorem 11.4 (C) of [4] implies

µ(2n + 1) y2n+1

4n
= [un] M∗

(
u

4

)
∼ n−1/2

Γ(1/2)
L(n) =

n−1/2

√
π

as n → ∞.

Stirling’s Formula implies
(

2n

n

)
=

n−1/2 4n

√
π

(1 + o(1)) as n → ∞,

hence,

µ(2n + 1) ∼ n + 1 ∼ 2n + 1
2

as n → ∞.
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