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Abstract

We give a combinatorial proof of an additive characterization of
a skew Hadamard (n, n−1

2
, n−3

4
)-difference set in an abelian group G.

This research was motivated by the p = 4k + 3 case of Theorem 2.2
of Monico and Elia [4] concerning an additive characterization of
quadratic residues in Zp. We then use the known classification of
skew (n, n−1

2
, n−3

4
)-difference sets in Zn to give a result for integers

n = 4k + 3 that strengthens and provides an alternative proof of the
p = 4k + 3 case of Theorem 2.2 of [4].

Keywords: abelian group; difference set; skew; Hadamard; additive char-
acterization; quadratic residues

1 Introduction: difference sets in G and an

additive characterization of Q in Zp

Let G be an abelian group of order n written additively, with identity 0,
and let G∗ = G\{0}. Let Zn denote the integers modulo n. For most of
this paper n will be an integer of the form n = 4k +3, with k ≥ 1. We also
use [n] = {1, 2, . . . , n}.
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We start with some Definitions, see p.298 and p.356 of Beth, Jungnickel
and Lenz [1]:

Definitions 1.1 (n, κ, λ)-difference set in G, skew

(1) A (n, κ, λ)-difference set in G is a κ-subset D = {d1, d2, . . . , dκ} ⊆ G

with the property that every g ∈ G∗ occurs exactly λ times as a
difference di − dj for di, dj ∈ D, and 1 ≤ i, j ≤ κ, where i 6= j.

(2) A (n, κ, λ)-difference set D is skew if G = {0}∪D∪−D is a partition of G.

Example 1.2 G = Z11. D = {1, 3, 4, 5, 9} is a (11, 5, 2)-difference set.
Also D is skew because Z11 = {0}∪{1, 3, 4, 5, 9}∪{2, 6, 7, 8, 10} is a partition
of Z11.

Now let p = 4k + 3 be a prime, with k ≥ 1. Let Q be the set of
quadratic residues in Zp, and N be the set of quadratic non-residues. We
have Q = −N , and |Q| = |N | = p−1

2
, and Zp = {0}∪Q∪−Q is a partition

of Zp.

In Theorem 2.2 of Monico and Elia [4] the following characterization is
proved:

Let p = 4k+3 be prime and let dp = p+1

4
. Suppose A ⊂ Z

∗

p and B = Z
∗

p\A.
Then A = Q, the set of quadratic residues of Zp, if and only if

1. |A| = p−1

2
,

2. 1 ∈ A,

3. every a ∈ A can be written as an ordered sum of two elements from
A in exactly dp − 1 ways, and

4. every b ∈ B can be written as an ordered sum of two elements from A

in exactly dp ways.

In §2, motivated by this Theorem, we present our main result (Theo-
rem 2.2) which gives an additive characterization of a skew (n, n−1

2
, n−3

4
)-

difference set in G. The proof of this result is purely combinatorial.

In §3, we use the known classification of skew (n, n−1

2
, n−3

4
)-difference

sets in G = Zn to give our Theorem 3.4 that strengthens and provides an
alternative proof for the p = 4k + 3 case of Theorem 2.2 of [4]. (The other
case of Theorem 2.2 of [4] involves primes p = 4k + 1.)
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2 Skew difference sets and properties P1, P2, P3

Before the main result of this paper we need the following Lemma 2.1.

Lemma 2.1 Let G be an abelian group of order n ≥ 1, and let X =
{x1, x2, . . . , xκ} be an arbitrary κ-subset of G.

(i) Then X is a (n, κ, λ)-difference set if and only if for every g ∈ G∗ we
have |(g + X) ∩ X| = λ.

(ii) Let g ∈ G∗ be arbitrary. Then |(g − X) ∩ X| equals the number of
ordered sums g = xi+xj where xi, xj ∈ X, (x1 = x2 is allowed here).

Proof. (i) Let g ∈ G∗ be arbitrary, and let {xi, xj} ⊆ X. Clearly
g = xi − xj, if and only if g + xj = xi, if and only if xi ∈ g +X. Thus each
expression of g as a difference of two elements from X results in an element
of |(g + X) ∩ X|, and conversely. This shows the stated equivalence.

(ii) Let g ∈ G∗ be arbitrary, and let s be the number of ordered sums
g = xi + xj where xi, xj ∈ X.

Let h ∈ (g −X) ∩X, then h = g − xi = xj, for some xi, xj ∈ X. Hence
g = xi + xj is an ordered sum, where xi, xj ∈ X. Thus |(g − X) ∩ X| ≤ s.
Conversely, an ordered sum g = xi + xj, yields h = g − xi = xj, where
h ∈ (g − X) ∩ X. So s ≤ |(g − X) ∩ X|. Thus |(g − X) ∩ X| = s.

Inspired by Theorem 2.2 of Monico and Elia [4], we have the following
main result.

Theorem 2.2 Let G be an abelian group of order n = 4k + 3. Suppose
A ⊂ G∗ and B = G∗\A. Then A is a skew (n, n−1

2
, n−3

4
)-difference set if

and only if

P1. |A| = n−1

2
,

P2. every a ∈ A can be written as an ordered sum of two elements from
A in exactly n−3

4
ways, and

P3. every b ∈ B can be written as an ordered sum of two elements from
A in exactly n+1

4
ways.

Proof. First the forward implication: Assume A is a skew (n, n−1

2
, n−3

4
)-

difference set. Then G = {0} ∪ A ∪ −A is a partition of G and |A| = n−1

2
,

so P1 is satisfied.

For any g ∈ G∗ it is straightforward to show that G = {g} ∪ (g + A) ∪
(g − A) is also a partition of G.
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Define A1 = {g} ∩ A, A2 = (g + A) ∩ A, and A3 = (g − A) ∩ A. We
have A = G ∩A = ({g} ∪ (g + A) ∪ (g − A)) ∩A = A1 ∪A2 ∪A3. As usual
g ∈ G∗ = A ∪ B, and we consider two cases:
For any g ∈ A: Here A1 = {g}, and A = {g} ∪ A2 ∪ A3 is a partition
of A. Now A2 = (g + A) ∩ A, so |A2| = |(g + A) ∩ A| = n−3

4
using

Lemma 2.1(i) and the fact that A is a (n, n−1

2
, n−3

4
)-difference set. Further,

A3 = (g − A) ∩ A and so, from Lemma 2.1(ii), |A3| equals the number of
ordered sums g = a + a′ where a, a′ ∈ A, (a = a′ is allowed here). The
partition of A then gives: |A3| = n−1

2
−1−|A2 | = n−3

4
. Thus P2 is satisfied.

For g ∈ B: Here A1 = ∅, and A = A2∪A3 is a partition of A. By a similar
argument to above we have |A2| = n−3

4
, and then the partition of A gives

|A3| = n−1

2
− |A2| = n+1

4
. Thus P3 is satisfied.

Thus P1, P2, and P3 are satisfied.

Now the backward implication: Assume A = {a1, a2, . . . , an−1

2

} ⊂ G∗

and B = G∗\A where P1, P2, and P3 are satisfied, so |B| = n−1

2
.

We first show that A ∩ −A = ∅.

From P2 each of the n−1

2
elements a ∈ A can be written as an ordered

sum of two elements from A in n−3

4
ways, and from P3 each of the n−1

2

elements b ∈ B can be written as an ordered sum of two elements from
A in n+1

4
ways. This gives a total of (n−1

2
)(n−3

4
) + (n−1

2
)(n+1

4
) = (n−1

2
)2

ordered sums ai + aj , where i, j ∈ [n−1

2
].

Now a fixed ordered sum ai′ + aj′ = a′ ∈ A or b′ ∈ B can only appear
at most once amongst these (n−1

2
)2 ordered sums. But there are exactly

|A|×|A| = (n−1

2
)2 ordered sums ai+aj, hence every ordered sum ai+aj for

all i, j ∈ [n−1

2
] will appear exactly once amongst the above (n−1

2
)2 ordered

sums. Now 0 6∈ A∪B = G∗, and so each of the above (n−1

2
)2 ordered sums

ai + aj 6= 0, i.e., ai 6= −aj, for all i, j ∈ [n−1

2
].

Hence A ∩ −A = ∅, and then G∗ = A ∪ −A is a partition of G∗. Thus
B = −A and G = {0} ∪ A ∪ −A is a partition of G.

Now we show that A is a (n, n−1

2
, n−3

4
)-difference set.

Let g ∈ G∗ = A ∪ B. First consider g ∈ A, say g = a`. There are
in total n−1

2
− 1 = n−3

2
ordered sums g = ai + (g − ai) with ai ∈ A and

g − ai ∈ A ∪ B, one for each i ∈ [n−1

2
]\{`}. From P2 exactly n−3

4
of these

ordered sums have g − ai ∈ A, so exactly n−3

2
− n−3

4
= n−3

4
of them have

g − ai ∈ B. So, g can be expressed as g = a + b where a ∈ A and b ∈ B

in n−3

4
ways, but B = −A, so g can be expressed as g = a − a′ for a pair

{a, a′} ⊆ A in n−3

4
ways.

Now consider g ∈ B, so g 6∈ A. Then there are n−1

2
ordered sums

g = ai + (g − ai) with ai ∈ A and g − ai ∈ A ∪ B, one for each i ∈ [n−1

2
].
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From P3 exactly n+1

4
of these ordered sums have g − ai ∈ A, so exactly

n−1

2
− n+1

4
= n−3

4
of them have g − ai ∈ B. And then, as above, g can be

expressed as g = a − a′ for a pair {a, a′} ⊆ A in n−3

4
ways.

So every g ∈ G∗ can be expressed as g = a− a′ for a pair {a, a′} ⊆ A in
n−3

4
ways, i.e., A is a (n, n−1

2
, n−3

4
)-difference set.

From above G = {0} ∪ A ∪ −A is a partition of G, so A is a skew
(n, n−1

2
, n−3

4
)-difference set in G.

3 Classification of skew difference sets in Zn

and consequences

Here is an example of Theorem 2.2 of Monico and Elia [4] as mentioned in
the Introduction:

Example 3.1 p = 11, dp = 3. Here Q = {1, 3, 4, 5, 9} and N = {2, 6, 7, 8, 10}.
In the following the quadratic residues, Q, are given in the first column,
and the quadratic non-residues, N , in the second:

Q N
1 =3+9 =9+3 2 =1+1 =4+9 =9+4
3 =5+9 =9+5 6 =3+3 =1+5 =5+1
4 =1+3 =3+1 and 7 =9+9 =3+4 =4+3
5 =1+4 =4+1 8 =4+4 =3+5 =5+3
9 =4+5 =5+4 10 =5+5 =1+9 =9+1

As usual let p = 4k +3 be a prime, for k ≥ 1. Recall Paley’s result from
[5] that Q ⊂ Zp is a skew (p, p−1

2
, p−3

4
)-difference set.

Skew (n, n−1

2
, n−3

4
)-difference sets in G = Zn are classified in Corol-

lary 3.4 of Johnsen [2], although this classification was essentially shown in
Kelly [3]. See p.356 of [1] for further discussion.

Theorem 3.2 (Johnsen) Let D be a skew (n, n−1

2
, n−3

4
)-difference set in

the cyclic group Zn. Then n = p = 4k + 3 is a prime and D = Q is the
Paley (p, p−1

2
, p−3

4
)-difference set of quadratic residues in Zp, or D = N is

the (p, p−1

2
, p−3

4
)-difference set of quadratic non-residues in Zp.

Example 3.3 n = p = 11. See Examples 1.2 and 3.1: Q = {1, 3, 4, 5, 9}
and N = {2, 6, 7, 8, 10} are the two skew (11, 5, 2)-difference sets in Z11.
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Using our Theorem 2.2 and Theorem 3.2 and the fact that 1 ∈ Q, we
have the following Theorem 3.4 for integers n = 4k + 3. Theorem 3.4
strengthens and provides an alternative proof of the p = 4k + 3 case of
Theorem 2.2 of Monico and Elia [4].

Theorem 3.4 Let n = 4k + 3 and dn = n+1

4
. Suppose A ⊂ Z

∗

n and
B = Z

∗

n\A. Then n is a prime p and A = Q if and only if

1. |A| = p−1

2
,

2. 1 ∈ A,

3. every a ∈ A can be written as an ordered sum of two elements from
A in exactly dp − 1 ways, and

4. every b ∈ B can be written as an ordered sum of two elements from A

in exactly dp ways.

Remark The connection between the p = 4k + 3 case of Theorem 2.2 of
Monico and Elia [4] and skew (n, n−1

2
, n−3

4
)-difference sets in Zn shown in

this paper seems to have been overlooked by the authors of [4], and appears
to be written down here for the first time.

Acknowledgement We thank the referee for indicating that we can streng-
then our Theorem 2.2 to its current general form, and for other helpful
comments.
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