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INTRODUCTION 
 
The motivation for developing downscaling 
techniques results primarily from the large spatial 
scales involved in model simulations of weather and 
of climate change. Climate variables such as 
temperature, precipitation, and soil moisture are 
represented as area-averaged values over model grid 
cells that are typically several hundred kilometers on 
a side. However, because of high spatial variability, 
weather and climate information is most useful when 
it represents relatively small areas. Techniques have 
been developed over time designed to take 
information from large model grids and apply it to 
single points within the grid domain. For example, a 
weather forecast is more useful if information from a 
large model grid can be applied to a specific city or 
small region within the grid. Similarly, climate model 
information is more useful to water managers, for 
example, if climate information about a specific 
watershed can be obtained from a large grid average. 
Such applications are known as downscaling.  
 
Downscaling techniques come in two primary 
varieties. Statistical downscaling uses historical, 
empirical relationships between large-scale, grid- 
averaged values and conditions at a single point 
within the grid box. For instance, under certain 
weather conditions a specific city within a grid box 
might, on average, exhibit a historical tendency to be 
cooler and wetter than the grid average value so that 
a forecast is then adjusted to reflect this historical 
relationship. Dynamical downscaling usually implies 
a second physical model embedded in a forecast or 
climate model that is driven by conditions in the 
larger scale model. Such a strategy allows a better 
representation of, for example, topographical 
differences across a grid cell and more realistic 
modeling techniques of some physical processes. 
Dynamical downscaling can typically be performed 
with grid cells of tens of kilometers on a side. Hybrid 

techniques using a combination of dynamical and 
statistical methods are also in use.  
 
The first and most important assumption common to 
both forms of downscaling is that the large scale 
information used in the downscaling is accurate. No 
downscaling technique can correct faulty information 
supplied by the large scale model and therefore weather 
and climate models must simulate regional variations in 
climatic fields accurately both in present day and in 
future change scenarios. We examine the assumption of 
large-scale accuracy in detail by comparing climate 
simulations with present climate observations and by 
comparing recent model predictions of climate changes 
with observations of actual changes. 
 
COMPARISON OF MODEL SIMULATIONS 
WITH OBSERVED CLIMATE 
 
Figure 1 compares most of the available atmospheric 
general circulation model control simulations with 
observed climate conditions for two important 
hydrologic variables. In ideal circumstances, we would 
expect all models to closely reproduce the observed 
pattern and magnitudes and with little spread among 
models. Precipitation averaged around latitude bands 
(Figure 1a) compares roughly in pattern with 
observations (heavy dark line). The models generally 
simulate a precipitation maximum near the equator with 
secondary maxima in the mid-latitudes of each 
hemisphere. However, there is a large spread in 
precipitation values between the various models at every 
latitude band and large differences between any 
particular model and observations. Because averaging 
around a latitude band has a smoothing effect on regional 
differences between models, the spread in simulated 
precipitation between models would be expected to be 
much larger for any particular region in a particular 
latitude band than shown here. This is an indication that 
the large scale information supplied by a climate model 
for downscaling varies considerably between models and 
so results would be highly model- 
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Figure 1a. Comparison of zonally averaged AMIP atmospheric model control simulations with observations: 
precipitation. From: http://www-pcmdi.llnl.gov/amip/ 
 
dependent -- an important point for those who would 
use climate model information for mitigation or 
adaptation strategies that must be applied to a 
particular region. Figure 1b compares simulations of 
cloud cover, again averaged around a latitude band. 
Here, the differences between observations and any 
single model are large as is the spread between models. 
Again, model spread and errors would be expected to 
be larger in any particular region. This comparison 
suggests that great caution is in order when applying 
output from the current generation of climate models to 
regional decision- making. Regional simulations will 
often not accurately mirror observations and the 
specific patterns affecting any region will be heavily 

model-dependent (Kittel et al., 1998; Giorgi and 
Francisco, 2000). 
 
CLIMATE CHANGE PREDICTIONS 
 
Another way to assess the utility of climate change 
simulations for operational decision-making is to 
assess the accuracy of predicted changes in recent 
years. It is well known that climate change simulations 
under increasing greenhouse gases produce a warmer 
surface as a global average. What is less known is that 
climate model simulations show that the largest 
tropospheric
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Figure 1b. Comparison of zonally averaged AMIP atmospheric model control simulations with observations: cloud 
cover. From: http://www-pcmdi.llnl.gov/amip/ 

warming occurs above the surface (IPCC, 2001; Chase 
et al., in review). Figure 3 compares the warming rates 
at the surface and at 500mb (about 5km above the 
surface or mid-troposphere) as simulated in a coupled 
atmosphere-ocean climate model forced by increasing 
CO2 and sulfate aerosols (Russell et al., 2000). This 
figure clearly shows an accelerated warming above the 
surface. This is a general prediction of climate change 
models (IPCC, 2001). Figure 4 compares several 
measures of tropospheric temperatures (MSU satellite: 
Christy et al. (2000), Rawinsonde: Sterin (2001), 
NCEP reanalysis: Kalnay et al. (1996)) and all 
measures indicate that not only is the troposphere 

above the surface not warming faster than the surface 
as predicted in model simulations, it is not warming at 
all. A second version of the MSU satellite product 
(Mears et al., in review) shows more warming in the 
lower troposphere than the other three measures but 
less warming than at the surface. The observed 
situation of a large warming at the surface with no 
warming above is extremely unlikely in recent model 
simulations under any conditions (Chase et al., in 
review). Such an error in the simulation of the vertical 
temperature structure on the global average would be 
expected to have large implications for the
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(a) 

 
(b) 

 
Figure 2. Globally averaged surface and 500 mb temperature anomaly (relative to 1979-2001 mean) for: a) the 
Canadian Center for Climate Modeling and Analysis coupled model (CCCGM2) ensemble, b) Goddard Institute for 
Space Studies (GISS) coupled model ensemble 
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simulation of atmospheric water vapor content, cloud 
cover and the entire hydrological cycle. Again, errors 
at the global scale would generally be expected to be 
larger at any particular point. General circulation 
models have also generally predicted an increase of 
the global hydrological cycle in step with a warming 
climate though there are exceptions particularly over 
limited time periods (IPCC, 1996, 2001). While 
precipitation is less easily monitored than air 
temperatures, the introduction of satellite 
measurements since the late 1970's has allowed 
comparison of model simulations with truly global 
precipitation observations. Figure 5 compares 
observed precipitation since 1979 (Global 
Precipitation Climatology Project: 
http://precip.gsfc.nasa.gov/) with that simulated by 
two model simulations. Both models show an 
increase in precipitation since 1979 that has no basis 
in observations. Additionally, regional monsoon 
systems in the tropics have all shown a decrease in 
intensity since the 1950s (Chase et al., in press) 
despite model predictions of an accelerated 
hydrological cycle. 
 
Finally, and of particular importance to operational 
decision-making are regular changes in circulation 
associated with the Southern Oscillation (SO) and 

North Atlantic Oscillation (NAO). These natural climate 
fluctuations have been directly linked to a large portion 
of the Northern hemisphere winter warming signal 
(Palecki and Leathers, 1993; Hurrell, 1996; Corti et al., 
1999) which is, itself, the primary global surface 
warming signal. In the observational data, a trend in the 
NAO index toward more positive values since the early 
1960's has been documented (Hurrell, 1996). Similarly, 
the observed SO index has shown a tendency towards 
more negative (El Nino-like) values since the middle of 
the century with a steep change to more negative values 
in the mid-1970s. The shifts in both these natural 
circulation regimes are associated with warming and 
Hurrell (1996) demonstrates that when these two natural 
circulation influences are removed from the time series, 
no discernible upward surface temperature trend remains 
in the Northern Hemisphere (See Figure 4 in Hurrell, 
1996). Corti et al. (1999) argue that the observation that 
recent climate changes are projected on naturally 
occurring modes of variability is, in itself, not evidence 
against an anthropogenic origin of the changes. 
However, if model simulations of past climatic changes 
do not simulate a similar projection onto natural modes, 
then questions arise as to whether the correct physical 
mechanisms are being simulated and whether regional 
projections can possibly be accurate. 

 

 
Figure 3. Observed globally averaged temperature anomalies (relative to 1979-2001 mean) for three upper air 
measures (MSU, radiosonde, NCEP reanalysis) and the surface for 1979-2001 
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Figure 4. Simulated and observed globally averaged precipitation rate anomalies. Trend and significance p value are 
given in the legend. Trend units are given as the change in mm/year over the 22 year period 1979-2001 
 

Figure 5. Ratio of simulated surface temperature effects (vegetation change)/(CO2 change). Shading is, light to dark, 
50%, 100%, 200% the effect of CO2. From Chase et al. (2002) 
 
Reports from model simulations concerning 
atmospheric circulation changes caused by increasing 

greenhouse gases are contradictory. There have been 
reports of changes which favor a positive shift in the 
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Southern Oscillation (SO) (more La Nina-like) (e.g. 
Timmerman et al., 1999, Hu et al., 2001) while others 
find a tendency for an increasing negative phase (e.g. 
Collins, 2000; Meehl et al., 2000). Still others find no 
change (e.g. Tett, 1995) or an increase in amplitude 
in both phases of the SO but no clear favoring of one 
phase over the other. Additionally, reported changes 
in the SO typically occur at CO2 levels far above 
present levels of forcing and are therefore in no way 
applicable to the present day.  
 
Simulated changes in the NAO are also generally 
non-representative of present day conditions and not 
robust between models. Paeth et al. (1999) shows a 
steadily increasing NAO index in climate change 
simulations starting at about the correct time but 
conclude that such a trend could happen naturally and 
the statistical significance cannot be assessed for 
many more years. Shindell et al. (1999), using the 
GISS model, demonstrates a positive trend in the 
model simulating NAO with present day levels of 
forcing. The large majority of the simulated change 
in the NAO occurs between 2000 and 2030, however. 
The trend between 1959 and 2000, the period of 
observed increase in the NAO index, is static (see 
Shindell et al., 1999: Figure 2b). Fyfe et al. (1999), 
using the CCCma model, also demonstrated an 
increase in the NAO but only at high levels of CO2 
forcing that are unrepresentative of present-day 
conditions. Osborn et al. (1999) find the opposite 
effect with a decreasing NAO index in climate 
change simulations starting at present-day and 
continuing through the century.  
 
Finally, the robustness of the results from such 
isolated simulations is unclear. For example, Collins 
(2000) found a shift towards a more El Nino like 
state at 4x natural CO2. However, the simulation 
produced the opposite change in circulation when 
small details of the model formulation were changed. 
 
IS EVERYTHING ACCOUNTED FOR? 
 
IPCC (2001) discusses a series of climate forcings 
both natural and human that are poorly understood 
and simulated. One such potential climatic influence 
is changes in landcover due to human activity. Figure 
7 (reproduced from Chase et al., 2002) compares the 
model simulated climate change due to historical 
landcover changes with that of present day levels of 
CO2 and sulfate aerosols. Both simulations show 
changes in surface temperature that can be either 
increases or decreases and that are comparable at the 
regional scale. Any particular region could be 
warming or cooling under the influences of these 
factors, making reliable regional action difficult. 

Additionally, different models place regions of warming 
and cooling differently, making any result heavily 
model-dependent. Accounting for additional influences 
on the climate would also change regional results.  
 
DYNAMICAL DOWNSCALING WITH A 
REGIONAL MODEL 
 
We have discussed potential problems with the large 
scale boundary conditions used as a starting point for any 
downscaling procedure. We now examine the specific 
assumptions behind the dynamical downscaling 
technique. At present, a limited area model (LAM) 
nested within a larger GCM is used to dynamically 
downscale for a specific region. The LAM is nudged at 
its lateral boundaries by the GCM and may be nudged in 
the interior of its domain. Given an appropriate grid 
spacing, LAMs can capture the effects of local surface 
heterogeneity well, though their effects do not upscale to 
the GCM. With multiple nested grids, it is possible to 
explicitly simulate cloud microphysical processes. LAMs 
have proven their utility in short-term numerical weather 
prediction for several decades. When a LAM is run for a 
long-term integration (several weeks or more) it is a 
regional climate model (RCM). Many LAMs originally 
designed for numerical weather prediction have been 
adapted as RCMs, such as ETA, MM5, and RAMS. 
RCMs have their own inherent uncertainties. They are 
very sensitive to the specification of lateral boundary 
conditions and grid spacing. As shown by Castro and 
Pielke (in preparation), for example, RCMs tend to 
degrade the amplitude and variability of large-scale 
atmospheric features in the GCM, like ridges and 
troughs. This can dramatically affect the RCM 
downscaled results. This worsens as the RCM grid 
spacing increases and as domain size increases. 
Dynamical downscaling with a RCM never improves 
predictability as compared to the GCM. In addition, there 
may be large sensitivities to the specification of the 
surface boundary conditions, such as soil moisture and 
sea surface temperature, and the choice of model 
parameterizations. Given these caveats, caution should be 
taken in configuring an appropriate RCM experimental 
design and interpretation of RCM results.  
 
CONCLUSIONS 
 
We have given several examples in this paper that we 
believe indicate that present-day climate simulations as 
input to downscaling techniques designed for day-to-day 
operations should be used with caution. A case can be 
made for looking at the output from a variety of models 
as a way of spanning the space of possible solutions (a 
technique use for short-term weather prediction), but for 
longer-term applications, this assumes that each model is 
fundamentally independent and that the range of 
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possibilities is fully spanned. Downscaling cannot 
improve errors in large scale forcing information nor 
can it provide additional predictability. Present-day 
climate simulations have large regional errors and a 
large spread between different models when 
replicating current climate. Recent climate 
predictions of accelerated warming above the surface 
and an accelerated hydrological cycle due to 
increasing greenhouse gasses and aerosols have not 
materialized. Moreover, simulations of natural modes 
of variability (e.g. ENSO and the NAO and the shifts 
in these modes implicated in most observed climate 
change) have been poor and the results have not been 
robust. Processes with the potential to significantly 
affect regional climate, such as landcover changes, 
are not generally included in climate change 
simulations. A specific example of dynamical 
downscaling indicates that regional climate models, 
even if provided perfect large-scale boundary 
conditions, introduce uncertainties and errors of their 
own.  
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