










Aug 31), when adult female white-tailed deer tend to be solitary [27,41,42], and the rut (Sep 1

–Dec 31), when female white-tailed deer tend to re-establish matrilineal social groups [43].

Including only those dyads that were collared simultaneously for an entire season would

have required that we censor a large proportion of our data. Instead, we assumed that deer

behavior during a portion of the season was representative of the entire season. We tested this

assumption by assessing whether association rates during particular months were biased rela-

tive to the seasonal association rate. We also estimated how many simultaneous locations were

necessary for accurate estimates of seasonal association rates. We present these analyses in S1

Appendix and based on the results, we did not include deer dyads with<600 simultaneous

locations per season (S1 Fig) or dyads that were monitored only in Apr-May or Jun-Jul (S2

Fig), as association rates during these months were likely biased low relative to the entire sea-

son. We included only dyads with seasonal home ranges that overlapped, thus omitting pairs

of deer that did not interact because they were not collared at the same time or because their

home ranges were not neighboring. Because we subsampled our data to include only dyads

with sufficient data, our sample was not truly random.

Fig 1. Five study areas (black dots) within 3 regions (black squares) in southern Illinois, USA. Inset maps show minimum

convex polygons (MCP) around the locations of all monitored female white-tailed deer (Odocoileus virginianus) for each study area

during the gestation period (1 Jan– 10 Mar), as well as the location of Illinois (grey) within USA. Within the Carbondale region, the

upper dot represents the Carbondale study area (inner and outer MCPs are Carbondale 2012 and 2005, respectively), the lower left

dot represents the Touch of Nature study area (2012 and 2013 MCPs at Touch of Nature overlap), and the lower right dot represents

the Crab Orchard study area. Land cover data are from the Illinois Natural History Survey Illinois Gap Analysis Land Cover

Classification from 1999 and 2000 [33]. The forest category includes dry, mesic, and dry-mesic upland forest and mesic and wet-

mesic floodplain forest. The agriculture category consists of soy, corn, rural grassland (permanent pastureland, roadsides and fence

lines, railroad right-of-ways, waterways, prairies, and other grassland cover), winter wheat, and other small grains and hay. Water

represents lakes and rivers, and wetlands includes both treed and untreed wetlands.

https://doi.org/10.1371/journal.pone.0173570.g001

Table 1. The number of female white-tailed deer (Odocoileus virginianus) with >600 GPS locations within 3 seasonsa used in our local network

analysis and the mean number of simultaneous locationsb across dyads.

Study area Year Season No. deer Simultaneous locations

Mean SD

Carbondale 2002 Rut 3 699.7 39.4

2003 Gestation 6 741.1 129.8

Rut 3 852.0 112.6

2004 Gestation 11 1071.3 237.5

Fawning 4 1155.0 27.6

Rut 7 950.4 358.7

2005 Gestation 7 1406.9 112.8

Fawning 7 1099.7 52.0

Rut 6 1176.4 255.0

2006 Gestation 5 676.8 14.4

Lake Shelbyville 2007 Gestation 6 1168.7 62.6

Fawning 4 957.0 305.5

Rut 2 1381.0 0.0

2008 Gestation 10 994.0 394.4

Fawning 6 1196.6 22.4

Rut 4 1390.5 13.7

a Gestation (1 Jan– 14 May), fawning (15 May– 31 Aug), rut (1 Sep– 31 Dec)
b Locations obtained within 3 minutes

https://doi.org/10.1371/journal.pone.0173570.t001
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Amount and connectivity of landcover

Amount. We created three binary grids with 30m x 30m cells representing the presence of

forest (upland and floodplain forests), agriculture (corn, soybean, winter wheat, rural grass-

land, and other small grains), and forest-agriculture edge [33]. We used Geospatial Modelling

Environment software (version 0.7.2.0; [44]) to find the edges between agriculture and forest

and then coded 30m x 30m pixels based on presence or absence of edge.

Connectivity. We used circuit theory [45] with software Circuitscape 4.0 [46] to estimate

connectivity of the landscape for deer with respect to forest, agriculture, and edge. Circuit the-

ory models animal movement across a landscape using the analogous properties of random

walk and electricity moving through a circuit [47]. Electric current moves across the conduc-

tance surface between pairs of populations (or sites), such that multiple or wider swaths of suit-

able habitat are conduits of current, or correspondingly, animal movement, relative to narrow

pathways [48]. The resultant map of current density is meant to represent a prediction of func-

tional connectivity, with high pixel values representing a high probability of use by random

walkers.

We wanted to model functional connectivity of the landscape in all directions, rather than

between pairs of sites. Thus, we used the method described by Koen et al. [49] whereby we

placed sites, representing the start and end points for current to be shunted through the circuit,

around the outside of our study areas (S3 Fig). We converted binary grids for each land cover

type (forest, agriculture, or edge) into conductance surfaces by replacing each "1" pixel value

(presence) with 101 and each "0" pixel value with 1. In this way, we created 3 conductance

maps meant to represent the ease of movement through types of landcover, with high values

assigned to the presence of potentially suitable landcover types (S3 Fig). We defined our three

study regions as 30km x 30km areas (Fig 1) and we placed a 7.5km-wide buffer around each

study region; these regions were sufficiently large such that they did not influence our esti-

mates of current density [49]. We then placed 50 sites at equal intervals (every 3.6 km) around

the perimeter of each buffer and used Circuitscape to model the connectivity of each conduc-

tance surface between those sites (S3 Fig). We clipped the resultant current density maps by

Table 2. Datasets used in our global analysis of female white-tailed deer (Odocoileus virginianus) networka structure during the gestation

periodb.

Study area Year No. deer Simultaneous locationsc Network closenessd

Mean SD Mean SD No. combinations

Carbondale 2005 6 740.8 72.3 2.81 0.21 15

2012 6 832.4 2.4 3.00 0 15

Lake Shelbyville 2009 4 810.3 4.8 3.00 NA 1

Crab Orchard 2014 5 798.3 6.2 2.87 0.12 5

Touch of Nature 2012 13 804.1 39.0 2.09 0.74 715

2013 5 719.9 65.4 2.39 0.55 5

Rend Lake 2014 4 716.3 90.6 3.17 NA 1

a We weighted network edges with the residuals of the linear relationship between association rate (the number of times two deer were with 25m of one

another at the same time divided by the total number of simultaneous locations) and log home range overlap (volume of intersection).
b 1 Jan– 10 Mar.
c Mean number of simultaneous (within 3 minutes) locations across dyads.
d To compare network closeness among networks of different sizes, we subsampled our networks such that they contained 4 nodes. We calculated the

average weighted closeness for all unique 4-node combinations of the original set of nodes. For example, the Carbondale 2012 study area had 6 nodes–we

calculated the average weighted closeness across all 15 possible 4-node combinations.

https://doi.org/10.1371/journal.pone.0173570.t002
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the width of the buffer to remove pixels that might be biased high because of the arbitrary

placement of the 50 sites [49] (S4 Fig).

Local and global network structure

We assessed the influence of amount and connectivity of landcover on deer sociality at both

individual (local) and population (global) levels. We defined a population (or network) loosely

as a group of monitored deer in a spatially and temporally defined area such that monitored

individuals could potentially interact. A population was made up of several monitored deer,

and each monitored deer represented one member of a social group. We constructed social

networks for each study area, season, and year with the tnet package [50] in R, with nodes rep-

resenting individual deer and edges representing social interaction, with edges weighted by

association rate. We used the term dyad to represent a pair of deer that could be connected by

an edge (i.e., two deer from the same study area with>600 simultaneous locations).

Local network analysis. Here, we used network attributes at the individual (node) level as

an index of deer sociality. We used GPS data for deer monitored at the Carbondale (2002–06;

n = 24) and the Lake Shelbyville (2007–09; n = 12) study areas only because we had data for all

three seasons (Table 1). When an individual deer was collared for>1 year, we included that

individual only once in each season by omitting the season-year with the fewest GPS locations.

We sought a network metric to represent deer sociality at the node level that would be rela-

tively insensitive to the likelihood that not all of the neighboring deer were simultaneously

monitored. Both degree (number of edges connected to a node) and weighted degree (the sum

of the edge weights connected to a node) should depend on the proportion of neighboring

deer that were monitored. Likewise, betweenness centrality (the number of times the shortest

path through the network goes through a particular node) should also depend on the number

of neighboring deer that were monitored. Instead, we used the average weighted degree (sum

of edge weights divided by the number of edges at each node) as our measure of node-based

sociality because it should be less sensitive to the proportion of monitored neighbors. We

included all potential edges in our estimate of average edge weight (i.e., edges with a weight of

zero: these edges represented simultaneously monitored dyads that shared space but not neces-

sarily at the same time). We assigned these edges a weight of 1x10-5, a value less than the lowest

association rate that we could expect (0.00062; S1 Appendix). Seasonal networks for Carbon-

dale and Lake Shelbyville had an average of 5.9 (SD = 2.4, range = 3–11) and 5.4 (SD = 2.5,

range = 2–10) collared deer, respectively (Table 1).

Local independent variables. We calculated seasonal 95% kernel density home ranges

[51] using a reference bandwidth (href) with adehabitatHR [39] in R (S2 Table). We estimated

seasonal home range overlap for deer dyads during the time that they were both monitored as

the probability of animal i being in animal j’s home range (PHR; [52]). This measure differed

from association rate in that it was static; it did not require that animals use the same space at

the same time. We used PHR because we were interested in quantifying the amount of space

that each individual shared with all of its neighbours. Thus for each individual, we calculated

the average home range overlap with neighboring collared deer.

For each deer, we calculated the proportion of forest, agriculture, and edge within its sea-

sonal home range (95% kernel density contour). We also calculated the average current den-

sity, our index of landscape connectivity, based on forest, agriculture, or edge, within each

deer’s seasonal home range.

Local models. We created models (S2 Appendix) to describe the influence of extrinsic

landscape features on social network structure at the level of the individual node. For each

study area (Carbondale and Lake Shelbyville), we used linear regression to identify the
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relationship between at-site deer sociality (i.e., average edge weight of nodes, with edges

weighted by association rate) and our independent variables (i.e., home range overlap and

both proportion and connectivity of forest, agriculture, and edge). We used a Box-Cox power

transformation on the dependent variable (λ = 0.22; [53]) with the R package MASS (7.3–45;

[54]) because the relationship between average edge weight and home range overlap was het-

eroscedastic (S5 Fig). We used information-theoretic model selection (AICc; [55]) with the

package MuMIn (ver. 1.13.4; [56]) in R to identify top models (Δ AICc <2) and estimate

model averaged coefficients. The proportion of agriculture was negatively correlated with the

proportion of forest and positively correlated with the connectivity of agriculture, forest con-

nectivity was negatively correlated with agriculture connectivity, and edge connectivity was

positively correlated with forest connectivity and the proportion of edge (Pearson r>|0.5|; S3

Appendix). Thus, we included only one landscape variable in each model. We pooled data

over years and modeled each study area and season separately to account for differences

among regions and seasons. We used permutation tests to assess whether our top models were

different than what we would expect by chance; we permuted the dependent variable 9999

times and considered whether the observed test statistic from the real data was larger in magni-

tude than values derived from 95% of the permutations.

Global network analysis. To assess the influence of amount and connectivity of landcover

on social connectedness at the population level, we used individual networks as our sample

unit. We included 7 networks from 5 study areas that had>4 unique nodes with association

rate>0 in the gestation period: Carbondale 2005 and 2012, Lake Shelbyville 2009, Crab

Orchard 2014, Touch of Nature 2012 and 2013, and Rend Lake 2014 (Table 2). We subset the

GPS locations to include 1 Jan– 10 Mar only because after 10 Mar, baiting and sharpshooting

of deer occurred in the Crab Orchard, Touch of Nature, Rend Lake, and Carbondale 2012

study areas. We included only dyads with >600 simultaneous locations and >0 home range

overlap.

We were unable to include>1 independent variable in our models because we had a sample

size of 7 networks. Thus, to control for the relationship between home range overlap and asso-

ciation rate (S6 Fig), we weighted network edges with the standardized residuals of a linear

regression fit to the relationship between home range overlap and (log) seasonal association

rate for each dyad (pooled over all 7 networks). To estimate home range overlap, we used the

volume of intersection (VI) of 95% kernel utilization distributions (UD; [52]) for each dyad

during the time that both individuals were monitored. This estimate ranged from 0 (no over-

lap) to 1 (identical UDs). We used VI because we were interested in quantifying the space

shared by the dyad.

From these edge weight data, we calculated weighted network closeness [57,58] as our

dependent variable with the tnet package [50] in R as per Opsahl et al. [58]:

closeness ið Þ ¼
P

j
1

dij

 !

;

where i is the focal node, j represents another node in the network, and dij is the shortest

weighted path through the network between i and j based on Dijkstra’s [59] algorithm [58].

For each network, we found the average weighted closeness across all nodes. Network close-

ness, however, is dependent on the number of nodes in the network: the shortest weighted

path between any 2 nodes has the potential to be shorter when there are fewer nodes. To com-

pare network closeness among networks of different sizes, we subsampled our networks such

that each subsample contained 4 nodes. We calculated the average weighted closeness for all

4-node combinations, and we used this average value as our dependent variable. For example,
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the Carbondale 2005 network had 6 nodes; we calculated average closeness for all 15 unique

4-node combinations from the set of 6 nodes. If the removal of node j resulted in node i being

isolated from the network, node i contributed a value of 0 to the average. We did not replace

zero-weighted edges with 1x10-5 as we did in the local-scale analysis; our estimates of closeness

were based on the shortest weighted path through the network, and including an edge for

dyads that shared space but not at the same time (i.e., >0 home range overlap but 0 association

rate) might have influenced the shortest path.

Global independent variables and models. For each network, we defined a study area

with a 100% minimum convex polygon [60] around all GPS locations. We then calculated the

proportion of forest, agriculture, and edge within each study area, as well as the average cur-

rent density related to each of these variables. Because all competing models had an equal

number of parameters, we simply compared the variance explained (R2) by univariate linear

regression models describing the relationship between average weighted network closeness

and each landcover proportion and connectivity variable.

Results

Influence of landscape on local network connectivity

The degree of home range overlap was the best predictor of sociality among deer groups:

across seasons and sites, deer that shared more space tended to have higher association rates

(Tables 3 and 4). In analyzing association rates during gestation in the Carbondale dataset,

models that included home range overlap with forest connectivity, edge connectivity, or edge

proportion had F-statistics >95% of randomized values (Table 3). However, the confidence

intervals of the coefficients of these variables alone overlapped zero (S4 Table), indicating that

home range overlap had the greatest influence on deer sociality during gestation in both Car-

bondale and Shelbyville (Table 4). During fawning, when association rates tended to be lower

(S3 Table), both the connectivity of forest and home range overlap best predicted deer sociality

in Carbondale (Table 3): female deer in highly connected forest tended to be less social with

their neighbors (S4 Table; note that we did not find an effect of landcover or home range over-

lap on deer sociality in Lake Shelbyville during fawning (Table 4)). During the rut, the best pre-

dictors of high sociality among deer groups in Lake Shelbyville were high amount and high

connectivity of agricultural land, and not home range overlap (Table 4, S5 Table). Although

the 95% CI of the model-averaged coefficients for agriculture amount and connectivity did not

overlap zero (S5 Table) and the F-statistics of these models were>95% of randomized values,

the null model was competitive in this analysis (Table 4), and therefore evidence for an effect

of landscape was weak.

Influence of landscape structure on global network closeness

Accounting for home range overlap and the number of nodes in the network, estimates of

weighted network closeness during the early gestation period ranged from 2.09 (Touch of

Nature 2012) to 3.17 (Rend Lake; Table 2). We found relationships between mean weighted

network closeness and the amount of agriculture and forest: deer populations in areas with

high amounts of agriculture and low amounts of forest tended to be more socially connected

(R2 = 0.40 and R2 = 0.39, respectively; Fig 2, Table 5), although the small number of networks

we analyzed meant that these results did not reach statistical significance. We also found that

deer populations in areas with highly connected edge tended to be more socially connected

(R2 = 0.38; Fig 2, Table 5).
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Discussion

Social network structure can provide accurate predictions of animal movement across land-

scapes [61]. We explored the influence of an extrinsic factor, landcover composition, on female

white-tailed deer social network structure and found that landscape structure can impact soci-

ality at the population level, and to a lesser extent, at the individual level. Indeed, there is a

movement within social network ecology to move beyond descriptive network statistics and

Table 3. Top models (ΔAICc < 8) predicting the average edge weight in seasonal networks of female white-tailed deer (Odocoileus virginianus)

association ratea in Carbondale, Illinois (2002–2006).

Seasonb Modelc k AICc Δ AICc Weight R2 d

Gestation HR overlap [+] 3 -49.43 0 0.25 0.65

Forest (conn) [–] + HR overlap [+] 4 -49.06 0.37 0.21 0.69

Edge (conn) [–] + HR overlap [+] 4 -48.67 0.75 0.17 0.68

Edge (prop) [–] + HR overlap [+] 4 -47.88 1.54 0.12 0.67

Ag (conn) + HR overlap 4 -47.39 2.04 0.09 0.67

Ag (prop) + HR overlap 4 -47.37 2.06 0.09 0.66

Forest (prop) + HR overlap 4 -46.85 2.58 0.07 0.66

Fawning Forest (conn) [–] 3 -24.12 0 0.58 0.72

Forest (conn) [–] + HR overlap [+] 4 -22.20 1.92 0.22 0.79

Forest (prop) 3 -20.94 3.17 0.12 0.62

Ag (conn) 3 -17.75 6.36 0.02 0.50

Forest (prop) + HR overlap 4 -17.06 7.06 0.02 0.67

Ag (prop) 3 -16.69 7.42 0.01 0.44

Ag (prop) + HR overlap 4 -16.57 7.55 0.01 0.65

Rut HR overlap [+] 3 -26.23 0 0.39 0.33

Forest (conn) + HR overlap 4 -23.29 2.93 0.09 0.35

Ag (prop) + HR overlap 4 -23.17 3.06 0.08 0.34

Ag (conn) + HR overlap 4 -23.06 3.17 0.08 0.34

Edge (prop) + HR overlap 4 -22.85 3.37 0.07 0.33

Forest (prop) + HR overlap 4 -22.83 3.40 0.07 0.33

Edge (conn) + HR overlap 4 -22.75 3.48 0.07 0.33

Null 2 -22.49 3.74 0.06

Ag (conn) 3 -19.89 6.33 0.02 0.02

Forest (prop) 3 -19.71 6.52 0.01 0.01

Edge (prop) 3 -19.70 6.53 0.01 0.01

Forest (conn) 3 -19.67 6.56 0.01 0.01

Edge (conn) 3 -19.65 6.57 0.01 0.01

Ag (prop) 3 -19.52 6.71 0.01 1.1 x10-3

Models with Δ AICc < 2 are in bold font.
a We weighted network edges by association rate; the number of times two deer were within 25m of one another at the same time divided by the total

number of simultaneous locations.
b Gestation (1 Jan– 14 May; n = 24), fawning (15 May– 31 Aug; n = 11), rut (1 Sep– 31 Dec; n = 17).
c [+] and [–] indicate the direction of each variable’s effect. Ag (prop), forest (prop), and edge (prop) are the proportions of agriculture, forest, and the edge

between forest and agriculture, respectively, within seasonal home ranges of deer. Ag (conn), forest (conn), and edge (conn) represent the mean

connectivity (current density) of agriculture, forest, and the edge between forest and agriculture, respectively, within seasonal home ranges of deer. HR

overlap is the mean probability of a neighboring deer being within an individual’s 95% kernel density home range during the time that each pair of deer was

simultaneously monitored (PHR, [52]), averaged over all neighbors for each deer.
d All models with Δ AICc <2 had F-statistics >95% of randomized values.

https://doi.org/10.1371/journal.pone.0173570.t003
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identify the ecological processes underlying non-random social structure [1]. Our findings

add to our current knowledge of mechanisms that can shape social networks.

At an individual level, we generally found that deer sociality (i.e., centrality derived from

proximal associations) was highly correlated with home range overlap and not with the land-

scape variables that we measured. Our finding that landscape connectivity had little influence

on deer movement could suggest that deer movement was not impeded by the agricultural

matrix. We found two exceptions, however. First, during fawning we found that where forest

and grassland were relatively abundant (i.e., Carbondale), forest connectivity and home range

overlap were the best predictors of sociality among groups; deer occupying home ranges with

low forest connectivity tended to be more social. The connectivity of forest in our study

appeared greatest where there were corridors of forest surrounded by non-forest, termed

Table 4. Top models (ΔAICc < 8) predicting the average edge weight in seasonal networks of female white-tailed deer (Odocoileus virginianus)

association ratea in Lake Shelbyville, Illinois (2007–2009).

Seasonb Modelc k AICc Δ AICc Weight R2 d

Gestation HR overlap [+] 3 -15.27 0 0.60 0.68

Ag (prop) + HR overlap 4 -11.29 3.99 0.08 0.70

Ag (conn) + HR overlap 4 -10.89 4.39 0.07 0.69

Forest (conn) + HR overlap 4 -10.70 4.58 0.06 0.68

Forest (prop) + HR overlap 4 -10.66 4.61 0.06 0.68

Edge (prop) + HR overlap 4 -10.57 4.70 0.06 0.68

Edge (conn) + HR overlap 4 -10.56 4.71 0.06 0.68

Fawning Null 2 -3.88 0 0.41

HR overlap [+] 3 -2.45 1.43 0.20 0.25

Ag (conn) 3 0.09 3.97 0.06 0.03

Ag (prop) 3 0.25 4.13 0.05 0.02

Edge (prop) 3 0.30 4.18 0.05 0.01

Forest (prop) 3 0.30 4.18 0.05 0.01

Edge (conn) 3 0.37 4.25 0.05 3.5 x10-3

Forest (conn) 3 0.40 4.28 0.05 8.5 x10-4

Forest (prop) + HR overlap 4 2.04 5.92 0.02 0.35

Ag (prop) + HR overlap 4 2.66 6.53 0.02 0.31

Forest (conn) + HR overlap 4 2.67 6.55 0.02 0.31

Edge (conn) + HR overlap 4 2.70 6.58 0.02 0.31

Ag (conn) + HR overlap 4 2.94 6.82 0.01 0.29

Edge (prop) + HR overlap 4 3.09 6.97 0.01 0.28

Rut Ag (prop) [+] 3 -4.98 0 0.40 0.82

Null 2 -4.63 0.36 0.33

Ag (conn) [+] 3 -3.86 1.12 0.23 0.78

Edge (conn) 3 1.55 6.54 0.02 0.47

Edge (prop) 3 2.85 7.84 0.01 0.34

Forest (conn) 3 3.02 8.00 0.01 0.32

Models with Δ AICc < 2 are in bold font.
a We weighted network edges by association rate; the number of times two deer were within 25m of one another at the same time divided by the total

number of simultaneous locations.
b Gestation (1 Jan– 14 May; n = 12), fawning (15 May– 31 Aug; n = 10), rut (1 Sep– 31 Dec; n = 6).
c [+] and [–] indicate the direction of each variable’s effect. Variables are described in the footnote of Table 3.
d All models with Δ AICc <2 had F-statistics >95% of randomized values except the home range overlap model during fawning.

https://doi.org/10.1371/journal.pone.0173570.t004
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“pinch points” [45] (S7 Fig). Although deer are generally less social during fawning [27,36],

corridors of connected forest appeared to impede social behavior; deer appeared to be more

social where forest tracts were wider—pixels in these wider tracts of forest tended to have a

lower probability of movement (i.e., lower current density). Second, during the rut we found

that where row crops were relatively abundant (i.e., Lake Shelbyville), both the amount and

connectivity of agriculture, independent of home range overlap, were the best predictors of

sociality among groups. Kjær et al. [42] found that associations among deer tended to occur

where deer feed or take cover, and Walter et al. [62] found that during the non-growing sea-

son, white-tailed deer moved away from forest cover in search of suitable forage. We speculate

that in the Lake Shelbyville study area, the presence of waste crops and limited forest browse

resulted in increased sociality among groups in agricultural areas.

Fig 2. The relationship between average weighted network closeness of 7 global social networks of female white-

tailed deer (Odocoileus virginianus) in Illinois, USA and the average standardized (z-score) proportion of

agriculture, the average standardized proportion of forest, and the average standardized current density of forest-

agriculture edge within a 100% MCP around all deer GPS locations for each population.

https://doi.org/10.1371/journal.pone.0173570.g002

Table 5. Standardized coefficients and fit of univariate linear models predicting global weighted network closeness. Networks (n = 7) represent

female white-tailed deer (Odocoileus virginianus) association ratea during the early gestation periodb in central and southern Illinois, USA.

Predictor variablec Standardized coefficient SE R2 P

Ag (prop) 0.242 0.131 0.405 0.124

Forest (prop) -0.239 0.133 0.394 0.131

Edge (conn) 0.235 0.134 0.381 0.140

Edge (prop) 0.146 0.157 0.148 0.395

Forest (conn) 0.124 0.161 0.105 0.477

Ag (conn) 0.057 0.168 0.023 0.747

a We weighted network edges with the standardized residuals of a linear model fit to the relationship between home range overlap and log seasonal

association rate (the number of times two deer were within 25m of one another at the same time, divided by the number of simultaneous locations).
b 1 Jan– 10 Mar (2005, 2012 in Carbondale; 2009 in Lake Shelbyville; 2012, 2013 in Touch of Nature; 2014 in Crab Orchard and Rend Lake (Fig 1)).
c Variables are described in the footnote of Table 3.

https://doi.org/10.1371/journal.pone.0173570.t005
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Hawkins and Klimstra [27] noted that deer in southern Illinois tended to aggregate in large

herds (25–30 individuals) in late winter and early spring; these herds were temporary and con-

sisted of several social groups. An alternate driver of the relationship between landscape struc-

ture and associations among deer could be landcover complexity leading to the aggregation of

social groups. Herd size for many large herbivores tends to increase with landscape openness

(e.g., [63–65]). Indeed, both Hirth [66] and Habib et al. [31] observed that within a population

of white-tailed deer, group size tended to be smaller in dense cover and larger in open land-

scapes. This pattern could be an adaptation to predation pressure: in dense cover, an individual

can better avoid being detected by a predator in a small herd, whereas in open landscapes, the

benefits of belonging to a large group include group vigilance and dilution of predation

[67,68]. This pattern could also be related to the idea that individuals in open landscapes are

simply more likely to detect one another and form larger herds [69]. Finally, this pattern could

be a function of resource distribution (e.g., [70]). We found that during the rut in an area with

abundant row crops, the best predictors of sociality among social groups were the amount and

connectivity of agriculture. It is possible that sociality among deer social groups is related to

larger herd size in agricultural areas (note that we do not have data on herd size) or to a combi-

nation of herd size and the relative ease of movement through connected agricultural land.

We expected that deer in less connected landcover would be less social because their move-

ments would be impeded; this expectation assumes that there is otherwise little inter-individ-

ual variation in an individual’s social behavior toward neighboring groups. For many species,

genetic relatedness plays a role in determining social behavior (e.g., hyenas (Crocuta crocuta)

[71], wild boars (Sus scrofa) [14], and barnacle geese (Branta leucopsis) [72]). There are also

several species for which this relationship has not been shown (e.g., southern flying squirrels

(Glaucomys volans) [73], elk (Cervus canadensis) [74], and raccoons [75]). Association rates

among female white-tailed deer in the same social group tend to be higher than among deer in

neighboring social groups [28], and individual deer within the same social group or in close

spatial proximity tend to be related ([27,76,77], but see [78,79]). Magle et al. [80] found that

related white-tailed deer shared more space than unrelated deer. If this was the case for the

female deer in our study (note that we do not know the relatedness of our collared deer), then

relatedness could be driving some of the patterns that we observed because home range over-

lap was a component of the majority of the top models predicting individual deer sociality. In

our population-level analysis, however, we used the residuals of the relationship between asso-

ciation rate and home range overlap to weight the edges of our network. Thus, landscape con-

nectivity was having some effect on the social structure of deer at the population level,

independent of space sharing and possibly genetic relatedness.

At a global level, we found some evidence that network structure was related to landscape

structure: network connectivity (i.e., average closeness centrality) was higher in agricultural

areas and areas with high connectivity of edge and lower in forested areas. This suggests that

landscape features facilitating social behavior at the population level could operate through a

combination of the relative ease of movement through connected edge and the effects of open

landscapes, such as larger home ranges that tend to overlap more [31] or group aggregation in

open agriculture relative to forest [66,69]. We note that there may still be an effect of the num-

ber of nodes per network on our estimates of average closeness, despite our efforts to remove

its effect: networks with few nodes appeared to have higher estimates of average closeness.

Thus, it is unclear whether the number of nodes is somehow influencing the relationship that

we observed between average closeness and our landscape variables. The apparent relationship

between landscape and social network structure has important implications for disease spread

in free-ranging populations of white-tailed deer.
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Infectious diseases pose a significant threat to global biodiversity [81]; understanding the

biology and ecology of animal sociality that contributes to disease spread is therefore impera-

tive. Chronic wasting disease is a fatal, transmissible spongiform encephalopathy afflicting cer-

vids, including white-tailed deer, and has been spreading across several regions of Canada and

the USA [82]. The disease is transmitted both directly through contact by infectious individu-

als and indirectly through infectious prions in the environment [83,84]. Research has shown

that physical contact among female white-tailed deer within the same social group is relatively

high [28] and that within-group social interaction is a central route of CWD transmission

[76]. Although our study populations were not impacted by CWD, we modeled factors that

could influence sociality among groups, which is relevant for inference of disease spread across

larger spatial scales. Our local results suggest that overall, deer sociality among groups was not

strongly influenced by landscape heterogeneity, except in Carbondale during fawning and

Lake Shelbyville during the rut, where landscape structure had the potential to create “super-

spreaders” of infectious disease; individuals whose behavior causes them to infect dispropor-

tionately more secondary contacts [85,86]. At the population level, our findings suggest that

the potential for disease to spread quickly through the entire network increased with the

amount of agricultural land and the connectivity of edge and decreased with the amount of

forest. Other studies have found links between landscape structure and disease prevalence:

Nobert et al. [32] found that landscape connectivity among known sites of CWD prevalence

was an important predictor of risk. Likewise, Greer and Collins [87] showed that habitat con-

figuration can affect the behavior of the host (Arizona tiger salamander, Ambystoma tigrinum
nebulosum) and thus the incidence of disease (A. tigrinum virus).

It is possible that, had we been able to simultaneously monitor additional deer (i.e., larger

social networks), we may have had more predictive power to uncover relationships between soci-

ality and landscape characteristics. We note that our findings may not be generalizable beyond

our study as deer behavior can vary regionally (e.g., [88], but see [62]). We attempted to control

for the effect of uncollared deer on our estimates of deer sociality by using the average weighted

degree rather than estimates that depend on how many neighbors were monitored, such as

weighted degree or betweenness. Unless uncollared deer tended to be more (or less) social than

collared deer, we do not expect that uncollared deer represented a bias. Finally, differences in deer

population density among study areas may have impacted our findings. For example, variation in

habitat suitability among study areas could result in a higher carrying capacity and, thus, higher

population density in some areas. If the outcome of this was increased home range overlap, then

variation in population density could have affected our estimates of sociality. The response of

deer home range size to changes in population density, however, is unclear (e.g., [89–91]). Fur-

thermore, population density was similar between the Carbondale and Shelbyville study areas.

Our work represents advancement in the general understanding of animal sociality, dem-

onstrating that landscape structure can underlie both the local and global structure of social

networks. Landscape structure can thus have implications for both individual and population

fitness, as social network structure can influence the spread of infectious disease (e.g., [30,92]).

Future research should test our predictions in areas where CWD is established: are deer in

connected landscapes more likely to contract the disease, and is CWD prevalence higher in

populations occurring where the proportion of agricultural land and the connectivity of edge

are higher? Further, identifying the influence of landscape connectivity on the social behavior

of male deer will be important because males tend to disperse farther [93,94] and are more

susceptible to CWD infection [95,96]. Fine-scale movement path data will allow us to more

closely assess the mechanisms driving the relationship between landscape connectivity and

sociality, such as whether associations among animals occurred in connected landscapes,

and the relative contributions of landcover connectivity and habitat-mediated fission-fusion
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dynamics on social behavior among deer groups. The degree of home range overlap is a strong

predictor of association rates among deer; future research should address whether landscape

connectivity influences sociality by affecting the spatial arrangement of home ranges. Finally,

the interplay between extrinsic and intrinsic influences on animal sociality, such as identifying

mechanisms driving the variation in an individual’s or a population’s behavioral response to

landscape connectivity, will be an interesting avenue of future research.
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