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Abstract The pattern of increased nest-defense effort over the course of a nesting season could 38 

result from 3 distinct (albeit non-exclusive) mechanisms:  increased value of offspring to parents with 39 

progression towards independence (parental-investment theory), decreased opportunity for renesting 40 

(renesting-potential hypothesis), or decreased perceived costs of defense after repeated encounters with 41 

human observers (positive-reinforcement hypothesis).  To gauge relative empirical support for each of 42 

these mechanisms, we disentangle these 3 often-confounded hypotheses using multi-model inference with 43 

mixed-model ordinal regression applied to an extensive red-winged blackbird (Agelaius phoeniceus) 44 

nesting data set (4,518 monitoring visits to 1,330 nests). Parent aggression was rated on an ordinal scale (0-45 

4) during repeated monitoring visits. Additionally, we assessed clutch/brood size, nest density, time of day, 46 

and nest concealment effects on aggression. In a preliminary analysis, including all 3 major hypotheses, 47 

male and female nest defense was most strongly explained by parental investment (nest age). Positive-48 

reinforcement (visit number) and renesting potential (Julian date), were also well-supported predictors in 49 

males. The interactions of decomposed nest age (within- and between individual centered) with Julian date 50 

were particularly important in the top male model. Additional factors, such as clutch/brood size, nest 51 

density, and nest concealment appeared to have larger predictive roles in explaining female aggression 52 

relative to males. These patterns are likely explained by different sexual reproductive roles within a 53 

polygynous mating system. Our study highlights the importance of interacting mechanisms involving 54 
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parental investment theory and the use of within-individual standardization to help disentangle competing, 55 

and empirically confounded hypotheses. 56 

 57 

Keywords Nest defense intensity, red-winged blackbird, parental-investment theory, renesting-potential 58 

hypothesis, positive-reinforcement hypothesis, ordinal regression 59 

 60 

Significance statement Avian nest defense generally increases over the course of a nesting season, 61 

potentially from the result of 3 different mechanisms: parental-investment theory, renesting-potential 62 

hypothesis, or positive-reinforcement hypothesis from repeated nest visitation.  We revisit this classic 63 

question through a comprehensive analytical approach with an extensive observational data set with red-64 

winged blackbirds, employing multi-model selection and within- and between-individual centering 65 

techniques. We found parental investment (nest age) was the strongest predictor of nest defense for both 66 

sexes; however, positive-reinforcement and renesting potential also appeared to help explain additional 67 

variation in nest defense for males.  Competitiveness of models with interactive effects indicated that these 68 

mechanisms do not operate independently for either sex; and additional covariates (e.g. clutch/brood size) 69 

especially aided female model competiveness.  Our study highlights the importance of multiple and often 70 

interacting factors that influence avian nest defense. 71 

 72 

Introduction 73 

Parental investment theory predicts that parents will defend offspring more aggressively as they increase in 74 

value to the parents (Trivers 1972).  Offspring value to the parents increases when offspring progress 75 

towards independence, because there is an increasingly higher probability the offspring will reproduce in 76 

the future.  Thus, any behavioral strategies that can reduce predation risk of offspring without having 77 

detrimental impacts on parent survival are likely adaptive and shaped by natural selection (Williams 1966).  78 

Avian parents, specifically, can reduce predation risk on nests via distraction displays or direct attacks on 79 

potential nest predators (Montgomerie and Weatherhead 1988; Brunton 1990; Weidinger 2002).  Such 80 

defensive responses are potentially costly, so their occurrence and intensity scale with the potential 81 



4 

 

benefits, which are determined by both the cost of predation and the expected efficacy of defense.  Bird 82 

studies potentially provide substantial support for the parental investment theory, but only to the extent that 83 

the patterns are not driven by other potentially confounding effects of time of year and parent experience 84 

with human nest observers as potential predators. Thus, increases in nest-defense effort over the course of a 85 

nesting season could result from 3 distinct (albeit non-exclusive) mechanisms:  increasing value of 86 

offspring to parents with progression towards independence (parental-investment theory; Trivers 1972), 87 

decreasing opportunity for renesting as time passes (renesting-potential hypothesis; Barash 1975), or 88 

decreasing perceived costs of defense after repeated encounters with human observers (positive-89 

reinforcement hypothesis; Knight and Temple 1986a).  Determining which of these 3 factors, or 90 

combination of factors, are most important in driving nest aggression in red-winged blackbirds (Agelaius 91 

phoeniceus) may provide a framework for behavioral ecologists to better understand the role nest defense 92 

behavior in terms of life history theory.   93 

Nest defense constitutes a form of reproductive effort, and energy allocated towards defense can 94 

be a trade-off between current reproduction and future reproduction (William’s principle; Williams 1966). 95 

Individuals responding too aggressively could face higher rates of adult mortality, thus eliminating future 96 

reproduction. An increase in nest defense aggression over the course of the nesting season has been 97 

observed in multiple bird species (Brunton 1990; Tryjanowski and Golawski 2004).  In general, the value 98 

of the clutch to parents increases as young develop towards independence (Redondo and Carranza 1989; 99 

Anderson 1990; Palestis 2005; Redmond et al. 2009; Svagelj et al. 2012), and results in increased nest 100 

defense (parental-investment theory; Trivers 1972). However, a decrease in renesting potential through the 101 

season could also affect nest aggression.  Renesting potential is a function of 1) time before another 102 

breeding attempt can be made, and 2) the probability of survival of the parents during that time 103 

(Montgomerie and Weatherhead 1988).  Renesting potential starts out high early in the breeding season 104 

(when there is ample time to renest and replace a clutch) and declines rapidly towards the end of the 105 

breeding season (when not enough time remains to successfully breed again). Most importantly, 106 

reproductively mature individuals face a non-breeding season where survival to the next breeding season is 107 

uncertain and often face higher rates of mortality compared to the breeding season (Burger et al. 1995; 108 
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Sillet and Holmes 2002). Accordingly, defense behavior should change as the breeding season progresses 109 

(renesting-potential hypothesis; Brash 1975), with parents investing more in defense later in the season 110 

when it becomes more urgent to have a successful clutch because the chances of renesting are greatly 111 

reduced later in the breeding season (Regelmann and Curio 1983; Pavel and Bureš 2008). 112 

Even though both the nesting cycle and renesting potential could drive aggression response in 113 

parents, it is also possible that an observed increase in defense response might be an artifact of repeated 114 

nest visits by observers. Knight and Temple (1986a) first suggested that increased aggression by parents 115 

might be due to repeated nest visits by observers resulting in parental habituation to a nonthreatening 116 

human intruder and, therefore, that the perceived increase in aggression over time may be artifactual rather 117 

than representing an actual response to the nest cycle (positive-reinforcement hypothesis). In this case the 118 

parents learn they can be bolder towards the observer, or predator model, without any apparent risk to 119 

themselves or their nest.  In these repeated situations, parents perceive their effort put into aggressive nest-120 

defense as successful in deterring a predator, which leads to a perpetuating cycle of increase aggression 121 

without any apparent risk of predation. Conversely, it could be argued that repeated nest visits by observers 122 

could result in a potential dilution of aggressive response by parents (Montgomerie and Weatherhead 123 

1988). The problem with these 3 competing hypotheses is that they are interrelated and thus somewhat 124 

confounded.  Moreover, if an increase in nest aggression is purely because of habituation to observers that 125 

would mean a strong bias in any recorded nest behaviors.  126 

In addition to these 3 major competing hypotheses many other factors are known to influence nest 127 

defense aggression in birds, including: individual personality (Hollander et al. 2008; Burtka and Grindstaff 128 

2013), brood size (Fisher and Wiebe 2006; Svagelj et al. 2012), time of day (Burger 1980), nest 129 

concealment (Weidinger 2002; Carrillo and González-Dávila 2013), and density of conspecific nests 130 

(Anderson and Wiklund 1978; Clark and Robertson 1979; Elliot 1985; Arroyo et al. 2001). Past studies 131 

investigating similar hypotheses, although taking an experimental approach, have not accounted for other 132 

sources of nest variation, such as inherent individual variation.  Controlling for inherent variation, such as 133 

individual personality, within a mixed effects modeling framework can help further elucidate the impacts of 134 

competing hypotheses (Zuur et al. 2007). 135 
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The main objective of our study was to identify which of 3 hypotheses contribute most to 136 

explaining nest defense aggression trends in red-winged blackbirds. Using an information theoretic model 137 

selection approach we gauged empirical support for whether, a) parental-investment theory, b) renesting-138 

potential hypothesis, or c) the positive-reinforcement hypothesis (or a combination of these hypotheses) 139 

provides the best explanation for nest defense aggression of red-winged blackbird parents.  Explicitly, our 140 

approach allowed us to compare nest defense aggression at various nest ages (parental-investment), while 141 

simultaneously assessing the importance of, or accounting for, variation in nest imitation date throughout 142 

the breeding season (renesting-potential) and repeated observer visits to nests (positive-reinforcement). 143 

Additionally, we assessed the importance of other predictors such as brood size, time of day, nest 144 

concealment, and conspecific nest density, all of which have previously been found to influence nest 145 

aggression in other species of birds.  For instance, we expected that clumped nests may offer improved 146 

group nest protection and vigilance (Picman et al. 1988) and predicted lower nest aggression per individual 147 

for nests with higher surrounding nest densities, which has been seen in both polygynous and colonial 148 

nesting birds (Arroyo et al. 2001; Požgayová et al. 2013).  149 

 150 

Methods 151 

 152 

Study animal and area 153 

Red-winged blackbirds are ubiquitous in marsh and agricultural landscapes of the midwestern U.S., and 154 

have been one of the most abundant bird species in Illinois within the past century (Walk et al. 2011). 155 

Males can be highly polygynous, with up to 15 females nesting in a single male’s territory (Yasukawa and 156 

Searcy 1995).  Because their nests are abundant and generally easy to find, red-winged blackbirds are some 157 

of the more commonly studied North American passerines in terms of nesting behavior (Caccamise 1977; 158 

Knight and Temple 1986b, 1988; Picman et al. 1988; Gray 1997; Clotfelter 1998; Gillespie and Dinsmore 159 

2014).  160 

We searched for red-winged blackbird nests on 24 grassland fields (12 dominated by smooth 161 

brome, Bromus inermis, and 12 dominated by native grasses and forbs) located in Stark and Henry counties 162 
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of northwestern Illinois. All fields were privately owned and enrolled in the federal Conservation Reserve 163 

Program (CRP). Common plant species found in these fields included smooth brome; reed canary grass, 164 

(Phalaris arundinaceea); little bluestem (Schizachyrium scoparium); big bluestem (Andropogon gerardii); 165 

switchgrass (Panicum virgatum); Indiangrass (Sorghastrum nutans); wild parsnip (Pastinaca sativa); 166 

goldenrod (Solidago sp.); horseweed (Conyza Canadensis); poison hemlock (Conium maculatum); 167 

common milkweed (Asclepias syriaca); and yellow coneflower (Ratibida pinnata). 168 

We searched each field twice for nests during each breeding season over a 4-year period (2011-169 

2014). The first round of searches was initiated each year during the second week of May, and the second 170 

round was initiated during the second week of June.  These searches were systematic, where 4-6 field 171 

assistants walked in a line spaced approximately 2-5 m apart. Each person used wooden dowels to disturb 172 

vegetation to flush female birds from their nests and marked each nest with a flag approximately 5 m from 173 

the nest. We recorded the GPS coordinates for each nest so it could be relocated and monitored twice a 174 

week while the nest was active (referred to as a monitoring visit). We conducted nest-monitoring visits, 175 

during which we assessed nest stage and observed parental behavior, between 0512 and 1926 hours during 176 

fair weather conditions, and made as little disturbance as possible to the nest area and in the shortest time 177 

possible to reduce observer influences on nest survival.  Observers rated aggression of each parent on an 178 

ordinal scale from 0-4 (Table 1; Geupel and Thompson 2013) during each monitoring visit at an individual 179 

nest.  Because different observers could make monitoring visits to the same nest on different days, we 180 

routinely checked and calibrated aggression scores throughout the breeding season to ensure consistency in 181 

aggression ratings among observers. It was not possible to record data blind because our study involved 182 

focal animals in the field. Nest stage was characterized during each monitoring visit as building (nest 183 

structure present but incomplete), laying (eggs present but not yet incubated), incubation, hatching, 184 

hatchlings present, or successful.  We defined a nest as successful if we observed >1 nestling occupant and 185 

>1 fledgling in the immediate vicinity of the nest during a monitoring visit.  Only one observer at a time 186 

conducted a nest monitoring visit, with the exception of when the nest was originally found during nest 187 

searching.  Different observers could potentially conduct monitoring visits at the same nest on different 188 

days; however, observers approached nests at a consistent deliberate pace and remained silent during 189 
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monitoring visits.  We excluded inactive nests and those nests where stage could not be determined from 190 

analysis; these included nests with no change of egg number over subsequent checks and where a flushing 191 

female was never detected at the nest. 192 

Definition of variables 193 

We modeled the aggression response categories from a “distress” variable described by Geupel and 194 

Thomson (2013) with the addition of the “0” category signifying that a parent was not detected during a 195 

monitoring visit. The 3 main variables (relating to the 3 main hypotheses) used to describe variation in 196 

male and female aggression response included nest initiation date (renesting potential hypothesis), nest age 197 

(parental investment theory), and visit number (positive-reinforcement hypothesis).  We also assessed the 198 

ancillary variables: clutch/brood size, nest density, nest concealment, and time of day.  To account for 199 

inherent parental personality variation across nests we included individual nest (Nest.ID) as a random effect 200 

in our analyses. 201 

 Nest initiation date (IntDate) was the estimated Julian date when the first egg was laid for a 202 

particular nest. We approximated nest initiation date by back-dating from important nesting events and 203 

using information of typical clutch size, incubation, and nestling periods for red-winged blackbirds 204 

described by Ehrlich et al. (1988).  Thus, we used an average nesting cycle of 28.5 days in our estimation 205 

procedure, which represents the number of days between when the first egg was laid (day 1) to when at 206 

least one nestling fledged the nest successfully (left the nest unharmed).  This number was directly 207 

calculated from totaling the average laying (4 days at 1 egg laid per day), incubation (12 days), and nestling 208 

stages (12.5 days) outlined by Ehrlich et al. (1988).  We followed a 6-step process to estimate nest initiation 209 

date. The 6 steps, in order of most to least informative circumstances, were as follows: 1) back-dated all 210 

nests in the suspected laying stage by the number of eggs present during the first visit; 2) forward-dated all 211 

nests in the building stage by 2 days from the last build date detected; 3) back-dated all nests hatching or 212 

found successful by 16 days and 28.5 days respectively; 4) if no laying, building, or hatching was detected 213 

we took the mid-point between the last incubation and first nestling date and then subtracted 16 days; 5) if a 214 

nest was only observed in an incubation stage we subtracted 10 days from the first observation date; 6) if a 215 

nest was only observed in a nestling stage we back-dated from the first observation date by 22 days.  Nest 216 
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age (NestAge) was calculated from the estimated nest initiation date for each nest, and commonly had 217 

values less than 28.5 days, which was the average nesting period for red-winged blackbirds accounting for 218 

laying, incubation, and nesting periods (Ehrlich et al. 1988).  Determining actual clutch size can be difficult 219 

without daily nest visits; in order to maintain consistency across all nests when estimating nest age, we 220 

assumed each nest had a 4-egg clutch corresponding to a 4 day laying stage.  The estimated initiation date 221 

of the nest corresponds to a 0-day nest age, and nests detected during the building stage received negative 222 

nest age values (Table 1). Empty nests, even if there was evidence of success, were not included in our 223 

analysis. 224 

 We expected that the clutch/brood size observed during each nest visit would be associated with 225 

the perceived value of the clutch or brood to the parents (Table 1).  Additionally, because birds in this study 226 

were not individually marked we used a nest density covariate as a proxy for potential degree of polygyny.  227 

Nest density was calculated as the total number of active nests at varying concentric distances from each 228 

individual nest (20 m, 40 m, 60 m, 80 m and 100 m). A higher density of nests, especially at the shorter 229 

distance intervals, likely suggests a highly polygynous male territory.  During a monitoring visit, each nest 230 

was also given a concealment score (0-8, 8 = high nest concealment), which was determined by summing 231 

the above and below nest concealment (0-4) during within two weeks of nest success or failure (Table 1; 232 

Geupel and Thompson 2013).  Concealment scores across observers were routinely calibrated and checked 233 

throughout each field season to ensure consistency.  Lastly, during each monitoring visit, time of day was 234 

recorded. 235 

Data analysis 236 

We used cumulative link mixed-effects ordinal regression to determine which factors best explained 237 

variation in nest aggression.  We modeled nest aggression response separately for each sex and based on 238 

our predictions we considered different combinations of predictor variables.  All variables were 239 

standardized to a mean of 0 and a standard deviation of 1 across the entire data set after deletion of 240 

nests/visits without a full set of measured covariates. Individual nest (Nest.ID) was included as a random 241 

intercept to account for repeated measures and inherent variation in nest aggression across parents.  We 242 

used a flexible threshold modeling structure for the nest aggression response with a logit link function, and 243 
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maximum likelihood estimates of the parameters were approximated with Laplace approximation methods 244 

(Christensen 2015). 245 

 We decided to separate our analysis by sex based on strong support for sex interactions among 246 

each of the main hypotheses.  The interactive model [Sex*(NestAge+Visit Number+InitDate)] was 247 

overwhelmingly more supported than to the additive model (Sex+NestAge+Visit Number+InitDate; 183.15 248 

∆AIC), indicating evidence that the hypothesized mechanisms act differently for each sex.  Incorporating 3- 249 

and 4-way interactions including sex would have added another level of complexity to an already complex 250 

analytical approach. 251 

 Preliminary analysis-. In a preliminary analysis, we included all 3 main hypotheses in the same 252 

model (NestAge, Visit Number, IntDate), to disentangle the relative strength of each hypothesis, for both 253 

male and female nest aggression.  Because nests were found at a variety of nest ages, the effects of nest 254 

initiation date and observer visit could be assessed separately from nest age. Incorporating the main 255 

hypotheses in a combined additive analysis allowed us to evaluate the relative predictive strength of 256 

parental-investment theory (in terms of nest age), renesting potential, and positive reinforcement in 257 

explaining variation in nest defense aggression. Because all covariates were standardized to a mean of zero, 258 

this additive model for both sexes allowed for direct comparison of the 3 main hypotheses relative to each 259 

other.  Beta (β) parameter estimates with 95% confidence intervals for each hypothesis were compared in 260 

this preliminary analysis for each sex. 261 

 To separate the effects of value of offspring (NestAge) from positive-reinforcement (Visit 262 

Number) and renesting potential (IntDate), we also performed a separate analysis using cumulative link 263 

models with only the first-visit nest data. In this analysis we included the additive model using both 264 

hypotheses (parental investment and renesting potential) to explain parental nest defense aggression on first 265 

visits to nests.  We were particularly interested in determining if these results corroborated results from the 266 

preliminary analysis using all available nest visit data.  Here, we also standardized the predictor variables to 267 

a mean of zero and standard deviation of 1. 268 

 Model building procedure-.In addition to our preliminary main hypothesis analysis, we evaluated 269 

nest defense aggression in a model building procedure separately for each sex.  Within this procedure, 270 
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NestAge was further decomposed in within- and between individual components by calculating both 271 

within-individual centered (NestAgeWIC; xij - 𝑥̅j) and between-individual centered (NestAgeBIC; 𝑥̅j) 272 

NestAge for all individual nests.  Because our study was not experimental in nature, we could not control 273 

for the range of nest ages for each nest; thus, nests were found and visited during a range of ages (van de 274 

Pol and Wright 2009).  Accounting for within- and between-individual effects improves inference and 275 

reduces problems of falsely generalizing relationships to between- and within-individuals (van de Pol and 276 

Wright 2009). 277 

We used a 5-step process to model nest aggression, for each sex separately. For step 1 we 278 

compared a NestAge model to a decomposed additive NestAgeWIC plus NestAgeBIC model and used the 279 

model with the lowest ∆AICc in step 2. This step allowed us to determine if the decomposition of NestAge 280 

into within- and between-individual components was indeed important in explaining nest aggression.  281 

Within this step, if NestAgeBIC and NestAgeWIC together performed better than the non-decomposed 282 

NestAge, we tested a random slope model.  A more competitive random slope model would suggest that 283 

each group of nesting parents responds differently in degree of aggression at different levels of within-284 

individual nest age (van de Pol and Wright 2009). Without a random slope test we would be assuming the 285 

relationship between nest defense aggression and NestAgeWIC effects would be the same across the range 286 

of NestAgeWIC values.  For step 2 we combined the variables associated with our 3 main hypotheses. 287 

These included: IntDate, NestAge, and the Visit Number variable(s) determined from step 1. Within this a 288 

priori set, we included both additive models and suspected interactions of NestAge and IntDate.  At the end 289 

of this step we determined the best main hypothesis model.  Step 3 involved finding the best nest density 290 

model by developing 5 univariate models with only the 5 nest density distances (20m, 40m, 60m, 80, 291 

100m). The highest ranked nest density was carried over to step 4. In step 4 we determined a top modeled 292 

using a priori combinations of additional covariates (clutch/brood size, time of day, concealment, and the 293 

best nest density model from step 3). Lastly, in step 5, we combined the best model from step 4 and step 2. 294 

We developed a candidate set of 25 models for each sex, which included additive models and biologically 295 

relevant interactive models. 296 
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We evaluated models using an information theoretic approach, and compared models by 297 

calculating Akaike’s Information Criterion corrected for small sample size (AICc) for each model 298 

(Burnham and Anderson 2002). The model with the lowest AICc was considered most parsimonious. The 299 

AICc weight of a model (wi) provides evidence of the relative likelihood that the specified model was the 300 

best given the candidate model set and the data set. Statistical analyses were done using the “clmm” 301 

function within the “ordinal package” (Christensen 2015) in R programming software (R Development 302 

Core Team 2014). 303 

Because longitudinal studies can sometimes have highly correlated variables relating with 304 

progression of time, we assessed essential multicollinearity with a correlation matrix of all possible 305 

standardized predictor variables (Cohen et al. 2003).  Pairs of predictor variables with a correlation of r > 306 

0.55 were not used within the same model to avoid multicollinearity issues (Online Resource 1, Table A1). 307 

Multicollinearity problems arise in multiple regression when predictor variables are highly correlated; often 308 

issues can be detected with thoughtful investigation of slope parameter estimates and standard errors 309 

between univariate and full predictor models (Cohen et al. 2003). 310 

 311 

Results 312 

 313 

We found 1,330 red-winged blackbird nests and monitored them over 4,518 separate visits, thus 29.4% of 314 

visits were first visits.  Of the first nest visits, 12.2% were building, 19.1% laying, 55.3% incubating, 2.7% 315 

hatching, 10.7% nestling, and 0.1% were confirmed successful.  Over all nest visits, 3.8% of nests were in 316 

the building stage, 8.1% were in the laying stage, 53.3% were being incubated, 4.1% were hatching, 30.1% 317 

had nestlings, and 0.7% were confirmed successful.  The mean number of visits per nest was 3.40 ± 1.88 318 

SD, with a maximum of 10 visits for a single nest.  Of the 4,528 separate monitoring visits, males and 319 

females were not present (aggression score 0) during 48.6 % and 55.61% of total monitoring visits, 320 

respectively.  This was the most common class recorded for both sexes. The next most frequently scored 321 

aggression classes for males were 3 (24.2%) and 2 (19.83%); and 2 (17.7%) and 1 (12.8%) for females. 322 

Mean male aggression per visit was higher (1.39 ± 0.042, 95% CI) than females (0.92 ± 0.034, 95% CI). 323 
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Males 324 

The preliminary analysis of the 3 main hypothesis revealed that NestAge was explaining the greatest 325 

amount of variation in nest aggression response followed by Visit Number, and then IntDate (Fig. 1). We 326 

found similar results in the first-visit only analysis with NestAge (β= 0.69, 95% CI= 0.57, 0.82) showing a 327 

stronger relationship than IntDate (β= 0.25, 95% CI= 0.13, 0.37). When testing NestAge decomposition 328 

hypotheses, the additive NestAgeWIC and BIC model had overwhelming support over NestAge (∆AICc = 329 

33.25).  This suggested the importance of distinguishing both within- and between-individual effects of 330 

NestAge on male blackbird nest aggression.  Because nest age decomposition was important for males, we 331 

further tested the inclusion of a random slope model across various values of NestAgeWIC and we found 332 

strong support this model over the decomposed model (NestAgeWIC + NestAgeBIC; ∆AICc = 17.84). 333 

Because male NestAgeWIC was highly correlated with Visit Number (r = 0.82), we did not test any models 334 

with these two covariates together in the main-hypotheses analysis (step 2). However, the interactive 335 

models of IntDate with both NestAgeWIC and BIC with random slope inclusion, had overwhelming 336 

support compared to Visit Number and IntDate interaction (∆AICc = 190.80).  337 

  The best supported model for male red-winged black bird aggression (Table 2; wi = 1.00) included 338 

NestAgeWIC and NestAgeBIC (main effects β= 1.34, 95% CI = 1.20, 1.49; β= 0.80; 95% CI= 0.65, 0.94; 339 

respectively) each interacting with IntDate (main effect β= 0.32, 95% CI= 0.20, 0.44) (Step 2) plus the top 340 

model covariates from the additional covariate model (Step 4). These interactions were both negative and 341 

represented higher magnitude betas compared to any additional covariates (NestAgeWIC*IntDate β= -0.35, 342 

95% CI= -0.47, -0.23; NestAgeBIC*IntDate β= -0.30, 95% CI= -0.44,-0.15).  Earlier initiated nests 343 

(IntDate), especially with 0-3 aggression scores (Fig. 2a, c), were generally defended more aggressively up 344 

to mid-June for nests with greater within-individually centered NestAge values.  However, this trend 345 

appeared to reverse after mid-June, especially for males with 0-2 aggression scores, as lower NestAgeWIC 346 

values (younger nests) generally had males with increased aggression scores (Fig. 2a, b). Males appeared to 347 

most consistently increase their aggression response with nesting cycle, but also showed higher aggression 348 

at nests visited multiple times compared to the first visits to nests (Fig. 3a). In addition, clutch/brood size 349 

(β= 0.28, 95% CI= 0.19, 0.37), time of day (β= 0.12, 95% CI= 0.05, 0.20), and nest concealment (β= 0.037, 350 
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95% CI= -0.079, 0.15) all had positive effects on nest aggression. Nest aggression seemed to decrease with 351 

an increase in nest density within 100m of a specified nest (β= -0.047, 95% CI= -0.15, 0.60).     352 

Females 353 

The preliminary analysis of the 3 main hypotheses for females revealed NestAge has the strongest 354 

influence on female nest defense aggression compared with the other main hypotheses (Fig. 1). NestAge 355 

(β=0.57, 95% CI= 0.46, 0.69)  also had a much greater positive effect on aggression compared to IntDate 356 

(β=0.056, 95% CI= -0.051, 0.16) with the first-visit only analysis for females, and supported our 357 

preliminary analysis results.  Unlike males, female model competitiveness did not improve with nest age 358 

decomposition.  Female best main-hypotheses model (step 2) included the NestAge by Visit Number 359 

interaction plus IntDate (∆AICc = 45.57). 360 

 The best additional covariate model (∆AICc = 61.65) when combined to best main-hypothesis 361 

models greatly improved the competitiveness of the top model (Table 3).The top-ranked model for female 362 

aggression response (wi = 1.0; Table 3) included the combination of all main hypotheses covariates and the 363 

additional covariates. NestAge (β = 0.28, 95% CI= 0.19, 0.37), IntDate (β = 0.090, 95% CI= 0.0074, 0.17), 364 

Visit Number (β = 0.036, 95% CI= -0.59, 0.13), and negative interaction of NestAge and Visit Number (β 365 

= -0.039, 95% CI= -0.12, 0.39) represented the best main-hypotheses covariate combination.  In terms of 366 

the additional covariates, aggression response was negatively related to nest concealment (β= -0.0088, 95% 367 

CI= -0.089, 0.071), time of day (β = -0.035, 95% CI= -0.10, 0.030), and nest density within 100 m of a 368 

specified nest (β = -0.11, 95% CI= -0.19, -0.030).  After the main effects of NestAge, clutch/brood size was 369 

the second most influential predictor of female nest defense aggression (β = 0.23, 95% CI= 0.15, 0.33) 370 

followed by interaction between clutch/brood size and nest concealment (β = 0.13, 95% CI= 0.055, 0.20; 371 

Fig. 4). Nests with higher clutch/brood sizes generally experienced higher nest defense aggression by 372 

females, especially for females scored between 0-3, as nest concealment increased (Fig. 4).  The opposite 373 

effect was seen for more concealed nests with low clutch/brood sizes. Females generally increased 374 

aggression with the progression of the nesting cycle, and an increase in female aggression to multiple visits 375 

was most apparent during the laying and incubations stages (Fig. 3b).  376 

 377 
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Discussion 378 

 379 

From our preliminary analysis of the 3 main hypotheses we found most support for parental-investment 380 

theory (NestAge) for both sexes; however, for males the 2 other hypotheses, positive reinforcement (Visit 381 

Number) and renesting potential (IntDate) also received support.  Thus, overall, parental-investment theory 382 

was explaining most of the variation in nest defense aggression for red-winged blackbirds in our study area.  383 

However, when these same hypotheses were considered in our comprehensive model building analysis, the 384 

effects of these hypotheses were not so straightforward. We reveal that interactions among these 385 

hypotheses were also important to consider. Our study revisits these classic questions, first brought forward 386 

by Knight and Temple (1986a), in a direct manner. 387 

Based on the parental-investment theory (Trivers 1972), nest defense should increase concomitant 388 

with nest age and clutch/brood size (e.g. Redondo and Carranza 1989; Anderson 1990; Wiklund 1990; 389 

Tryjanowski and Golawski 2004; Palestis 2005; Redmond et al. 2009). We found support for this theory, as 390 

nest age was positively related to both male and female nest aggression and consistently had higher slope 391 

parameter estimates (β) compared to the 2 other main hypotheses and additional covariates. Our results 392 

mirror studies with indigo buntings (Passerina cyanea) and mourning doves (Zenaida macroura) which 393 

also found nest defense increased with age of nest (Westmoreland 1989; Westneat 1989). With eastern 394 

kingbirds (Tyrannus tyrannus) however, Siderius (1993) found that eggs were defended just as aggressively 395 

as young to a repeatedly displayed American crow predator model.  Here the author suspected that the 396 

population’s natural history traits, such as low within-season renesting potential, might make eggs just as 397 

important as nestlings within this kingbird population (Siderius 1993). 398 

Although nest age was the main parental-investment hypothesis addressed in our research, 399 

parental investment theory also predicts that clutch or brood size should positively affect nest defense 400 

intensity. Many studies have supported this idea (Knight and Temple 1986b; Wiklund 1990), and we found 401 

that clutch or brood size positively influenced both male and female nest defense and appeared to be an 402 

important predictor of nest aggression for both sexes. Research on American goldfinches (Carduelis tristis) 403 

showed a positive relationship with call rates and artificially increased brood sizes (Knight and Temple 404 
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1986b). This positive relationship between parental female nest defense intensity and brood size was also 405 

observed in Merlins (F. columbarius) though original clutch size did not seem to be as important as brood 406 

size after alteration (Wiklund 1990).  For females in our study, clutch/brood size was second to nest age in 407 

terms of magnitude of slope parameter estimate and this variable interacted with nest concealment. 408 

The renesting-potential hypothesis predicts that later-season nests will be defended more intensely 409 

because there is reduced renesting potential as the breeding season progresses (Barash 1975). In our study 410 

we showed that both male and female aggression responses were higher for nests that were initiated later in 411 

the breeding season; although, males, compared to females, appeared to have a much stronger aggression 412 

response to nest initiation date. Previous studies have shown parental aggression to be either positively or 413 

negatively correlated with Julian date (Biermann and Robertson 1981; Regelmann and Curio 1983), but 414 

these trends were confounded with nest stage.  The survival uncertainty of the upcoming non-breeding 415 

season is driving this hypothesis; in one study, male annual mortality was estimated at 52% with 29% of 416 

the mortalities associated with the nonbreeding season (Yasukawa 1987).  Despite similar reported annual 417 

mortality rates for females, parental-investment covariates, such as nest age and clutch/brood size appear to 418 

be more important than renesting potential in females (Fankhauser 1971; Searcy and Yasukawa 1981; 419 

Martin and Li 1992).  Potentially high annual male mortality rates may be driving some of the variation we 420 

observed in nest defense aggression; however, it appeared that the interaction between renesting potential 421 

and parental investment offered a better explanation of variation in nest dense aggression. Particularly for 422 

males, the renesting potential hypothesis was most supported for nests with lower nest ages. 423 

Our results contradict Biermann and Robertson (1981), who found red-winged blackbird nest 424 

defense increased through the breeding season for nests with nestlings but decreased for nests with eggs.  425 

They suggested seasonal predation risk (e.g. higher predation later in season) and parental investment 426 

might be driving these patterns.  We found early in breeding season, males were more aggressive at older 427 

nests, but late in the breeding season, males were generally more aggressive for younger nests 428 

(lay/incubation stages).  We suspect nesting attempts earlier in the season may actually have more value to 429 

parents; thus, they may be defended more vigorously, especially if the nest is at a later stage. Similarly, first 430 

broods of merlins (Falco columbarius) in Sweden were defended more vigorously than second broods 431 
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(Wiklund 1990).  Also, several studies have documented higher nest success earlier in the breeding season 432 

compared to later (Grant et al. 2005; Adams et al. 2013), and earlier fledged broods often have a greater 433 

chance of survival compared to later fledge broods (Wiklund 1990; Møller et al. 2014).  However, within 434 

males, positive reinforcement or variables highly correlated with positive reinforcement appeared to have 435 

stronger relationships with aggression. 436 

After accounting for all 3 main hypotheses in the same model, positive reinforcement (Visit 437 

Number) was explaining variation in male nest aggression but not for females.  The problem is to 438 

disentangle the effect of nest age and repeated visits by human observers. As Knight and Temple (1986a) 439 

suggested an increase in aggression response by red-winged blackbirds might be an artifact of repeated nest 440 

monitoring visits through “positive reinforcement” of repeated success in driving away non-threatening 441 

human observers.  This would suggest the perceived cost of defensive aggression (threat to adult) is 442 

reduced and perceived effectiveness is increased. In our study males appeared to respond more aggressively 443 

after nests were visited at least two times across most nest stages, whereas females appeared more 444 

aggressive during second visits if nests were at the incubation stage. A limited number of studies suggest 445 

the positive-reinforcement hypothesis explains nest defense intensity of passerines better than parental 446 

investment (Knight and Temple 1986a; Hobson et al. 1988).  Other studies, despite experimental 447 

approaches, have not found conclusive support for the positive-reinforcement hypothesis (Westmoreland 448 

1989; Westneat 1989; Siderius 1993; Viñuela et al. 1995).  In a study on nest defense of willow tits, Parus 449 

montanus, revisitation of nests by the same individual was not associated with increased nest defense 450 

intensity (Rytkönen et al. 1990). However, our results offer some support for Knight and Temple’s (1986a) 451 

positive-reinforcement hypothesis, especially for male red-winged blackbirds. 452 

There are several potential explanations for the commonly witnessed patterns of positive 453 

reinforcement in nest defense intensity in birds. Potential mechanisms include repeated successful human 454 

intruder deterrence, elevated perceived predation risk, past experience of parent with individual human 455 

observer or nest predator, and even the reinforcement of reciprocal altruism by neighbors (Knight and 456 

Temple 1986a; Olendorf et al. 2004; Krams et al. 2010; Langmore et al. 2012). Knight and Temple (1986a) 457 

argue that human and predator models used in studies routinely can be successfully defended against may 458 
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lead to results supporting positive reinforcement.  Although not investigated in our study, repeated nest 459 

visits by the same individual observer  and parental past experience with a nest predator, opposed to a naïve 460 

parents, have increased nest defense intensity (Knight and Temple 1986c; Levey et al. 2009; Langmore et 461 

al. 2012). Increased risk blackbird nest predation in our study may especially have been the case, because 462 

certain study fields often had multiple observers simultaneously present to improve the nest monitoring 463 

efficiency.  Also, neighboring male red-winged blackbirds seem to cooperate in nest defense in what 464 

appears to be a form of reciprocal altruism (Olendorf et al. 2004). It has been shown that heightened male 465 

nest defense attracts conspecific neighbors to assist, and Olendorf et al. (2004) contends this may be a 466 

direct reason to develop and reinforce cooperative relationships with neighbors. Although visit number was 467 

not included in the male top model, its high correlation with within-individually centered nest age, suggests 468 

positive reinforcement was a driver of nest aggression in males, but not conclusive for females. For both 469 

sexes, the additional covariates, such as nest concealment and nest density, improved model 470 

competitiveness when added to best main-hypotheses models.   471 

Nest concealment has been suggested as driving aggression response in some birds (Carrillo and 472 

González-Dávila 2013). Nest concealment may especially be important to deter visual predators such as 473 

avian predators, but well-concealed nests may  generally suffer greater depredation to olfactory base 474 

predators such as mice and snakes (Weidinger 2002; Colombelli-Négrel and Kleindorfer 2009). We found 475 

that increased nest concealment predicted increased aggression in males, but decreased aggression in 476 

females; however, for both sexes concealment confidence intervals overlapped zero. For males the common 477 

explanation of the observed pattern is a behavioral compensation for more exposed nests, but this pattern, 478 

across both sexes, has not been supported previously in other species (Onnerbrink and Curio 1991; 479 

Weidinger 2002). Most interestingly, for females there was a strong interactive aggression response 480 

depending on the size of the clutch/brood and nest concealment.  Females in laying situations will have 481 

smaller clutch sizes (0-2 eggs), and may have to balance the trade-off between physical nest concealment 482 

and defense intensity, which can be a form of nest concealment behavior. Females may rely more on 483 

concealment in these cases, as can be seen in great tits (Parus major) that responded more aggressively to a 484 

predator model at less vulnerable nests (Onnerbrink and Curio 1991).  These results generally support the 485 



19 

 

patterns we found, and the authors contend that when nest are more vulnerable, less concealed in our case, 486 

offspring survival is reduced as is their potential for future reproduction and parents may be responding 487 

accordingly  488 

Our analysis did not compare males and females in the same analysis, and we decided against this 489 

approach in order to simplify already complex models, avoiding a sex interaction term. However, 490 

differences between results of males and females can be implied. In general males had higher aggressive 491 

ratings than females, likely because females are investing more effort into reproductive activities such as 492 

nest building, egg development and laying, incubation, and feeding young resulting in less energy and time 493 

available for nest defense (Yasukawa and Searcy 1995).  Male red-winged blackbirds, which do not share 494 

many of the reproductive responsibilities of females, have more time and energy to devote to nest defense. 495 

On the other hand, additional factors such as clutch/brood size and nest density, relatively were more 496 

supported within females when added to top main hypotheses models compared to males. In terms of 497 

clutch/brood size, which was especially important for females, a clutch increase from 4 to 5 eggs represents 498 

a 20% increase in reproductive potential for females (and monogamous males), and the loss of one nest 499 

represent a potential 100% loss of reproduction for a female.  This may partly explain why clutch/brood 500 

size affects seem more important in driving female aggression. Conversely, a polygynous male, has risk of 501 

nest lost spread out over multiple nests and therefore, aggressively defending nests with larger clutches 502 

would only have marginal payoff compared with females.  503 

 Polygynous male nesting-situations will lead to greater nest densities within a given area, a 504 

covariate which we measured.  In lieu of marked birds, nest density served as our proxy for degree of 505 

polygyny. Nest defense for females significantly decreased with increasing nest density surrounding a 506 

particular nest. One explanation for this pattern is likely due to increased group vigilance and cooperative 507 

nest defense through the dilution explanation (Arroyo et al. 2001). In dense nesting situations, nest defense 508 

aggression can be spread out over multiple parents, both males and females, allowing aggression intensity 509 

per individual to decrease. Why females responded more to nest density compared to males, might be 510 

explained by greater variability in female numbers across different polygynous male territories. In a marsh 511 

habitat, it was an increased female density that reduced nest depredation rates (Picman 1988).  For males, 512 
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the issue of parental uncertainty likely becomes more prevalent in dense nesting situations as extra-pair 513 

copulations increase (Westnest and Sherman 1997), and males appear to be able to discriminate between 514 

faithful and unfaithful females (Gray 1997).  These studies likely corroborate the decreasing nest defense 515 

intensity trend with increasing nest density result we found for males.  516 

Conclusions 517 

We found the strongest evidence supporting the parental-investment theory (Trivers 1972) for both sexes. 518 

Positive-reinforcement hypothesis (Knight and Temple 1986a) followed by the renesting potential 519 

hypothesis (Barash 1975) also appeared to be influencing male nest defense aggression. This suggests that 520 

an answer to this classic question is not straightforward, and it appeared that male aggression was driven by 521 

interactive combinations of the 3-main hypotheses, whereas female aggression was explained by parental 522 

investment plus additional factors such as clutch/brood size, nest density, and nest concealment. 523 

Although controlled experimental approaches are typically desirable when addressing research 524 

questions, large-scale observational data sets remain useful and can assist in developing ecological 525 

generalizations and compliment experimental approaches (Martin 2002).  Much remains to be clarified 526 

about nest defense intensity in birds, which sometimes may be positively reinforced by frequent nest 527 

visitations.  Our approach elucidates some of the complexities, namely the potential interaction between 528 

different hypotheses and the importance accounting for within- and between-individual standardization, 529 

involved in explaining nest defense aggression.  In the future, consistent methodological and statistical 530 

approaches across multiple species with varying life history traits, would be useful in further clarifying 531 

factors affecting nest defense intensity. 532 
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Table 1 Predictor variables with definitions used in explaining red-winged blackbird nest defense 690 

aggression, an ordinal response (see below), using cumulative link mixed-effects models  691 

Variable Group Variable 

Name 

Scale / 

levels 

Definition 

Response  Aggression 

Score 

 Red-wing blackbird nest defense aggression score on 

an ordinal scale (0-4) 

  0 No bird in the immediate vicinity seen, assume no 

response 

  1 Very little disturbance. Bird quiet, moves away 

silently 

  2 Little disturbance. A little distress calling 

  3 Moderate disturbance. Repeated distress calling and 

conspicuous perching behavior, single feign 

  4 Very disturbed. Loud alarm calling, or repeated 

feigning 

Main-hypotheses IntDate NA Estimated Julian date when the first egg of a nest was 

laid (see text for estimation procedure).  Used to 

evaluate renesting potential. 

 NestAge NA Number of days active from estimated nest initiation 

date (IntDate = day 0).  Used to evaluate parental 

investment. 

 Visit Number NA The ordered visit number to a monitored nest (1st, 2nd, 

3rd, etc.).  Used to evaluate positive reinforcement. 

NestAge 

Decomposed 

BIC  Between-individual centered NestAge (mean NestAge 

for an individual nest; 𝑥̅j, j = unique nest) 

 WIC  Within-individual centered NestAge (NestAge minus 
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Variable Group Variable 

Name 

Scale / 

levels 

Definition 

NestAgeBIC within an individual nest; xij - 𝑥̅j; xij = 

NestAge at visit number i at unique nest j) 

Additional 

Covariates 

Clutch/ brood 

size 

NA Total number of known viable nest occupants (eggs or 

chicks, not counting eggs that did not hatch); 

reflecting the apparent value of the clutch or brood to 

the parents. 

 Nest density NA Number of active nests within 20 m, 40 m, 60 m, 80m 

or 100 m for each nest matching the same date of nest 

monitoring; potential index of polygyny 

 Concealment  Sum of below and above nest concealment rated 

separately from a 0-4 scale, thus a nest concealment 

score ranged from 0-8.  

  0 Nothing hiding the nest. Perfectly exposed. 

  1 Very poorly hidden 

  2 Poor to medium hidden 

  3 Medium hidden to well hidden 

  4 Very well hidden 

 Time NA Time of day when the nest was visited 

Random Variable Nest.ID NA Individual nest ID to account for personality 

differences of parents between different nests 

  692 

 693 

 694 
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Table 2 Summary of model selection results for cumulative link mixed-effects models of male red-winged 696 

blackbird nest defense aggression in northwest Illinois (2011-2014), with individual nest (Nest.ID) 697 

included as a random effect. Models were ranked from lowest to highest Akaike information criterion 698 

(AICc) value. K represents the number of parameters in the model, and wi represents the Akaike weighting 699 

factor of the model. C/B size = clutch/brood size 700 

Model rank Candidate models K ∆AICc wi 

1c C/B size + Nest density (100m) + Concealment + Time + 

NestAgeWIC * IntDate + NestAgeBIC * IntDate 

16 0.00 1.00 

2h NestAgeWIC * IntDate + NestAgeBIC * IntDate 12 41.49 0.00 

3 NestAgeBIC + NestAgeWIC * IntDate 11 54.39 0.00 

6p NestAge + Visit Number + IntDate 8 87.06 0.00 

7 NestAgeBIC + NestAgeWIC  9 98.50 0.00 

8 Visit Number * IntDate 8 282.29 0.00 

11a C/B size + Nest density(100m) + Concealment + Time 9 686.95 0.00 

23 Nest.ID 5 828.10 0.00 

a = top additional covariate model. c = combined top models from main-hypotheses and additional covariate 701 

analyses. h = top main-hypotheses model with NestAgeWIC random slope incorporation. p = preliminary 702 

main-hypotheses additive analysis (NestAge + Visit Number + IntDate) 703 

 704 

 705 

 706 

 707 

 708 
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Table 3 Summary of model selection results for cumulative link mixed-effects models of female red-710 

winged blackbird nest defense aggression in northwest Illinois (2011-2014), with individual nest included 711 

as a random effect.  Models are ranked from lowest to highest Akaike information criterion (AICc) value. K 712 

represents the number of parameters in the model, and wi represents the Akaike weighting factor of the 713 

model. C/B size = clutch/brood size 714 

Model rank Candidate models k ∆AICc wi 

1c C/B size * Concealment + Nest density (100m) + 

Time + NestAge * Visit Number + IntDate 

14 0.00 1.00 

2h NestAge * Visit Number + IntDate 9 45.57 0.00 

3 NestAge * Visit Number 8 47.57 0.00 

5 NestAge 6 54.90  

7p NestAge + Visit Number + IntDate 8 55.10 0.00 

11a  C/B size * Concealment + Nest density (100 m) + 

Time 

10 61.65 0.00 

12 C/B size + Nest density (100m) 7 68.28 0.00 

23 Nest.ID 5 152.93 0.00 

a = top additional covariate model. c = combined top models from main-hypotheses and additional covariate 715 

analyses. h = top main-hypotheses model. p = preliminary main-hypotheses additive analysis (NestAge + 716 

Visit Number + IntDate) 717 
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Fig. 1 Beta slope parameter estimates with 95% confidence intervals of the 3 main hypothesis, showing 725 

the relative strength of the covariate (hypotheses) relationships to nest defense aggression for separate 726 

analyses for each sex. Main hypotheses were included in a 3 covariate additive model and original 727 

covariates were standardized to a mean of zero and standard deviation of 1 to allow for relative comparison 728 

among each hypothesis 729 

Fig. 2 Probability of nest aggression response of male red-winged blackbirds, at distinct thresholds (0-4), 730 

predicted from increasing nest initiation dates and within-individually centered nest ages (NestAgeWIC).  731 

Nest age was grouped by nest stage, which was determined from the mid-points for general nesting periods 732 

(Ehrlich et al. 1988).  Blackbird nest were monitoring over 2011-2014 in northwestern Illinois, USA. Bld = 733 

building, Lay = laying, Inc = incubation, Hatch = hatching, Nest = nestling, Suc = successful 734 

Fig. 3 Mean nest-defense response by nesting stage with 95% confidence intervals of male (a) and 735 

female (b) red-winged blackbird separated by nest monitoring visit numbers (1st, 2nd, 3rd, 4th - 5th, > 5).  736 

Nests were monitored during the breeding seasons of 2011-2014 in northwestern, Illinois, USA 737 

Fig. 4 Probability of nest aggression response of female red-winged blackbirds, at distinct response 738 

thresholds (0-4), predicted from increasing nest concealment scores and clutch/brood size (C/B size). 739 

Blackbird nests were monitored during the 2011-2014 breeding seasons in northwestern Illinois, USA 740 

 741 
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