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 Abstract:  Spatial heterogeneity in predation risk can ameliorate impacts on prey 27 

populations, particularly for prey of generalists.  Spatially heterogeneous risk implies the 28 

existence of refugia, and the spatial scale of those refugia and their persistence over time affect 29 

whether prey can avoid predation by aggregating therein.  Our objective was to quantify the 30 

magnitude, spatial scale, and temporal persistence of heterogeneity in risk of predation by 31 

white-footed mice (Peromyscus leucopus), an abundant generalist predator of gypsy moths 32 

(Lymantria dispar) and songbirds.  We used track plates to measure white-footed mouse activity 33 

at >170 trees in each of 3 forest plots in upstate New York during summers of 2003-2005.  We 34 

quantified the mean and coefficient of variation of track activity among trees by fitting the 35 

beta-binomial distribution to data from each plot and study period.  We measured temporal 36 

persistence by disattenuated autocorrelation, and spatial scale by fitting exponential variograms.  37 

Mice were much less abundant in 2005 than the other 2 years, leading to lower overall track 38 

activity but higher coefficient of variation among trees.  Mouse track activity at individual trees 39 

was positively autocorrelated between monthly study periods in 2003 and 2004, and even 40 

between the two years, whereas temporal autocorrelation in 2005 was much weaker.  Track 41 

activity showed positive spatial autocorrelation over lag distances from ca. 30 to >1000 m.  42 

These findings indicate that mouse activity, and hence risk to their prey, varies substantially in 43 

space at spatial and temporal scales that appear responsive to mouse population dynamics.  The 44 

spatial scale and temporal persistence of that variation imply that prey may benefit from 45 

returning to, or failing to disperse from, refugia.   46 

 Key words:  activity, autocorrelation, Peromyscus leucopus, persistence, predation, 47 

refugia, spatial heterogeneity, spatial scale, track plates, white-footed mouse   48 

\ 49 
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INTRODUCTION 50 

 Spatial heterogeneity in predation risk and the resulting refugia are important to 51 

predator-prey dynamics (Gause 1934, Huffaker 1958, Murdoch and Oaten 1975, Hilborn 1975).  52 

Specialist predator-prey systems have received the most attention by researchers in this regard 53 

(Luckinbill 1974, Turchin and Kareiva 1989), but spatial heterogeneity in risk may be especially 54 

important to incidental prey of generalist predators (Schmidt 2004a).  Because generalists switch 55 

to more abundant prey types when a focal prey type becomes scarce, abundance of generalist 56 

predators is affected modestly, if at all, by rarity of the focal prey (Holt 1977, Murdoch and 57 

Bence 1987, Sinclair et al. 1998).  This numerical decoupling means that rarity is not a refuge for 58 

prey of generalists.  However, the numerical decoupling of generalists predators can benefit prey 59 

when spatial refugia persist over time, because prey can become aggregated in refugia without 60 

strongly increasing local predator abundance.  Specialist predators would be expected to show an 61 

aggregative or numerical response to such heterogeneity in prey abundance, but these responses 62 

are likely to be weak or absent for generalists.  Aggregation of prey in refugia generates negative 63 

spatial covariance between predator and prey abundances, and may further reduce predator 64 

impact through local satiation of predators (Goodwin et al. 2005).    65 

 The white-footed mouse (Peromyscus leucopus) is a generalist forager that consumes 66 

many prey types and shows only weak food limitation during the growing season (Wolff et al. 67 

1985, Wolff 1986), but its abundance in many areas is strongly linked to availability of tree seeds 68 

(especially acorns) during winter (Elkinton et al. 1996, Wolff 1996, Jones et al. 1998, 69 

McCracken et al. 1999).  Dense mouse populations following bumper crops of acorns are 70 

associated with intense predation on various prey, including gypsy moth (Lymantria dispar) 71 

pupae (Bess et al. 1947, Campbell and Sloan 1977, Smith and Lautenschlager 1981) and the eggs 72 
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and nestlings of certain songbirds (Schmidt et al. 2001, Schmidt and Ostfeld 2003, Clotfelter et 73 

al. 2007).  In low- to moderate-density populations of gypsy moths, both pupal survival and 74 

population growth rates are negatively related to mouse densities (Elkinton et al. 1996, Ostfeld et 75 

al. 1996) and removal of mice can cause >10-fold increases in gypsy moth abundance (Jones et 76 

al. 1998).  Similarly, nest predation of veeries (Catharus fuscescens) and dark-eyed juncos 77 

(Junco hyemalis) is strongly correlated with fluctuations in white-footed mouse abundance 78 

(Schmidt et al. 2001, Schmidt 2003), yet songbird eggs and nestlings represent an incidental food 79 

source to the mice (Schmidt et al. 2001).  80 

 For both gypsy moths and nesting songbirds, the existence and persistence of refugia are 81 

important in avoiding local predator-driven extinction.  Because mice are generalists yet readily 82 

attack gypsy moth pupae even at low pupal densities, chronically dense mouse populations could 83 

potentially drive gypsy moths locally extinct (Schauber et al. 2004).  However, simulations and 84 

analytical models indicate that persistent spatial heterogeneity in predation risk coupled with 85 

limited gypsy moth dispersal can enable gypsy moth populations to withstand high densities of 86 

white-footed mice (Goodwin et al. 2005, Schauber et al. 2007).  Gypsy moth larvae typically 87 

disperse short distances (tens of m; Mason and McManus 1981, Weseloh 1997, Erelli and 88 

Elkinton 2000) and adult female gypsy moths are flightless (Montgomery and Wallner 1988).  89 

Therefore, gypsy moth population growth is enhanced because larvae "inherit" refugia where 90 

their mothers survived to lay eggs (Goodwin et al. 2005, Schauber et al. 2007).  Similarly, veery 91 

nest success is higher in locations with relatively low use by mice, and nesting songbirds may be 92 

able to assess and actively select such refugia (Schmidt et al. 2006, Fontaine and Martin 2006).  93 

Even if birds are unable to assess risk before committing to a nest site, they can benefit from 94 
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using a win-stay/lose-switch strategy if "hot" and "cold" spots of risk persist over time 95 

(Greenwood and Harvey 1982, Schmidt 2001, Hoover 2003, Schmidt 2004b).   96 

 Many studies (reviewed by Jorgensen 2004) have examined the small-scale activity 97 

patterns of white-footed mice and similar small mammals.  However, such studies have typically 98 

focused on identifying the microhabitat features to which small mammals respond (i.e., causes), 99 

rather than the emergent spatiotemporal characteristics (magnitude, scale, and persistence) of 100 

spatial heterogeneity in activity that affect the consequences for prey.  Our objective was to 101 

quantify these spatiotemporal characteristics of white-footed mouse activity in an oak-forest 102 

ecosystem where mice are typically abundant, to assess whether movement strategies of focal 103 

prey species could enable them to exploit refugia of low mouse activity.  Throughout, we use the 104 

term "activity" to indicate a quantity that is analogous to "abundance" or "population density" yet 105 

applies at scales smaller than an individual home range: i.e., how much time mice (in aggregate) 106 

spend in particular locations.  To meet this objective, we used track plates to measure mouse 107 

activity around individual trees, and from these data estimated the variation and autocorrelation 108 

of activity in time and space. 109 

MATERIALS AND METHODS 110 

Study area and mouse abundance 111 

All field studies were conducted on three, ca. 2-ha oak-dominated forest plots (Green, 112 

Henry, and Tea plots) at the Cary Institute of Ecosystem Studies, Millbrook, New York, USA.  113 

Live-trapping for small mammals on these plots has continued from 1995 until the present.  Each 114 

trapping grid consisted of an 11×11 or 12×10 array of trap stations with 15 m between stations 115 

and two Sherman live-traps at each station.  During 2003-2005, 2-day trapping sessions were 116 

conducted on each plot at 3-week intervals from late May until late October or early November 117 
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each year.  Traps were baited with oats, and cotton batting was provided as insulation during 118 

cool weather.  Traps were set in the late afternoon and checked and closed the following 119 

morning.  Each captured mouse or chipmunk was marked with a uniquely numbered ear tag and 120 

released at the site of capture.  Because each trap session was too short for closed-population 121 

estimators, we estimated white-footed mouse abundance (mice per plot) during individual trap 122 

sessions in 2003-2005 using the Jolly-Seber open population model with heterogeneous 123 

mortality rates, implemented in program POPAN5 (Arnason and Schwartz 1999).  We report 124 

abundance estimates interpolated to the 15th day of each month.  White-footed mice were by far 125 

the most frequently trapped small mammals on these plots, although shrews (Blarina brevicauda 126 

and Sorex cinereus.), eastern chipmunks (Tamias striatus), and southern flying squirrels 127 

(Glaucomys volans) were also captured frequently. 128 

Measuring activity 129 

 Predation risk can be measured by observing predation on naturally occurring prey, but 130 

stationary prey that survive long enough to be found by researchers under-represent sites of 131 

especially high risk, introducing bias (Zens and Peart 2003, Schauber and Jones 2006).  Prey 132 

could also be deployed, but deploying enough prey in a small area to precisely estimate the local 133 

predation rate could alter the foraging behavior of mice (Schauber et al. 2004).  Instead, we 134 

measured local activity of white-footed mice, based on the assumption that risk of being attacked 135 

by mice is determined by the local activity of mice.  High activity at a location could result from 136 

intense use by a single mouse or moderate use by several mice, with similar implications for 137 

sparse prey because individual predators are unlikely to become satiated.  Space use of small 138 

mammals has been measured by the frequency of capture at live-trap stations (e.g., Mengak and 139 
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Guynn 2003, Schmidt et al. 2006) but mice often respond behaviorally to the presence of traps 140 

and trapped animals cannot move, which can bias observed space use (Douglass 1989). 141 

We measured white-footed mouse activity by the frequency at which mice left tracks 142 

("track activity") on plates placed around individual trees during the summers of 2003-2005.  143 

Track plates were constructed of 14×22-cm acetate sheets coated with graphite powder 144 

suspended in an ethanol/mineral oil mixture (Connors et al. 2005).  To provide rigid backing, 145 

track plates were clipped to pieces of aluminum flashing, which had been deployed in the field at 146 

least 1 week before to allow mice to become accustomed to them. Mouse track activity is a 147 

strong predictor of predation on gypsy moth pupae at the scale of individual trees, and the plates 148 

do not appear to attract or repel mice (Connors et al. 2005).  Tracks of white-footed mice are 149 

readily distinguished from those of chipmunks, shrews, or flying squirrels.  Southern red-backed 150 

voles (Clethrionomys gapperi) and meadow voles (Microtus pennsylvanicus), whose tracks 151 

could be mistaken for mouse tracks, have been captured very rarely on the plots.  152 

 Each plot comprised 100 15×15-m cells.  In 10 randomly selected cells per plot, we 153 

placed plates around all trees > 7 cm diameter at breast height (dbh).  In each of the remaining 154 

cells, we randomly selected one of four candidate sample points 7.5 m apart and placed three 155 

track plates around the nearest tree > 7 cm dbh.  Universal Transverse Mercator coordinates of 156 

each sample tree were measured with a global positioning system unit (Garmin GPS 12; Garmin 157 

International, Inc., Olathe, Kansas, USA).  Track plates were placed around 183, 187, and 171 158 

sample trees on Green, Henry, and Tea plots, respectively, and the same trees were used in all 159 

years except for 1 tree on Henry plot that fell after the 2003 field season. 160 

 Track plates were monitored every 2 days during ca. 2-week study periods in June, July, 161 

and August each year.  A tracked plate was replaced when available untracked area reached <50 162 
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% of the total graphite-coated area of the plate.  We marked tracks on plates left in the field to 163 

prevent double counting. Track plates with unknown or unidentifiable tracks were replaced and 164 

removed from the field for later examination.  Due to inclement weather and time constraints, 165 

data-collection days per study period varied from 5-8 among plots and study periods in 2003 and 166 

2004 (always 7 data-collection days in 2005).  In each plot and study period, the sample size (in 167 

"plate-checks") at a tree was the number of data-collection days multiplied by 3 plates.  In 2003, 168 

plates were monitored 19 June – 3 July,   14 – 28 July, and 6 – 19 August.  In 2004 plates were 169 

monitored 14 – 30 June, 14 – 28 July, and 14 – 27 August.  In 2005 plates were monitored 8 – 21 170 

June, 7 – 20 July, and 3 – 16 August.   171 

Analyzing activity data 172 

 We measured mouse track activity at a tree by the proportion of plate-checks that 173 

recorded mouse tracks.  We analyzed track activity separately for each study period, plot, and 174 

year to quantify the magnitude, spatial scale, and temporal persistence of heterogeneity in mouse 175 

activity among trees.  All our analyses addressed the problem of disentangling spatial and 176 

temporal variation in the true activity of mice (i.e., the probability of recording mouse tracks on a 177 

given plate-check) from the sampling variation inherent to proportional data.   178 

 Magnitude of Spatial Heterogeneity. – To quantify variation in true track activity among 179 

trees, we fitted the beta-binomial distribution (Kendall 1998) to observed track activity data from 180 

each plot and study period.  The beta-binomial distribution is often applied to model how the 181 

probability of an event varies among subjects, such as detectability of individual animals 182 

(McClintock et al. 2006) or disease incidence at individual sites (Gent et al. 2006).  In our case, 183 

this procedure is based on two assumptions: (1) true track activity varies among trees according 184 

to a beta distribution and (2) observed track activity (plates tracked per check) at a tree is a 185 
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binomial random variable conditioned on the true track activity at that tree.  We obtained 186 

maximum likelihood estimates for the mean and coefficient of variation (CV) of the underlying 187 

beta distribution (Evans et al. 2000) for each plot and study period using the PopTools add-in in 188 

Microsoft Excel, employing a wide array of initial parameter values to ensure convergence to a 189 

global maximum.  We used profile likelihood to place 95% confidence intervals on the mean and 190 

CV of track activity for each study period and plot.  To test the null hypothesis that track activity 191 

was equal among trees, we used a likelihood-ratio test to compare the fit of the beta-binomial 192 

distribution to that of a binomial distribution in each plot and study period.  Finally, we 193 

performed a Chi-square goodness-of-fit test to test for lack of fit by the beta-binomial model, 194 

which would indicate deviations from the assumptions that true mouse activity follows a beta 195 

distribution and that observed track activity is a binomial random variable.  196 

 Spatial Scale. –We applied geostatistics to quantify the spatial structure of mouse 197 

activity.  This approach describes how the dissimilarity of measurements taken at different points 198 

in space depends on the distance between those points (lag distance), in the form of a variogram 199 

(Fig. 1).  In geostatistics, this dissimilarity is typically expressed by the semivariance, which is 200 

calculated like the variance except using only measurements below the overall mean (Cressie 201 

1993).  If the quantity being measured is spatially autocorrelated then nearby measurements are 202 

expected to be more similar, resulting in a lower semivariance among measurements at small 203 

than at large lag distances.  If measurements were perfectly repeatable then semivariance would 204 

equal zero at lag distance zero, but measurement errors or fine-grained spatial structure can 205 

produce a positive semivariance value (known as the nugget) at lag distance zero.  In many 206 

cases, semivariance can be expected to level off at a maximum value (called the sill) at large lag 207 

distances.  If the measured quantity shows strong spatial autocorrelation (also described as strong 208 
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spatial structure), then nearby measurements will be much more similar than distant ones, so the 209 

relative amount by which the sill exceeds the nugget (i.e., relative structural variability) is often 210 

used to indicate the strength of spatial autocorrelation (Isaaks and Srivastava 1989).  The absence 211 

of spatial autocorrelation is indicated by a flat variogram.  The spatial scale of autocorrelation is 212 

typically measured by the lag distance at which semivariance approaches sill; this distance is 213 

called the effective range.  If data are collected at a small scale relative to the scale of 214 

autocorrelation (i.e., maximum observed lag distance < effective range), then estimating 215 

effective range and the sill requires extrapolation beyond the range of the data and consequently 216 

is imprecise.  The spatial pattern of the quantity being measured is described as isotropic if the 217 

variogram is unaffected by the direction in which lag distance is measured (e.g., east-west or 218 

north-south; Cressie 1993). 219 

 We used PROC VARIOGRAM in SAS (SAS Institute, Carey, North Carolina) to 220 

produce an empirical variogram from mouse track activity data in each plot and study period.  To 221 

more concisely characterize spatial structure and scale, we use PROC NLIN to fit an isotropic, 222 

exponential variogram model to data from each plot and period.  The model is:  h) = C0 + C1(1 223 

-exp(-h)), where h) is the predicted semivariance at lag distance h, C0 is the nugget variance, 224 

and C0 + C1 gives the sill (Cressie 1993).  We defined effective range (A) as the lag distance at 225 

which the variogram curve was 95% converged to the sill (A = 3/).  Each model was fitted by 226 

weighted least squares, weighting data in the bin centered on distance i by n(i)/(i)2, where n(i) is 227 

the number of observations in the bin (Cressie 1993).  Initially, we analyzed data from each plot 228 

separately, binned in 5-m distance intervals up to a maximum of 155 m (i.e., the plot extent).  229 

However, estimates of A were often greater than the plot extent, producing highly imprecise 230 

estimates of the effective range and sill.  Therefore, we also fitted exponential variogram models 231 
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to data pooled from all three plots in each period, binned in 20-m distance intervals up to a 232 

maximum of 5000 m.  Relative structural variability (RSV; Isaaks and Srivastava 1989) is 233 

defined as RSV = 1 - C0/(C0+C1).  Because of imprecise estimates of the sill, we calculated a 234 

within-plot RSV for each variogram model, replacing the sill (denominator) with (155).  For 235 

variograms fitted to data pooled from all plots, we calculated RSV with (5000) in the 236 

denominator.  With the fitted variogram model, we used point kriging (PROC KRIGE2D in 237 

SAS) to interpolate track activity within each plot and study period.   238 

 Temporal Persistence. – We calculated between-period (June, July, or August) 239 

correlations (Pearson product-moment correlation, r) in track activity around sample trees in 240 

each plot and year.  To measure the persistence of mouse activity between years, we averaged 241 

track activity around each sample tree over the 3 study periods in each year, and calculated the 242 

pairwise correlations in average track activity among the 3 years.  We determined statistical 243 

significance of raw correlations using SAS but report disattenuated correlations (Muchinsky 244 

1996) to adjust for the reduction in correlation coefficient magnitude due to sampling variability.  245 

Each observed correlation between vectors x and y (rxy) was disattenuated by yyxxxyxy rrrR / , 246 

where rxx is the reliability of the data in vector x (i.e., data from a given plot and study period).  247 

We used a parametric bootstrap to estimate reliability for each plot and study period.  To do so, 248 

we treated the observed track activity at each tree as the true probability of recording a track, 249 

generated two binomial random variables (using PopTools add-in in Microsoft Excel®) based on 250 

that true probability and the number of plate-checks, calculated the observed correlation between 251 

the two random variables over all trees, and took the average correlation over 1,000 simulations. 252 
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RESULTS 253 

Mouse abundance, mean activity, and magnitude of spatial heterogeneity 254 

 Track activity was measured with >62,400 plate-checks per year.  Activity data were 255 

significantly better fit by a beta-binomial distribution than a binomial distribution, indicating that 256 

true track activity varied among trees, for all plots and study periods (all 2 > 7.7, d.f. = 1, P < 257 

0.006) except Henry plot in June 2005 and Tea plot in July 2005 (2 < 0.32, d.f. = 1, P > 0.57).  258 

Although statistically significant lack of fit generally remained after beta-binomial fitting (all 2 259 

> 219, d.f. > 169, P < 0.04; except Tea plot in July 2005 -- 2 = 156.2, d.f. = 169, P = 0.75), 260 

observed track frequencies closely followed model predictions (Appendix A).  Over all grids 261 

and study periods, estimated mean and CV of track activity were similar (ca. 0.3-0.35) in 2003 262 

and 2004 (Fig. 2), when mouse abundances were generally >60 mice/plot.  However, acorn 263 

failure in fall of 2004 precipitated a crash in mouse abundance in 2005 to <6 mice/plot; 264 

consequently, track activity in 2005 averaged only 0.06 but exhibited high spatial heterogeneity, 265 

with estimated CV averaging 0.58 (Fig. 2). 266 

Spatial scale 267 

 The strength and scale of spatial structure scale varied among plots and years (Appendix 268 

B).  Variograms for 2003 from the Henry plot tended to peak at 40-80 m whereas those from the 269 

Green plot increased approximately linearly out to 155 m, indicating spatial autocorrelation out 270 

to and perhaps beyond the plot scale (Fig. 3).  In 2004 and 2005, most variograms had shallower 271 

initial slopes than in 2003, suggesting weaker spatial autocorrelation, and most 2005 curves 272 

leveled off at < 80 m (Fig. 3).  These patterns are reflected in the estimates of A and RSV from 273 

the fitted variogram models (Table 1).  Green plot variograms in 2003 had A > 1000 m, whereas 274 

those from Henry plot in 2003 had 33 < A < 70 m.  RSV in 2003 varied from 0.46 to 0.72 with a 275 
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median of 0.61, consistently greater than 2004 or 2005.  Variogram data from 2005 exhibited the 276 

lowest RSV and inconsistent A.  Variograms based on data pooled from all plots indicated little 277 

spatial structure at scales larger than the extent of our plots (150-200 m), except for August 2005 278 

(Fig. 4).  279 

Temporal persistence 280 

 Within each year, track activity was significantly autocorrelated among study periods on 281 

Henry and Tea plots in 2003 and 2004 and on Green in 2003, but not on Green in 2004, with 282 

disattenuated correlations between periods ranging from 0.16 to 0.55 in these 2 years (Fig. 5A, 283 

Table 1).  Between-period correlations were weaker in 2005 (-0.18 < R < 0.36) and all were 284 

nonsignificant, except June vs. July for Green plot.  Track activity averaged over study periods in 285 

a year also was autocorrelated between 2003 and 2004 for all plots, with R ≈ 0.5; observed 286 

correlations between 2004 and 2005 were also positive but lower (R < 0.21), and were not 287 

statistically significant (Fig. 5B, Table 1).  Disattenuated correlations between 2003 and 2005 288 

were near 0.21 for all grids but were marginally nonsignificant for Tea plot (Table 1).   289 

DISCUSSION 290 

 We found that the spatiotemporal characteristics of mouse activity, as measured by track 291 

plates, were amenable to exploitation by prey.  In 2003 and 2004, when mice were abundant, 292 

mouse activity varied substantially among trees with spatial structure over tens to hundreds of m 293 

and temporal autocorrelation over months to years.  In 2005, when the mouse population was 294 

lowest, the CV of activity among trees was higher than in other years, but spatial structure and 295 

temporal autocorrelations were weak.  These characteristics indicate that limited dispersal by 296 

gypsy moth larvae could enable them to "inherit" low-risk sites where their mothers survived as 297 

pupae (Schauber et al. 2007), and that songbirds could benefit from electing to re-use successful 298 
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nest sites (Schmidt 2004b).  The spatial scale and temporal persistence of relatively low-activity 299 

sites, and hence their contribution to prey population growth, appear to be greatest when mice 300 

are most abundant and therefore most important as predators. 301 

 The spatial scale of predator activity relative to prey movement distances is integral to the 302 

ability of prey to exploit cold spots and escape hot spots of risk.  On our plots, the effective range 303 

of mouse activity was often similar to or larger than the typical dispersal distances of moths (< 304 

100 m; Weseloh 1997, Erelli and Elkinton 2000), indicating that many dispersing larvae may 305 

remain within their birth refuge.  This correspondence of scales can ameliorate predation impact 306 

on moth populations by allowing local build-up of moth densities in temporally stable refugia 307 

(Goodwin et al. 2005).  The spatial scale of predation risk can also determine the optimal 308 

distance for birds to move when re-nesting after nest predation (Powell and Frasch 2000).  The 309 

effective ranges of mouse activity we observed were often similar to or greater than territory size 310 

in veeries (Martin 1960), suggesting that territory abandonment may be necessary for breeding 311 

dispersal to be an effective response to predation by white-footed mice.  312 

 Temporal persistence of hot and cold spots of risk also affects the impact of predation.  313 

After accounting for sampling variability, mouse activity showed substantial temporal 314 

autocorrelation between months and, when averaged over months, between years.  Within-season 315 

persistence is needed for nest predation events to provide information about the likely success of 316 

re-nesting attempts in the same area.  Between-year consistency is necessary for nest success to 317 

provide information relevant to nest-site philopatry decisions.   Between-year consistency is also 318 

necessary for limited dispersal to enable gypsy moths to inherit refugia where their mothers 319 

survived.  In our mouse-moth system, if a refuge persists for > 1 year, the high fecundity (Moore 320 

and Jones 1987, Jones et al. 1990) and limited dispersal of gypsy moths can cause a substantial 321 
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increase in local moth populations with a concomitant expansion of the area with moth densities 322 

high enough to satiate mice and hence an expansion of the refuge.  Both within- and 323 

between-year persistence of mouse activity were greatest in years when mouse abundance was 324 

relatively high, suggesting that the spatiotemporal characteristics of predation risk in this system 325 

act to ameliorate intense predation risk associated with high mouse densities. 326 

 We found that most of the spatial structure in mouse activity was at scales below ca. 50 327 

m, similar to the typical home range radius for white-footed mice (ca 0.1 ha; Wolff 1985).  This 328 

scale is considerably greater than the scale (ca. 8 m) of spatial autocorrelation in seed and seed 329 

predation by small mammals documented by Manson (2000).  We also found some instances of 330 

spatial structure at scales equal to or larger than the scale of our plots (150 m).  Such larger-scale 331 

pattern could arise from behavioral responses to larger scale spatial variations in the 332 

determinants of habitat suitability for mice, or from the build-up of local matrilineal clusters due 333 

to female philopatry (Wolff and Lundy 1985).  At smaller scales, local activity of Peromyscus is 334 

often associated with microhabitat features such as understory cover (McCracken et al. 1999) 335 

and coarse woody debris (Greenberg 2002, Mengak and Guynn 2003) and, although few studies 336 

have linked such small scale features to individual fitness, Manning and Edge (2004) found that 337 

P. maniculatus with sufficient woody debris within their home ranges had higher survival.  Other 338 

microhabitat features selected by mice may be more ephemeral.  For example, Schmidt et al. 339 

(2001) found that local abundance of red maple seeds was associated with increased predation by 340 

small mammals on songbird nests, suggesting that rapid predator responses to resource pulses 341 

could weaken the persistence of hot/cold spots.  However, Connors (2005) did not find that 342 

mouse track activity on our plots was related to volume of coarse woody debris, tree size, or tree 343 
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species.  Mouse track activity did appear to be related to local tree seed production, but that 344 

relationship was inconsistent among plots (Connors 2005). 345 

 Demographic inertia could also generate or exacerbate spatial heterogeneity in mouse 346 

activity.  At the scale of our plots, mouse abundance in summer is tightly linked to acorn 347 

production the previous autumn (Jones et al. 1998, Ostfeld et al. 2006), so current density can be 348 

a carryover from high habitat quality in the past.  Given that female white-footed mice are often 349 

philopatric (Wolff and Lundy 1985), differential reproductive success among females at one 350 

point in time could similarly lead to spatial variation in mouse activity later.  Such inter-female 351 

differences in reproductive success can stem from differences in female quality, local habitat 352 

quality, or simply demographic stochasticity.  Thus, demographic inertia could cause the spatial 353 

and temporal distribution of activity for mice (or other species with female philopatry) to 354 

imperfectly reflect the distribution of features related to habitat quality. 355 

 The magnitude of spatial heterogeneity in risk (and other determinants of population 356 

growth) necessary for a prey population to persist can depend on the spatial scale and temporal 357 

persistence of that heterogeneity relative to exploitive strategies employed by the prey.  In other 358 

words, only a small degree of heterogeneity may be necessary if that heterogeneity is persistent 359 

and at a spatial scale that prey can efficiently find and exploit.  Therefore, the significance of our 360 

findings about heterogeneous predation risk is tied to prey behavior.  Schmidt et al. (2006) found 361 

that ca. 75% of veery nests were found near (<8 m) trap stations where fewer than average mice 362 

were captured, suggesting that veeries may effectively recognize and select refugia for nesting.  363 

In contrast, gypsy moth larvae prefer to feed on oak trees, which elevate local mouse abundance 364 

via acorn production.  In fact, gypsy moths often pupate (with predictable results) inside 365 

mouse-inhabited nest boxes on our plots.  Therefore, gypsy moths do not appear capable of 366 
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selecting low-risk sites for pupation.  Instead, the offspring of mothers that happen to pupate in 367 

persistent refugia may exploit those refugia through limited dispersal, thereby "inheriting" the 368 

relatively low risk that favored their mothers.     369 

 Elevated spatial heterogeneity of mouse activity (as measured by CV) in the year of low 370 

mouse density could have resulted from habitat selection or social regulation.  Under an Ideal 371 

Free Distribution (Fretwell and Lucas 1970), animals in a low-density population should only 372 

occupy the sites of highest quality, moving into lower-quality sites as only density increases.  At 373 

coarse examination, our finding that the degree of spatial heterogeneity in local activity was be 374 

greatest at low regional abundance broadly agrees with the Ideal Free Distribution.  For example, 375 

at small scales, Peromyscus select sites based on habitat features related to cover and food, and 376 

ultimately fitness (Morris 1991, Morris and Davidson 2000, Manning and Edge 2004).  Also, 377 

Schnurr et al. (2004) found that Peromyscus were more uniformly distributed among small-scale 378 

habitat types at high density than in a year of low density.  However, we found that temporal 379 

persistence of mouse activity was lower in the low-density year (2005), suggesting that sites of 380 

high local activity might not necessarily reflect highly preferred patches.  Alternatively, high 381 

spatial heterogeneity with low temporal persistence in low-density years could occur if 382 

aggressive social interactions arise when local density exceeds a threshold (Wolff 1985).  383 

Widespread aggression in years of high overall density would tend to spatially homogenize local 384 

activity levels by driving animals away from areas of high local activity, whereas activity can 385 

vary in time and space with less constraint when population density is low.  Several studies 386 

support a role for aggression in population regulation of white-footed mice (Sadleir 1965, Healey 387 

1967, Dooley and Dueser 1996) but its impact on the spatial scale and magnitude of 388 

heterogeneity in mouse activity is unclear.   389 
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 To our knowledge, this is the most comprehensive analysis of the spatiotemporal 390 

characteristics of the predation-risk landscape experienced by prey.  We consider our system of 391 

mice attacking gypsy moths and songbird nests as a model for circumstances in which rare, 392 

incidental prey are confronted with predation from abundant generalist predators.  The spatial 393 

and temporal distribution of risk are critical considerations in endangered species management, 394 

reintroduction programs, and other instances where the conservation of rare prey is desired 395 

(Sinclair et al. 1998).  Increasing the spatial heterogeneity and temporal consistency of predation 396 

risk could be useful for protecting desirable or native species from predation.  Conversely, 397 

homogenizing the distribution of risk in space or time by altering predator activity may be 398 

effective for managing undesirable and introduced species, such as the gypsy moth.  Confirming 399 

these possibilities will require experimentally manipulating not only the spatial differences of 400 

risk, but the persistence of those differences over time, and monitoring the performance of prey 401 

populations.  402 
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Table 1.  Effective range (A, in m) and relative structural variability (RSV) calculated from 575 

exponential variogram models fitted to mouse track activity data from oak-forest plots in 576 

Millbrook, New York.  Variograms were fitted either to data from each plot individually or from 577 

all plots pooled.   578 

   2003  2004  2005 

Plot Period  A  RSV  A  RSV  A RSV 

Green June  >1,000 0.58  >1,000 0.38  214 0.37 

 July  415 0.55  >1,000 0.36  50 0.39 

 Aug  >1,000 0.36  >1,000 0.09  48 0.36 

Henry June  67 0.51  44 0.44  106 0.11 

 July  34 0.65  >1,000 0.26  18 0.43 

 Aug  39 0.55  18 0.43  >1,000 0.36 

Tea June  107 0.55  210 0.60  44 0.54 

 July  >1,000 0.44  250 0.45  >1,000 0.29 

 Aug  20 0.51  100 0.41  ---- a 0 

All June  78 0.52  166 0.47  90 0.26 

 July  131 0.48  259 0.41  >10,000 0.16 

 Aug  46 0.49  745 0.29  >10.000 0.61 

 579 

aFlat variogram. 580 

581 
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Table 2.  Disattenuated temporal autocorrelations of mouse track activity on 3 oak-forest plots in 582 

Millbrook, New York, 2003-2005.  Values in bold indicate P < 0.05. 583 

 584 

 Plot 

Period Green Henry Tea 

June-July 03 0.55 0.30 0.49 

June-Aug 03 0.35 0.36 0.37 

July-Aug 03 

 

0.53 0.45 0.34 

June-July 04 0.18 0.43 0.54 

June-Aug 04 0.20 0.30 0.56 

July-Aug 04 

 

0.16 0.33 0.55 

June-July 05 0.36 -0.01 -0.01 

June-Aug 05 -0.18 0.17 -0.09 

July-Aug 05 

 

0.01 0.23 0.001 

2003-2004 0.55 0.43 0.54 

2004-2005 0.18 0.14 0.21 

2003-2005 0.21 0.23 0.21 

 585 

586 
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Figure 1.  A hypothetical variogram indicating the nugget, sill, and effective range of the 587 

relationship between true semivariance and lag distance (solid line), as well as semivariance 588 

estimates calculated from observed data (symbols).  Note that effective range would be much 589 

more difficult to estimate precisely from data collected only at smaller lag distances (triangles) 590 

than from data collected over a wide range of lag distance (circles). 591 

 592 

Figure 2.  Monthly abundance and track activity of white-footed mice in 3 2.25-ha oak-593 

dominated forest plots (symbol shapes) at the Cary Institute of Ecosystem Studies, Millbrook, 594 

New York, 2003-2005.  (A)  Mean track activity (open symbols) estimated by maximum 595 

likelihood fitting of the beta-binomial distribution and mouse abundance (filled symbols) 596 

estimated by Jolly-Seber model and interpolated to 15th day of each month.  (B) Coefficient of 597 

variation of mouse track activity among trees estimated by maximum likelihood fitting of the 598 

beta-binomial distribution.  In both panels, error bars indicate profile 95% confidence intervals.  599 

 600 

Figure 3.  Standardized variograms of white-footed mouse track activity measured on each of 3 601 

oak-forest plots at the Cary Institute of Ecosystem Studies, Millbrook, New York, 2003-2005, 602 

during 3 monthly periods (line types) per year.  Data for each plot and period are standardized 603 

relative to modeled semivariance at 155 m. 604 

 605 

Figure 4.  Standardized variograms of white-footed mouse track activity measured on 3 oak-606 

forest plots at the Cary Institute of Ecosystem Studies, Millbrook, New York, 2003-2005, during 607 

3 monthly periods per year (symbol shapes).  Solid lines indicate fitted exponential variogram 608 
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models for the 3 periods.  Data for each period are standardized relative to modeled semivariance 609 

at 5000 m. 610 

 611 

Figure 5.  Maps of observed and interpolated (based on point kriging) spatial variations in 612 

white-footed mouse track activity among trees on one oak-forest plot ("Tea") at the Cary 613 

Institute of Ecosystem Studies, Millbrook, New York.  Triangles indicate the locations of trees 614 

where track activity was monitored.  Warmer colors indicate higher mouse activity.  (A) Monthly 615 

mean activity from 3 monthly periods during 2004, showing strong persistence of "hot spots" 616 

and "cold spots" within that year.  (B) Yearly mean track activity data for 2003-2005, showing 617 

between-year persistence of spatial variations, especially 2003-2004.  Note that the scale of 618 

activity data for 2003-2004 is 10-fold higher than for 2005. 619 

620 
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FIGURE 2 624 
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FIGURE 3 626 
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 FIGURE 4 629 
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FIGURE 5 632 

0 25 50 75 100 125 150

0

25

50

75

100

125

150

0 25 50 75 100 125 150X
 c

o
o

rd
in

a
te

 (
m

)

0

25

50

75

100

125

150

0.3 

0.4 

0.5 

0.6 

Y coordinate (m)

0 25 50 75 100 125 150

0

25

50

75

100

125

150

0 25 50 75 100 125 150

0

25

50

75

100

125

150

0.3 

0.4 

0.5 

0.6 

0 25 50 75 100 125 150

0

25

50

75

100

125

150

0.3 

0.4 

0.5 

0.6 

0 25 50 75 100 125 150

0

25

50

75

100

125

150

0.03

0.04

0.05

0.06

A B

August 2004

July 2004

June-August 2003June 2004

June-August 2004

June-August 2005

 633 


	Southern Illinois University Carbondale
	OpenSIUC
	2009

	Quantifying a Dynamic Risk Landscape: Heterogeneous Predator Activity and Implications for Prey Persistence
	Eric M. Schauber
	Matthew J. Connors
	Brett J. Goodwin
	Clive G. Jones
	Richard S. Ostfeld
	Recommended Citation


	OLE_LINK1

