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INTRODUCTION

In a generalized additive model (GAM), Y is conditionally independent of the

predictors x given the additive predictor AP = α +
∑p

j=1 Sj(xj) for some functions

Sj. Plots for generalized linear models (GLM) using the estimated sufficient predic-

tor ESP = α̂+β̂
T
x can be extended to generalized additive models by replacing the

ESP by the estimated additive predictor EAP = α̂ +
∑p

j=1 Ŝj(xj). The response

plot and transformation plots are examples. Since a GLM is a special case of a

GAM, a plot of EAP versus ESP is useful for checking goodness of fit of the GLM.

The prediction intervals are for a future response Yf given a vector xf of predic-

tors when the regression model has the form Yi = m(xi) + ei where m is a function

of xi and the errors ei are iid. The techniques perform well for moderate sample

sizes as well as asymptotically.

This research paper gives information on presenting plots and asymptotically

optimal prediction intervals for generalized additive models (GAM). In particular

for the binomial, negative binomial, and Poisson models.

Chapter 1 gives information on the generalized linear model (GLM). It will

give binomial, Poisson, and negative binomial models regarding the GLM. Then it

will give information on generalized additive models (GAM), including the binomial,

Poisson, and negative binomial models.

Chapter 2 introduces plots used to visualize the data involved in generalized

additive models. It will also give several figures of such plots.

Chapter 3 deals with finding prediction intervals for the GAM, Yi = m(xi)+ei.

It will give information as well as the results from a simulation used to find the

prediction intervals.
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CHAPTER 1

GENERALIZED LINEAR MODELS AND GENERALIZED

ADDITIVE MODELS

1.1 INTRODUCTIONS TO GENERALIZED LINEAR MODELS

Following Olive [19, ch. 13], generalized linear models are a class of parametric

regression models that include logistic regression and loglinear Poisson regression.

Assume that there is a response variable Y and a k×1 vector of nontrivial predictors

xi. Before we define a generalized linear model, the definition of a one parameter

exponential family is needed. Let f(y) be a probability density function (pdf) if Y

is a continuous random variable and let f(y) be a probability mass function (pmf)

if Y is a discrete random variable. Assume that the support of the distribution of Y

is Y and that the parameter space of θ is Θ.

Definition. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a 1-parameter expo-

nential family if

f(y|θ) = k(θ)h(y)exp[w(θ)t(y)] (1.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued functions.

It is crucial that in the definition, k and w do not depend on y and that h

and t do not depend on θ. Note that the parameterization is not unique since, for

example w could be multiplied be a nonzero constant m if t is divided by m. Many

other parameterizations are possible. If h(y) = g(y)IY(y), then usually k(θ) and

g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY(y) (1.2)

where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend on θ.

Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.
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Definition. Assume that the data is (Yi,xi) for i = 1, . . . , n. An important type

of generalized linear model (GLM) for the data states that the Y1, . . . , Yn are

independent random variables from a 1-parameter exponential family with pdf or

pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[

c(θ(xi))

a(φ)
yi

]

(1.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known

function, and θ(xi) = η(α + βTxi). Let E(Yi) ≡ E(Yi|xi) = µ(xi). The GLM

also states that g(µ(xi)) = α + βTxi where the link function g is a differentiable

monotone function. Then the canonical link function uses the function c given

in (1.3), so g(µ(xi)) ≡ c(µ(xi)) = α +βTxi, and the quantity α + βTxi is called the

linear predictor and the sufficient predictor (SP).

Notice that a GLM is a parametric model determined by the 1-parameter ex-

ponential family, the link function, and the linear predictor. Since the link function

is monotone, the inverse link function g−1(·) exists and satisfies

µ(xi) = g−1(α + βT xi). (1.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,

and notice that the value of the parameter θ(xi) = η(α+βTxi) depends on the value

of xi. Since the model depends on x only through the linear predictor α + βT x,

a GLM is a 1D regression model: Y depends on xi only through βT xi. Thus the

linear predictor is also sufficient predictor.
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1.2 EXAMPLES OF GENERALIZED LINEAR MODELS

In many data sets the response variable is categorical and takes on two values:

0 or 1. The occurrence of the category that is counted is labeled as a 1 or a

“success,” while the non-occurrence of the category that is counted is labeled as a 0

or a “failure.” For example, a “success”=“occurrence” could be a person who died

as a result from having cancer in a study. For a binary response variable, a binary

regression model is often appropriate. This model is a special case of the binomial

regression model with mi ≡ 1.

Definition. The binomial regression model states that Y1, . . . , Yn are indepen-

dent random variables with

Yi ∼ binomial(mi, ρ(xi)).

If the sufficient predictor SP = α + βT xi, then the most used binomial regres-

sion models are such that Y1, . . . , Yn are independent random variables with

Yi ∼ binomial(mi, ρ(α + βT xi)),

or

Yi|SPi ∼ binomial(mi, ρ(SPi)) (1.5)

where the logistic regression model uses ρ(SP ) = eSP

1+eSP .

If the response variable Y is a count, then the Poisson regression model is often

useful. For example, counts often occur in wildlife studies where a region is divided

into subregions and Yi is the number of a specified type of animal found in the

subregion.

Definition. The Poisson regression model states that Y1, . . . , Yn are indepen-

dent random variables with

Yi ∼ Poisson(µ(xi)).
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The loglinear Poisson regression models is the special case where

µ(xi) = exp(α + βTxi). (1.6)

If the sufficient predictor SP = α + βT xi, and Y1, . . . , Yn are independent

random variables we have the Poisson model

Yi ∼ Poisson(exp(α + βT xi)),

or

Yi|SPi ∼ Poisson(exp(SPi)). (1.7)

Some notation is needed for the negative binomial regression model. If Y has

a (generalized) negative binomial distribution, Y ∼ NB(µ, κ), then the probability

mass function of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(

κ

µ + κ

)κ (

1 − κ

µ + κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) = µ + µ2/κ.

If τ = 1/κ, then as τ → 0 the negative binomial distribution converges to the

Poisson(µ) distribution.

Definition. The negative binomial regression (NBR) regression model

states that Y1, . . . , Yn are independent random variables where

Yi ∼ NB(µ(xi), κ).

with µ(xi) = exp(α + βTxi).

Now the sufficient predictor SP = α + βTxi, and Y1, . . . , Yn are independent

random variables and we have the NBR model

Yi ∼ NB(exp(α + βTxi), κ),

or

Yi|SPi ∼ NB(exp(SPi), κ). (1.8)
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1.3 GENERALIZED ADDITIVE MODELS AND EXAMPLES

Following Olive [21], regression is the study of the conditional distribution Y |x

of the scalar response Y given the predictors x. In a 1D regression model, Y is

conditionally independent of x given a single linear combination of the predictors,

called the sufficient predictor SP = α + βTx. See Cook and Weisberg [10, pp.

414-415].

In a generalized additive model (GAM), Y is conditionally independent of x

given the additive predictor AP = α+
∑p

j=1 Sj(xj) for some functions Sj. See Hastie

and Tibshirani [13], Wood [29] and Zuur, Ieno, Walker, Saveliev and Smith [30].

Note that a 1D regression model is a special case of a GAM where Sj(xj) = xjβj.

The following examples are important.

1) The multiple linear regression model

Y |SP = SP + e (1.9)

has GAM analog

Y |AP = AP + e. (1.10)

2) For the binomial logistic regression model, Y1, ..., Yn are independent with

Yi|SPi ∼ binomial(mi, ρ(SPi)). (1.11)

The GAM analog is

Y |APi ∼ binomial(mi, ρ(APi)). (1.12)

The binary model is a special case with mi ≡ 1.

3) For the Poisson regression model, Y1, ..., Yn are independent random vari-

ables with

Y |SP ∼ Poisson(exp(SP)). (1.13)

The GAM analog is

Y |AP ∼ Poisson(exp(AP)). (1.14)
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4) For the negative binomial regression model, Y1, ..., Yn are independent random

variables with

Y |SP ∼ NB(exp(SP), κ). (1.15)

The GAM analog is

Y |AP ∼ NB(exp(AP), κ). (1.16)

For a GLM, the estimated sufficient predictor ESP = α̂ + β̂
T
x while for a

GAM, the estimated additive predictor EAP = α̂ +
∑p

j=1 Ŝj(xj). It is well known

that the residual plot of ESP or EAP versus the residuals (on the vertical axis) is

useful for checking the model, but there are several other plots using the ESP that

can be generalized to a GAM by replacing the ESP by the EAP .

Chapter 2 considers the response plot, plots for response transformations and

additional plots such as the plot of the EAP versus the ESP .
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CHAPTER 2

PLOTS FOR GENERALIZED ADDITIVE MODELS

This chapter follows Olive [21] closely.

2.1 RESPONSE PLOTS

Response plots are used to visualize 1D regression models in the background

of the data. See Brillinger [3], Chambers, Cleveland, Kleiner and Tukey [6, p. 280],

Cook and Weisberg [9],[10, ch. 18], and Olive and Hawkins [24]. For 1D regression,

a response plot is the plot of the ESP versus the response Y with the estimated

model conditional mean function and a scatterplot smoother often added as visual

aids. Note that the response plot is used to visualize Y |SP while a residual plot of

the ESP versus the residual is used to visualize e|SP . For a GAM, these two plots

replace the ESP by the EAP . Assume that the ESP or EAP takes on many values.

Suppose the zero mean constant variance errors e1, ..., en are iid from a uni-

modal distribution that is not highly skewed. For models (1.9) and (1.10) the

estimated mean function is the identity line with unit slope and zero intercept. If

the sample size n is large, then the plotted points should scatter about the identity

line and the residual = 0 line in an evenly populated band for the response and

residual plots, with no other pattern. For model (1.9), the two plots often look good

if n > 5p. For the GAM, often much larger n is needed.

If Zi = Yi/mi, then the conditional distribution Zi|xi of the binomial regression

model can be visualized with a response plot of the ESP versus Zi with the estimated

mean function of the Zi

Ê(Z|SP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Cook and Weisberg [10] add a lowess curve to the plot.

8



Alternatively, divide the ESP into J slices with approximately the same number of

cases in each slice. Then compute ρ̂s =
∑

s Yi/
∑

s mi where the sum is over the

cases in slice s. Then plot the resulting step function. For binary data the step

function is simply the sample proportion in each slice.

The binomial GAM response plot is a plot of EAP versus Zi with

Ê(Z|AP ) =
exp(EAP )

1 + exp(EAP )

added as a visual aid. Lowess or the step function will also be added to the plot.

For both the GAM and the GLM, the lowess curve and step function are simple

nonparametric estimators of the mean function ρ(AP ) or ρ(SP ). If the lowess curve

or step function tracks the logistic curve (the estimated mean) closely, then the

logistic mean function is a reasonable approximation to the data. For the GLM,

this plot is a graphical approximation of the logistic regression goodness of fit tests

described in Hosmer and Lemeshow [14, pp. 147-151].

For Poisson regression, the response plot is a plot of ESP versus Y with

Ê(Y |SP ) = exp(ESP ) and lowess added as visual aids. The Poisson GAM re-

sponse plot is a plot of EAP versus Y with Ê(Y |AP ) = exp(EAP ) and lowess

added as visual aids. For both the GAM and the GLM, the lowess curve should

be close to the exponential curve, except possibly for the largest values of the ESP

or EAP in the upper right corner of the plot. Here, lowess often underestimates

the exponential curve because lowess downweights the largest Y values too much.

Similar plots can be made for a negative binomial regression or GAM.

2.2 PLOTS FOR RESPONSE TRANSFORMATIONS

The applicability of the multiple linear regression model (1.9) or GAM (1.10)

can be expanded by allowing response transformations. An important class of re-

sponse transformation models adds an additional unknown transformation parame-
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ter λo, such that

Yi = tλo
(Zi) ≡ Z

(λo)
i = E(Yi|xi) + ei (2.1)

where E(Yi|xi) = SPi or E(Yi|xi) = APi. If λo was known, then Yi = tλo
(Zi) would

follow model (1.9) or (1.10) with p predictors. The p×1 vector β or the p functions

Sj depend on λo, the p predictors xj are assumed to be measured with negligible

error, and the zero mean constant variance errors ei are assumed to be iid from a

unimodal distribution that is not highly skewed.

Next, two important response transformation models are given. Assume that

all of the values of the “response” Zi are positive. A power transformation has the

form Y = tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

The modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(2.2)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1. Generally

λ ∈ Λ where Λ is some interval such as [−1, 1] or a coarse subset such as ΛL. This

family is a special case of the response transformations considered by Tukey [26].

A graphical method for response transformations computes the “fitted values”

Ŵi using Wi = tλ(Zi) as the “response.” Then a transformation plot of Ŵi versus

Wi is made for each of the seven values of λ ∈ ΛL. If the plotted points follow the

identity line for λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z) is the response trans-

formation. After selecting the transformation, the usual checks should be made. In

particular, the transformation plot for the selected transformation is the response

plot, and a residual plot should also be made. This technique is simple and can be

used for regression methods with additive errors: Y = tλo
(Z) = m(x) + e where

m(x) = E(Y |x). Olive [23] suggested the method for linear models including ex-

perimental design models.
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Each transformation plot is a “response plot” for the seven values of Wλ =

tλ(Z), and the method chooses the “best response plot” where the model (1.9) or

(1.10) seems “most reasonable.” If more than one value of λ ∈ ΛL gives a linear

plot, take the simplest or most reasonable transformation or the transformation

that makes the most sense to subject matter experts. Also check that the corre-

sponding “residual plots” of Ŵλ versus Wλ − Ŵλ look reasonable. According to

Mosteller and Tukey [18, p. 91], the values of λ in decreasing order of importance

are 1, 0, 1/2,−1 and 1/3. So the log transformation would be chosen over the cube

root transformation if both transformation plots look equally good. Note that this

procedure can be modified to create a graphical diagnostic for a numerical estimator

λ̂ of λo by adding λ̂ to ΛL. For linear models, Box and Cox [2] is widely used.

There are several reasons to use a coarse grid of powers. First, several of the

powers correspond to simple transformations such as the log, square root, and cube

root. These powers are easier to interpret than λ = .28, for example. Secondly,

if the estimator λ̂n can only take values in ΛL, then sometimes λ̂n will converge

(e.g. in probability) to λ∗ ∈ ΛL. Thirdly, Tukey [26] showed that neighboring power

transformations are often very similar, so restricting the possible powers to a coarse

grid is reasonable. Note that powers can always be added to the grid ΛL. Useful

powers are ±1/4,±2/3,±2, and ±3. Powers from numerical methods can also be

added.

2.3 ADDITIONAL PLOTS

2.3.1 A Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted

without important loss of information. Olive and Hawkins [24] make an EE plot

of ESP(I) versus ESP where ESP(I) is for a submodel I and ESP is for the full

model. If model I is good, then the plotted points will follow the identity line with

11



correlation near one.

Next we show that this result will hold for the plot of EAP(I) versus EAP.

Assume that there exists a subset S of predictor variables such that if xS is in the

model, then none of the other predictors is needed in the model. Write E for these

(‘extraneous’) variables not in S, partitioning x = (xT
S , xT

E)T . Then

AP = α +

p
∑

j=1

Sj(xj) = α +
∑

j∈S

Sj(xj) +
∑

k∈E

Sk(xk) = α +
∑

j∈S

Sj(xj). (2.3)

The extraneous terms that can be eliminated given that the subset S is in the model

have Sk(xk) = 0 for k ∈ E.

Now suppose that I is a candidate subset of predictors and that S ⊆ I . Then

AP = α +

p
∑

j=1

Sj(xj) = α +
∑

j∈S

Sj(xj) = α +
∑

k∈I

Sk(xk) = AP (I),

(if I includes predictors from E, these will have Sk(xk) = 0). For any subset I that

includes all relevant predictors, the correlation corr(AP, AP(I)) = 1. Hence if the

full model and submodel are reasonable and EAP and EAP(I) are good estimators

of AP and AP(I), then the plotted points in the EE plot of EAP(I) versus EAP will

follow the identity line with high correlation.

2.3.2 Plots for Checking the GLM

A plot of the estimated additive predictor EAP = α̂ +
∑p

j=1 Ŝj(xj) versus the

estimated sufficient predictor ESP = α̂ + β̂
T
x should be useful for checking the

goodness of fit of the GLM since the GLM is a special case of the corresponding

generalized additive model. The plotted points should follow the identity line with

very high correlation if the GLM and GAM are roughly equivalent. If the correlation

is not very high and the GAM has a nonlinear Ŝj(xj), add x2
j and possibly x3

j to the

GLM and remake the EAP versus ESP plot.

As another example, take a candidate GLM and fit the corresponding GAM.

Since the GAM software can choose Sj(xj) to be general or linear Sj(xj) = xjβj,

12



choose all Sj to be linear except for Sk for k = 1, ..., p. Use the GAM software

to check the shape of Sk for linearity. These p plots could be used to check the

linearity of the xj in the GLM, and the plots may be a competitor of the CERES

plots described in Cook and Weisberg [10, ch. 16, p. 519].

2.3.3 A Plot for Checking Overdispersion

Conditional mean and variance functions are needed to study overdispersion.

For binomial regression, the conditional mean function E(Yi|SPi) = miρ(SPi) and

the conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)). For the bino-

mial GAM, the conditional mean function E(Yi|APi) = miρ(APi) and the condi-

tional variance function V (Yi|APi) = miρ(APi)(1−ρ(APi)). For Poisson regression,

V (Y |SP ) = E(Y |SP ) = exp(SP ). For the Poisson GAM, V (Y |AP ) = E(Y |AP ) =

exp(AP ). For negative binomial regression, E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(

1 +
exp(SP )

κ

)

.

For the negative binomial GAM, E(Y |AP ) = exp(AP ) and

V (Y |AP ) = exp(AP )

(

1 +
exp(AP )

κ

)

.

Overdispersion occurs when V (Y |x) is larger than the model conditional vari-

ance function. Overdispersion can occur even if the model conditional mean function

E(Y |SP ) or E(Y |AP ) is a good approximation to the data. For example, for many

data sets where E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) > miρ(SPi)(1 −

ρ(SPi)). Similarly, for many data sets where E(Y |x) = µ(x) = exp(SP ), it turns

out that V (Y |x) > exp(SP ). See Cameron and Trivedi [5, p. 64].

To check for overdispersion in parametric models, we suggest using the OD

plot of the estimated model variance V̂ (Y |SP ) versus the squared residuals V̂ =

[Y −Ê(Y |SP )]2. This plot has been used by Winkelmann [28, p. 110] for the Poisson
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regression model where V̂ (Y |SP ) = Ê(Y |SP ) = exp(ESP ). For binomial and

Poisson regression, the OD plot can be used to complement tests and diagnostics

for overdispersion such as those given in Cameron and Trivedi [5], Collett [8, ch. 6],

and Winkelmann [28]. For a GAM, use the OD plot of the estimated model variance

V̂ (Y |AP ) versus the squared residuals V̂ = [Y − Ê(Y |AP )]2.

For the Poisson GAM, V̂ (Y |AP ) = Ê(Y |AP ) = exp(EAP ). For binomial

regression, Ê(Yi|SPi) = miρ(ESPi) and V̂ (Yi|SPi) = miρ(ESPi)(1 − ρ(ESPi)).

For the binomial GAM, Ê(Yi|APi) = miρ(EAPi) and V̂ (Yi|APi) = miρ(EAPi)(1 −

ρ(EAPi)). For negative binomial regression, Ê(Y |SP ) = exp(ESP ) and

V̂ (Y |SP ) = exp(ESP )

(

1 +
exp(ESP )

κ̂

)

= exp(ESP ) + τ̂ exp(2 ESP ).

For the negative binomial GAM, Ê(Y |AP ) = exp(EAP ) and

V̂ (Y |AP ) = exp(EAP )

(

1 +
exp(EAP )

κ̂

)

= exp(EAP ) + τ̂ exp(2 EAP ).

For generalized linear models, numerical summaries are also available. The de-

viance G2 and Pearson goodness of fit statistic X2 are used to assess the goodness of

fit of the Poisson regression model much as R2 is used for multiple linear regression.

For Poisson regression (and binomial regression if the counts are neither too small

nor too large), both G2 and X2 are approximately chi-square with n− p− 1 degrees

of freedom. Since a χ2
d random variable has mean d and standard deviation

√
2d,

the 98th percentile of the χ2
d distribution is approximately d+3

√
d ≈ d+2.121

√
2d.

If G2 or X2 > (n − p − 1) + 3
√

n − p − 1, then overdispersion may be present.

For Poisson regression, Winkelmann [28, p. 110] suggested that the plotted

points in the OD plot should scatter about the identity line and that the OLS line

should be approximately equal to the identity line if the Poisson regression model

is appropriate. But in simulations, it was found that the following two observations

make the OD plot much easier to use.

14



First, recall that a normal approximation is good for the Poisson distribution

if the count Y is not too small. Notice that if Y = E(Y |SP ) + 2
√

V (Y |SP ), then

[Y − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and estimated

variance functions are good approximations, the plotted points in the OD plot for

Poisson regression will scatter about a wedge formed by the V̂ = 0 line and the

line through the origin with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the

plotted points should be above this line. Similar remarks apply to negative binomial

regression and also to binomial regression if the counts are neither too big nor too

small.

Second, the evidence of overdispersion increases from slight to high as the

scale of the vertical axis increases from 5 to 10 times that of the horizontal axis.

(The scale of the vertical axis tends to depend on the few cases with the largest

V̂ (Y |SP ), and P [(Y − Ê(Y |SP ))2 > 10V̂ (Y |SP )] can be approximated with a

normal approximation or Chebyshev’s inequality.) There is considerable evidence

of overdispersion if the scale of the vertical axis is more than 10 times that of the

horizontal, or if the percentage of points above the slope 4 line through the origin

is much larger than 5%.

Hence the identity line and slope 4 line are added to the OD plot as visual aids,

and one should check whether the scale of the vertical axis is more than 10 times

that of the horizontal. It is easier to use the OD plot to check the variance function

than the response plot since judging the variance function with the straight lines

of the OD plot is simpler than judging two curves. Also outliers are often easier

to spot with the OD plot. For the Poisson, negative binomial and binomial GAM

models, replace SP by AP.
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2.3.4 Plots for the Poisson GLM and GAM

For the Poisson models, judging the mean function from the response plot may

be rather difficult for large counts for two reasons. First, the mean function is

curved. Secondly, for real and simulated Poisson regression data, it was observed

that scatterplot smoothers such as lowess tend to underestimate the mean function

for large ESP or EAP.

The basic idea of the following two plots for Poisson regression is to transform

the data towards a linear model, then make the response plot and residual plot for

the transformed data based on weighted least squares (WLS).

The weighted forward response plot is a plot of
√

ZiESP versus
√

Zi log(Zi)

where Zi = Yi if Yi > 0, and Zi = 0.5 if Yi = 0. The weighted residual plot is a

plot of
√

ZiESP versus the “WLS” residuals rWi =
√

Zi log(Zi) −
√

ZiESP . The

WLS residuals are often highly correlated with the deviance residuals. When the

counts Yi are small, the WLS residuals can not be expected to be approximately

normal. Often the larger counts are fit better than the smaller counts and hence

the residual plots have a “left opening megaphone” shape. This fact makes residual

plots for Poisson regression rather hard to use, but cases with large WLS residuals

may not be fit very well by the model. Both the weighted forward response and

residual plots perform better for simulated Poisson regression data with many large

counts than for data where all of the counts are less than 10.

To motivate the above two plots, recall that the minimum chi–square estimator

(α̂M , β̂M) for Poisson regression is found from the WLS regression of log(Zi) on xi

with weights wi = Zi. Equivalently, use the OLS regression (without intercept) of
√

Zi log(Zi) on
√

Zi(1, x
T
i )T . Then the plot of the “fitted values”

√
Zi(α̂M + β̂

T

Mxi)

versus the “response”
√

Zi log(Zi) should have points that scatter about the identity

line. The minimum chi–square estimator tends to be consistent if n is fixed and all

n counts Yi increase to ∞ while the Poisson regression MLE tends to be consistent
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if the sample size n → ∞. See Agresti [1, pp. 611-612]. Since the two estimators are

often close for many data sets, the plotted points in the weighted forward response

plot should scatter about the identity line if Ê(Y |SP ) = exp(ESP ) is a good

approximation to the mean function E(Y |SP ).

The Poisson GAM analogs for the two plots will plot
√

Zi EAP versus
√

Zi log(Zi) and
√

Zi EAP versus
√

Zi log(Zi) −
√

Zi EAP. Similar plots can be

used for the negative binomial GLM and GAM.

2.4 EXAMPLES

Example 1. The ICU data is available from STATLIB (http://lib.stat.cmu.

edu/DASL/Datafiles/ICU.html). Also see Hosmer and Lemeshow [14, pp. 23-25].

The survival of 200 patients following admission to an intensive care unit was studied

with logistic regression. The response variable was STA (0 = Lived, 1 = Died).

Predictors were AGE, SEX (0 = Male, 1 = Female), RACE (1 = White, 2 = Black,

3 = Other), SER= Service at ICU admission (0 = Medical, 1 = Surgical), CAN= Is

cancer part of the present problem? (0 = No, 1 = Yes), CRN= History of chronic

renal failure (0 = No, 1 = Yes), INF= Infection probable at ICU admission (0 = No,

1 = Yes), CPR= CPR prior to ICU admission (0 = No, 1 = Yes), SYS= Systolic

blood pressure at ICU admission (in mm Hg), HRA= Heart rate at ICU admission

(beats/min), PRE= Previous admission to an ICU within 6 months (0 = No, 1 =

Yes), TYP= Type of admission (0 = Elective, 1 = Emergency), FRA= Long bone,

multiple, neck, single area, or hip fracture (0 = No, 1 = Yes), PO2= PO2 from

initial blood gases (0 = >60, 1 = 60), PH= PH from initial blood gases (0 = 7.25, 1

<7.25), PCO= PCO2 from initial blood gases (0 = 45, 1 = >45), Bic= Bicarbonate

from initial blood gases (0 = 18, 1 = <18), CRE= Creatinine from initial blood

gases (0 = 2.0, 1 = >2.0), and LOC= Level of consciousness at admission (0 =

no coma or stupor, 1= deep stupor, 2 = coma). Factors LOC and RACE had two
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Figure 2.1. Visualizing the ICU GAM

indicator variables.

A binary generalized additive model was fit with unspecified functions for AGE,

SYS and HRA and linear functions for the remaining variables. Output suggested

that functions for SYS and HRA are linear but the function for AGE may be slightly

curved. The response plot in Figure 2.1 shows that the step function of slice pro-

portions tracks the model logistic curve fairly well. To visualize the model with

the response plot, use Y |x ≈ binomial[1, ρ(EAP ) = eEAP/(1 + eEAP )]. When x is

such that EAP < −5, ρ(EAP ) ≈ 0. If EAP > 5, ρ(EAP ) ≈ 1, and if EAP = 0,

then ρ(EAP ) = 0.5. The logistic curve gives ρ(EAP ) ≈ P (Y = 1|x) = ρ(AP ). The

different estimated binomial distributions have ρ̂(AP ) = ρ(EAP ) that increases ac-

cording to the logistic curve as EAP increases. If the step function tracks the logistic

curve closely, the binary GAM gives useful smoothed estimates of ρ(AP ) provided

that the number of 0’s and 1’s are both much larger than the model degrees of

freedom so that the GAM is not overfitting.

A binary logistic regression was also fit, and Figure 2.2 shows the plot of EAP

versus ESP. The plot shows that the near zero and near one probabilities are handled

differently by the GAM and GLM, but the estimated success probabilities for the

two models are similar: ρ̂(ESP ) ≈ ρ̂(EAP ).

Hence we used the GLM, and the response plot in Figure 2.3 shows that the
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Figure 2.5. EE Plot Suggests Race is an Important Predictor

logistic regression model using the 19 predictors is useful for predicting survival.

Note that the step function of slice proportions tracks the model logistic curve fairly

well. Variable selection suggested the submodel using AGE, CAN, SYS, TYP and

LOC. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 2.4. Olive and

Hawkins [24] show that the plotted points in the EE plot should cluster tightly

about the identity line if the full model and the submodel are good. This clustering

did not occur in Figure 2.4. The lowest cluster of points and the case on the right

nearest to the identity line correspond to black patients. The main cluster and upper

right cluster correspond to patients who are not black. Figure 2.5 shows the EE

plot when RACE is added to the submodel. Then all of the points cluster about the

identity line. Although variable selection did not suggest that RACE is important,

the two EE plots suggest that RACE is important. Also the RACE variable could

be replaced by an indicator for black. This example shows the plots can be used to

quickly improve and check the models obtained from variable selection.

Example 2. Chambers and Hastie [7, pp. 251, 516] examine an environmental

study that measured the four variables Z = ozone concentration, solar radiation,

temperature, and wind speed for 111 consecutive days. Generalized additive models

are fit using Z and Z1/3 as the response. Figure 2.6 shows the four best transforma-
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tion plots. The residual plots in Figure 2.7 suggest that no transformation, Y = Z

may be best since the other transformations fit the case in the lower left corner

poorly.

Figure 2.6. Transformation Plots for Ozone Data

Figure 2.7. Residual Plots for Ozone Data
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Example 3. For binary data, Kay and Little [16] suggest examining the

two distributions x|Y = 0 and x|Y = 1. Use predictor x if the two distributions

are roughly symmetric with similar spread. Use x and x2 if the distributions are

roughly symmetric with different spread. Use x and log(x) if one or both of the

distributions are skewed. The log rule says add log(x) to the model if min(x) > 0

and max(x)/min(x) > 10. The Gladstone [11] data is useful for illustrating these

suggestions. The response was gender and a GLM with predictors age, log(age),

height and the head measurements circumference, length, size and log(size) was

used. The log rule suggested adding log(age), and log(size) was added because size

is skewed. The GAM with these terms had plots of Ŝj(xj) that were fairly linear.

When the GAM was fit without log(age) or log(size), the Ŝj for age, height and

circumference were nonlinear.

Example 4. Wood [29, p. 82-86] describes heart attack data where the re-

sponse Y is the number of heart attacks for ni patients suspected of suffering a heart

attack. The enzyme ck (creatine kinase) was measured for the patients and it was

determined whether the patient had a heart attack or not. A binomial GLM with

predictors x1 = ck, x2 = [ck]2 and x3 = [ck]3 was fit and had AIC = 33.66. Figure

2.8 shows that the EE plot for this model was not too good. The log rule suggests

using ck and log(ck), but ck was not significant. Hence a GLM with the single

predictor log(ck) was fit. Figure 2.9 shows the EE plot and Figure 2.10 shows the

response plot where the Zi = Yi/mi track the logistic curve closely. There was no

evidence of overdispersion and the model had AIC = 33.45.

Example 5. The species data is from Cook and Weisberg [10, pp. 285-286]

and Johnson and Raven [15]. The response variable is the total number of species

recorded on each of 29 islands in the Galápagos Archipelago. Predictors include area

of island, areanear = the area of the closest island, the distance to the closest island,

the elevation, and endem = the number of endemic species (those that were not
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introduced from elsewhere). A scatterplot matrix of the predictors suggested that

log transformations should be taken. Poisson regression suggested that log(endem)

and log(areanear) were the important predictors, but the deviance and Pearson X2

statistics suggested overdispersion was present since both statistics were near 71.4

with 26 degrees of freedom. The residual plot also suggested increasing variance

with increasing fitted value. A negative binomial regression suggested that only

log(endem) was needed in the model, and had a deviance of 26.12 on 27 degrees

of freedom. The residual plot for this model was roughly ellipsoidal. The negative

binomial GAM with log(endem) had an Ŝ that was linear and the plotted points in

the EE plot had correlation near 1.

The response plot with the exponential and lowess curves added as visual aids

is shown in Figure 2.11. The interpretation is that Y |x ≈ negative binomial with

E(Y |x) ≈ exp(EAP ). Hence if EAP = 0, E(Y |x) ≈ 1. The negative binomial and

Poisson GAM and GLM have the same conditional mean function. If the plot was

for a Poisson GAM, the interpretation would be that Y |x ≈ Poisson(exp(EAP )).

Hence if EAP = 0, Y |x ≈ Poisson(1).

Figure 2.12 shows the OD plot for the negative binomial GAM with the iden-

tity line and slope 4 line through the origin added as visual aids. The plotted points

fall within the “slope 4 wedge,” suggesting that the negative binomial regression

model has successfully dealt with overdispersion. Here Ê(Y |AP ) = exp(EAP ) and

V̂ (Y |AP ) = exp(EAP ) + τ̂ exp(2EAP ) where τ̂ = 1/37.
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CHAPTER 3

PREDICTION INTERVALS FOR GENERALIZED ADDITIVE

MODELS

This chapter follows Olive [20] closely.

An important regression model is

Yi = m(xi) + ei (3.1)

for i = 1, ..., n where m is a function of xi and the errors ei are continuous and

iid. Many of the most important regression models have this form, including the

multiple linear regression model and many time series, nonlinear, nonparametric

and semiparametric models. If m̂ is an estimator of m, then the ith residual is

ri = Yi − m̂(xi) = Yi − Ŷi.

Olive [22] showed how to form asymptotically optimal prediction intervals for

such models when the errors are iid from a continuous unimodal distribution. A

problem with these intervals is that for many regression models and estimators,

large n is needed for the intervals to perform well. Prediction intervals derived

for multiple linear regression using least squares (OLS) did perform well. Olive

[20] derives asymptotically optimal prediction intervals that perform well for many

models for moderate n.

A large sample 100(1 − α)% prediction interval (PI) has the form (L̂n, Ûn)

where P (L̂n < Yf < Ûn)
P→ 1 − α as the sample size n → ∞. Following Olive [22],

let ξα be the α percentile of the error e, i.e., P (e ≤ ξα) = α. Let ξ̂α be the sample

α percentile of the residuals. Consider predicting a future observation Yf given a

vector of predictors xf where (Yf , xf ) comes from the same population as the past

data (Yi, xi) for i = 1, ..., n. Let 1−α2 −α1 = 1−α with 0 < α < 1 and α1 < 1−α2

where 0 < αi < 1. Then P [Yf ∈ (m(xf) + ξα1
, m(xf ) + ξ1−α2

)] = 1 − α.
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Assume that m̂ is consistent: m̂(x)
P→ m(x) as n → ∞. Then ri = Yi−m̂(xi)

P→

Yi − m(xi) = ei and ξ̂α
P→ ξα. If an

P→ 1 and bn
P→ 1, then

(L̂n, Ûn) = (m̂(xf ) + anξ̂α1
, m̂(xf) + bnξ̂1−α2

) (3.2)

is a large sample 100(1 − α)% PI for Yf .

As an example, consider the multiple linear regression model Y = Xβ + e

where Y is an n×1 vector of dependent variables, X is an n×p matrix of predictors,

β is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of unknown iid

zero mean errors ei with variance σ2. Let the “leverage” hf = xT
f (XT X)−1xf and

use the least squares (OLS) estimator β̂OLS to find Ŷf = xT
f β̂OLS. Let ξ̂α be the

sample quantile of the residuals. Following Olive (2007), let

an = bn =

(

1 +
15

n

)
√

n

n − p

√

(1 + hf ). (3.3)

Then a large sample semiparametric 100(1 − α)% PI for Yf is

(Ŷf + anξ̂α/2, Ŷf + anξ̂1−α/2). (3.4)

A PI is asymptotically optimal if it has the shortest asymptotic length that

gives the desired asymptotic coverage. The PI (3.4) is asymptotically optimal on a

large class of unimodal continuous symmetric error distributions. For more general

distributions, an asymptotically optimal PI can be created by applying the shorth(c)

estimator to the residuals where c = dn(1−α)e and dxe is the smallest integer ≥ x,

e.g., d7.7e = 8. See Grübel [12]. That is, let r(1), ..., r(n) be the order statistics of the

residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let (r(d), r(d+c−1)) =

(ξ̂α1
, ξ̂1−α2

) correspond to the interval with the smallest distance. Following Olive

[22], a 100 (1 − α)% PI for Yf is

(Ŷf + anξ̂α1
, Ŷf + anξ̂1−α2

) (3.5)

where an is given by (3.3). This prediction interval performs well for moderate n

for multiple linear regression and least squares.
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A problem with prediction intervals is choosing an and bn so that the intervals

have short length and coverage close to or higher than the nominal coverage for a

wide variety of regression models when n is moderate. Section 3.1 shows how to

modify (3.4) and (3.5) to achieve these goals.

3.1 ASYMPTOTICALLY OPTIMAL PREDICTION INTERVALS

The technique used to produce asymptotically optimal PIs that perform well

for moderate samples is simple. Find Ŷf and the residuals from the regression model.

For a wide range of regression models, extrapolation occurs if hf > 2p/n: if xf is

too far from the data x1, ..., xn, then the model may not hold and prediction can

be arbitrarily bad. This result suggests replacing (3.3) by

an = bn =

(

1 +
15

n

)
√

n + 2p

n − p
. (3.6)

Let qn = min(1 − α + 0.05, 1 − α + p/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αp/n), otherwise. (3.7)

Let qn = 1 − αn. Then

(L̂n, Ûn) = (m̂(xf ) + bnξ̂αn/2, m̂(xf ) + bnξ̂1−αn/2) (3.8)

is a large sample 100(1 − α)% PI for Yf that is similar to (3.2) and (3.4).

Let c = dnqne. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1). Let

(r(d), r(d+c−1)) = (ξ̂α1
, ξ̂1−α2

) correspond to the interval with the smallest distance.

Then the asymptotically optimal 100 (1 − α)% large sample PI for Yf is

(m̂(xf ) + bnξ̂α1
, m̂(xf ) + bnξ̂1−α2

), (3.9)

and is similar to (3.5).

For asymptotic optimality, can not have extrapolation. If m̂ is consistent so

that ri − ei
P→ 0, then the coverage will converge to the nominal coverage, but the
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length need not be asymptotically shortest unless the highest 1 − α density region

of the probability density function of the iid errors is an interval. Thus asymptotic

optimality happens for unimodal distributions, but need not occur for multimodal

distributions for fixed α. Also see Cai, Tian, Solomon and Wei [4].

Notice that the technique computes an asymptotically optimal PI for coverage

qn > 1 − α which converges to the nominal coverage 1 − α as n → ∞. Suppose

n ≤ 20p. Then the nominal 95% PI uses qn = 0.975 while the nominal 50% PI uses

qn = 0.55. Prediction distributions depend both on the error distribution and on the

variablity of the estimator m̂. This variability is typically unknown but converges

to 0 as n → ∞. Letting the “coverage” qn decrease to the nominal coverage 1 − α

inflates the length of the PI for small n, compensating for the unknown variability

of m̂.

The geometry of the “asymptotically optimal prediction region” is simple. The

region is the area between two parallel lines with unit slope. Consider a plot of m(xi)

versus Yi on the vertical axis. The identity line with zero intercept and unit slope is

E(Yi) = m(xi). Let (Li, Ui) be the asymptotically optimal 95% prediction interval

containing m(xi). For example, if the errors are iid N(0, σ2), then Yi|m(xi) ∼

N(m(xi), σ
2), and (Li, Ui) = (m(xi) − 1.96σ, m(xi) + 1.96σ). Then the upper line

has unit slope and passes through (m(xi), Ui) while the lower line has unit slope

and passes through (m(xi), Li).

A response plot of Ŷi = m̂(xi) versus Yi has identity line Ê(Yi) = m̂(xi). The

region corresponding to pointwise prediction intervals is between two lines with unit

slope passing through the points (m̂(xi), Ûi) and (m̂(xi), L̂i), respectively, where

(L̂i, Ûi) is the asymptotically optimal prediction interval (3.9) for Yf if xf = xi.

Olive [22] suggested a similar plot for PIs (3.4) and (3.5), but the region was not

between two parallel lines since the length of PIs (3.4) and (3.5) depends on hf .

For the multiple linear regression model, expect the points in the response plot
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Figure 3.1. Pointwise Prediction Interval Bands for Ozone Data

to scatter in an evenly populated band for n > 5p. Other regression models, such

as generalized additive models, may need a much larger sample size n.

Example 6. Chambers and Hastie [7, pp. 251, 516] examine an environmental

study that measured the four variables Y = ozone concentration, solar radiation,

temperature, and wind speed for n = 111 consecutive days. Figure 3.1 shows the

response plot with the pointwise large sample 95% PI bands for the generalized

additive model. Here m̂(x) = estimated additive predictor (EAP). Note that the

plotted points scatter about the identity line in a roughly evenly populated band,

and that 3 of the 111 PIs (3.9) corresponding to the observed data do not contain

Y .

Three small simulation studies compares the PI lengths and coverages for sam-

ple sizes n = 50, 100 and 1000 for PIs (3.8) and (3.9). Values for PI (3.8) were
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denoted by scov and slen while values for PI (3.9) were denoted by ocov and olen.

The five error distributions in the simulation were 1) N(0,1), 2) t3, 3) exponential(1)

−1, 4) uniform(−1, 1) and 5) 0.9N(0, 1) + 0.1N(0, 100). The value n = ∞ gives the

asymptotic coverages and lengths and does not depend on the model. So these

values are same for multiple linear and nonlinear regression as well as generalized

additive models.

The multiple linear regression model with E(Yi) = 1+xi1 + · · ·+xi7 was used.

The vectors (x1, ..., x7)
T were iid N7(0, I7) where Ip is the p×p identity matrix. For

nonlinear regression Yi = m(xi)+ei, E(Yi) = m(xi) = β1xi1+β2x
2
i1+β3xi2+β4x

2
i2+

β5xi3 + β6x
2
i3. For the first generalized additive model, m(xi) = α +

∑3
j=1 Sj(xij).

Both the nonlinear regression and generalized additive model had the same mean

function m(xi) = xi1 + x2
i1. Thus β = (1, 1, 0, 0, 0, 0)T , α = 0, S1(xi1) = xi1 + x2

i1,

S2(xi2) = 0 and S3(xi3) = 0. For these two models, the vectors (x1, x2, x3)
T were iid

N3(0, I3). For the second generalized additive model, m(xi) = sin(xi1) + cos(xi2) +

log(|xi3|), α = 0, S1(xi1) = sin(xi1), S2(xi2) = cos(xi2), and S3(xi3) = log(|xi3|).

For the third generalized additive model, m(xi) =
√

|xi1| +
√

|xi2| +
√

|xi3|, α =

0, S1(xi1) =
√

|xi1|, S2(xi2) =
√

|xi2|, and S3(xi3) =
√

|xi3|.

The Olive [22] PIs (3.4) and (3.5) are tailored for multiple linear regression but

are liberal (too short) for moderate n for many other techniques. The new PIs (3.8)

and (3.9) are meant to have coverage near or higher than the nominal coverage for

moderate n and for a wide variety of techniques and are longer than PIs (3.4) and

(3.5). For multiple linear regression, the new PIs (3.8) and (3.9) were conservative

(too long with roughly 98% coverage for the 95% PI and 70% or 60% coverage for

the 50% PI) for n = 50 and 100 compared to (3.4) and (3.5) for least squares.

The PIs (3.8) and (3.9) for nonlinear regression and generalized additive models

appear to have coverage near the nominal values in the simulations. For n = 50 and

100, the PIs for nonlinear regression were usually roughly 10% longer than those for
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Table 3.1. PIs for First Generalized Additive Model

error 95% PI 95% PI 50% PI 50% PI

type n slen olen scov ocov slen olen scov ocov

1 50 5.123 4.997 0.959 0.958 1.852 1.668 0.586 0.521

1 100 4.702 4.524 0.963 0.956 1.656 1.523 0.548 0.498

1 1000 3.994 3.944 0.954 0.950 1.378 1.349 0.496 0.491

1 ∞ 3.920 3.920 0.95 0.950 1.349 1.349 0.50 0.50

2 50 9.351 8.567 0.955 0.946 2.373 2.147 0.572 0.528

2 100 8.273 7.625 0.963 0.953 2.041 1.877 0.565 0.518

2 1000 6.523 6.390 0.951 0.949 1.584 1.552 0.519 0.512

2 ∞ 6.365 6.365 0.950 0.950 1.530 1.530 0.50 0.50

3 50 5.157 4.800 0.956 0.947 1.562 1.273 0.605 0.525

3 100 4.647 4.148 0.965 0.955 1.381 1.062 0.593 0.544

3 1000 3.778 3.227 0.956 0.949 1.122 0.774 0.502 0.514

3 ∞ 3.664 2.996 0.950 0.950 1.099 0.693 0.50 0.50

4 50 2.626 2.589 0.959 0.954 1.228 1.078 0.590 0.491

4 100 2.318 2.271 0.972 0.964 1.156 1.027 0.555 0.492

4 1000 1.936 1.926 0.963 0.958 1.014 0.969 0.511 0.499

4 ∞ 1.900 1.900 0.950 0.950 1.00 1.00 0.50 0.50

5 50 19.766 17.835 0.949 0.938 2.962 2.678 0.597 0.533

5 100 18.724 16.169 0.951 0.940 2.342 2.157 0.576 0.530

5 1000 13.810 12.877 0.952 0.949 1.603 1.571 0.504 0.493

5 ∞ 13.490 13.490 0.950 0.950 1.507 1.507 0.50 0.50
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generalized additive models.

The PIs for the generalized additive models were computed using the R function

gam. See Hastie and Tibshirani [13] and Wood [29]. The PIs are asymptotically

optimal for the five error distributions except for PI (3.8) with error type 3.

The simulations used 5000 runs and gave the proportion p̂ of runs where Yf fell

within the nominal 100(1 − α)% PI. The count mp̂ has a binomial(m = 5000, p =

1 − δn) distribution where 1 − δn converges to the asymptotic coverage (1 − δ).

The standard error for the proportion is
√

p̂(1 − p̂)/5000 = 0.0031 and 0.0071 for

p = 0.05 and 0.5, respectively. Hence an observed coverage p̂ ∈ (.941, .959) for 95%

and p̂ ∈ (.479, .521) for 50% PIs suggests that there is no reason to doubt that the

PI has the nominal coverage.

Table 3.1, 3.2, and 3.3 show that for n = 1000, the coverages and lengths are

near the asymptotic n = ∞ values. For tables 3.1 and 3.3, the 95% PI (3.9) coverages

were in or near (.94,.96) while the 50% PI (3.9) was sometimes slightly conservative.

The coverage for the 50% PI (3.8) was near 60% for n = 50. For table 3.2, the (3.9)

coverage was sometimes a bit low for n = 50. PI (3.9) is recommended since its

asymptotic optimality does not depend on the symmetry of the error distribution.

Simulations were done in Splus and R. See MathSoft [17] and R Development

Core Team [25]. The programs in the collection of functions rpack.txt are available

at (www.math.siu.edu/olive/ol-bookp.htm). For multiple linear regression, pisim

simulates PIs (3.4) and (3.5) while the Splus function pisim4 simulates PIs (3.8)

and (3.9) using OLS, L1 and M-estimators. The function pisim3 was used to create

Tables 3.1, 3.2, and 3.3.
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Table 3.2. PIs for Second Generalized Additive Model

error 95% PI 95% PI 50% PI 50% PI

type n slen olen scov ocov slen olen scov ocov

1 50 5.546 5.318 0.940 0.931 1.853 1.671 0.526 0.466

1 100 5.060 4.822 0.950 0.942 1.701 1.562 0.531 0.480

1 1000 4.348 4.277 0.952 0.945 1.455 1.424 0.507 0.494

1 ∞ 3.920 3.920 0.95 0.950 1.349 1.349 0.50 0.50

2 50 9.502 8.771 0.946 0.940 2.514 2.270 0.565 0.505

2 100 8.469 7.843 0.952 0.942 2.149 1.980 0.540 0.503

2 1000 6.810 6.667 0.948 0.944 1.684 1.649 0.502 0.487

2 ∞ 6.365 6.365 0.950 0.950 1.530 1.530 0.50 0.50

3 50 5.923 5.597 0.942 0.929 1.551 1.367 0.528 0.473

3 100 5.377 5.002 0.948 0.940 1.388 1.203 0.535 0.506

3 1000 4.304 4.203 0.949 0.944 1.155 0.978 0.504 0.488

3 ∞ 3.664 2.996 0.950 0.950 1.099 0.693 0.50 0.50

4 50 3.504 3.320 0.926 0.914 1.180 1.058 0.509 0.445

4 100 3.168 2.867 0.952 0.942 1.142 1.040 0.529 0.470

4 1000 2.576 2.461 0.950 0.946 1.043 1.015 0.508 0.493

4 ∞ 1.900 1.900 0.950 0.950 1.00 1.00 0.50 0.50

5 50 19.765 17.906 0.949 0.939 3.244 2.930 0.579 0.527

5 100 18.776 16.338 0.954 0.942 2.606 2.396 0.568 0.530

5 1000 13.919 13.048 0.950 0.947 1.725 1.690 0.497 0.485

5 ∞ 13.490 13.490 0.950 0.950 1.507 1.507 0.50 0.50
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Table 3.3. PIs for Third Generalized Additive Model

error 95% PI 95% PI 50% PI 50% PI

type n slen olen scov ocov slen olen scov ocov

1 50 5.198 5.066 0.956 0.951 1.847 1.666 0.567 0.505

1 100 4.711 4.529 0.959 0.950 1.656 1.519 0.549 0.493

1 1000 3.998 3.947 0.950 0.946 1.380 1.352 0.505 0.487

1 ∞ 3.920 3.920 0.95 0.950 1.349 1.349 0.50 0.50

2 50 9.407 8.595 0.958 0.951 2.436 2.206 0.594 0.532

2 100 8.290 7.650 0.956 0.945 2.097 1.928 0.560 0.516

2 1000 6.523 6.387 0.950 0.947 1.601 1.569 0.509 0.498

2 ∞ 6.365 6.365 0.950 0.950 1.530 1.530 0.50 0.50

3 50 5.304 4.984 0.950 0.945 1.581 1.362 0.561 0.501

3 100 4.787 4.341 0.962 0.954 1.361 1.139 0.560 0.516

3 1000 3.849 3.409 0.950 0.948 1.112 0.830 0.505 0.487

3 ∞ 3.664 2.996 0.950 0.950 1.099 0.693 0.50 0.50

4 50 2.773 2.719 0.946 0.937 1.144 1.022 0.535 0.481

4 100 2.439 2.373 0.952 0.944 1.080 0.979 0.523 0.472

4 1000 1.998 1.985 0.950 0.948 1.002 0.963 0.499 0.478

4 ∞ 1.900 1.900 0.950 0.950 1.00 1.00 0.50 0.50

5 50 19.850 17.978 0.951 0.939 2.984 2.702 0.598 0.539

5 100 18.835 16.257 0.953 0.947 2.415 2.225 0.572 0.526

5 1000 13.748 12.840 0.954 0.949 1.646 1.613 0.512 0.499

5 ∞ 13.490 13.490 0.950 0.950 1.507 1.507 0.50 0.50
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