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Abstract
While global amphibian declines are associated with the spread of Batrachochytrium den-
drobatidis (Bd), undetected concurrent co-infection by other pathogens may be little recog-

nized threats to amphibians. Emerging viruses in the genus Ranavirus (Rv) also cause die-

offs of amphibians and other ectotherms, but the extent of their distribution globally, or how

co-infections with Bd impact amphibians are poorly understood. We provide the first report

of Bd and Rv co-infection in South America, and the first report of Rv infections in the

amphibian biodiversity hotspot of the Peruvian Andes, where Bd is associated with extinc-

tions. Using these data, we tested the hypothesis that Bd or Rv parasites facilitate co-infec-

tion, as assessed by parasite abundance or infection intensity within individual adult frogs.

Co-infection occurred in 30% of stream-dwelling frogs; 65% were infected by Bd and 40%

by Rv. Among terrestrial, direct-developing Pristimantis frogs 40% were infected by Bd,

35% by Rv, and 20% co-infected. In Telmatobius frogs harvested for the live-trade 49%

were co-infected, 92% were infected by Bd, and 53% by Rv. Median Bd and Rv loads were

similar in both wild (Bd = 101.2 Ze, Rv = 102.3 viral copies) and harvested frogs (Bd = 103.1

Ze, Rv = 102.7 viral copies). While neither parasite abundance nor infection intensity were

associated with co-infection patterns in adults, these data did not include the most suscepti-

ble larval and metamorphic life stages. These findings suggest Rv distribution is global and

that co-infection among these parasites may be common. These results raise conservation

concerns, but greater testing is necessary to determine if parasite interactions increase

amphibian vulnerability to secondary infections across differing life stages, and constitute a

previously undetected threat to declining populations. Greater surveillance of parasite inter-

actions may increase our capacity to contain and mitigate the impacts of these and other

wildlife diseases.
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Introduction
Emerging infectious diseases are threatening biodiversity [1]. In particular, the recent emer-
gence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to extirpations and
even extinctions of amphibians globally; especially in Central America [2, 3], the tropical
Andes [4, 5], the western US [6] and Australia [7]. In addition, emerging viral pathogens in the
genus Ranavirus (Rv) have caused massive die-offs of amphibians and other ectothermic verte-
brates in North America and Europe [8–10], with fewer reports in other regions [11–14]. More
recently, Bd and Rv have been reported to co-occur in varied habitats [15, 16], and to co-infect
individual hosts [13]. Beyond these reports, however, little is known about the prevalence of
ranaviruses in other regions of high amphibian biodiversity, the extent to which Bd and Rv co-
infect amphibians, modes of disease spread, or the threat that any such co-infections present
for amphibians.

The tropical Andes in South America are among the most species rich regions for amphibi-
ans on Earth. Chytridiomycosis has been associated with population declines of frogs through-
out the Andes [4, 17], and Bd has been affecting frogs in Peru since at least 1999 [5]. Bd is
widely distributed across elevation gradients and ecosystems in the Andes despite variation in
precipitation and thermal regimes that can influence the growth of Bd.

The live-trade of comestible amphibians in the Andes of Peru and Bolivia may be a critical
vector for the spread of Bd. In particular, we recently found that threatened frogs Telmatobius
marmoratus that are harvested for human consumption [18–20] were heavily infected by Bd
[21]. Because these wild-caught animals are kept in high-density conditions that increase Bd
transmission, and they are transported across regional markets, the live-trade is a probable
route for disease spillover and spread to wild amphibian populations. If Rv exhibits similar
prevalence patterns to Bd or if it is similarly associated with the live-trade in Peru is unknown.
However, disease spillover from confined market to wild amphibian populations is a probable
route for the invasion of ranaviruses in the United States [22].

Ranavirus outbreaks are thought to occur globally and can be highly virulent, resulting in
mass-mortality events that affect multiple species of ectothermic vertebrates [23–25]. In addi-
tion, ranaviruses are not host-specific, so a single strain can infect fish, reptiles and amphibians
[23, 26–29]. Therefore, Rv can threaten entire wetland, stream and riparian communities, as
was reported for a recent outbreak in Spain [10]. Rv disease outbreaks are likely influenced by
variation in susceptibility among species [30] and life stages [31, 32]. Environmental stressors
like altered habitats, pollution and climate change are also thought to contribute to Rv out-
breaks [9, 33]. In addition, another but little explored factor that may also contribute to the
emergence and spread of diseases such as Rv is prior or concurrent infection by other parasites
like Bd.

Interactions among one or more co-infecting parasites can be antagonistic or facilitative, by
which they may influence disease related morbidity and mortality in their hosts [34]. Antago-
nistic interactions may occur through resource competition or induction of cross-effective
immune responses within the host [35, 36]. Facilitative interactions in contrast, may increase
infection and disease in a host via immunosuppression and resource depletion, thereby
increasing infectious spread of one or both parasites [34–37]. Indeed, co-infection by multiple
parasites is likely common for most wild animals [38–40] and has been associated with
increased susceptibility to subsequent infections and increases in disease-related mortality
rates in mammals [35, 37, 41]. There are good reasons to suspect that both Rv and Bd could
also facilitate co-infections among one another, as well as other parasites in amphibians [13,
15]. Amphibian immunity to Rv and Bd include both innate and adaptive effectors. For exam-
ple, while T-cell and antibody mediated immunity are critical to fighting Rv infection [42, 43],
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Bd can suppress these immune factors because it inhibits lymphocyte production and induces
apoptosis in these adaptive immune cells [44]. Conversely, innate immunity that includes
phagocytic cells, lysozymes, and antimicrobial peptides are central to amphibian immunity
against chytridiomycosis. However, Rv evades the amphibian immune system by targeting and
infecting macrophages in addition to system wide disruption of amphibian tissues [45]. These
direct impacts on immune function suggest that both Bd and Rv could facilitate co-infection
via immunosuppression, as well as through general host tissue disruption and resource deple-
tion. To shed light on these little explored dynamics, we examined patterns of co-infection
between Bd and Rv in wild frogs and in frogs harvested for the live trade in Peru. Using these
data, we tested the hypothesis that Bd or Rv parasite abundance within individuals contributes
to the likelihood of co-infection among adult frogs. We also tested for the potential of co-infec-
tion to increase the infection intensity of both parasites, which could suggest facilitation.

Methods

Animal sampling
Our sampling design encompassed two distinct study systems: wild-harvested live frogs from
the San Pedro city market in Cusco [21], and wild frogs in montane forests of the eastern slopes
of the Andes at the Kosñipata Valley near Manu National Park [17]. The frogs used in this
study were previously obtained as part of broader efforts to document Bd susceptibility pat-
terns in wild and captive trade amphibians; this work thus maximizes the use of these speci-
mens. All wild and captive frog collections and sampling were conducted under the approval of
the Southern Illinois University Animal Care and Use Committee (IACUC) and the Peruvian
Ministry of Agriculture (permit #292-2014-MINAGRI-DGFFS/DGEFFS). All frogs obtained
from the city market were individuals of Telmatobius marmoratus (n = 87), a Vulnerable spe-
cies according to the IUCN Red List [46]. These T.marmoratus frogs were obtained alive from
22 June 2012 to 23 July 2013, and then euthanized by a 20% benzocaine overdose following
guidelines of the Herpetological Animal Care and Use Committee [47]. Although the exact ori-
gin of these frogs is unknown, it is likely to be within the region of Cusco, because the species is
common throughout this region and inhabits streams surrounding the city. The species natu-
rally occurs in creeks, streams, ponds and wetlands, predominantly in high-elevation grass-
lands and other open areas.

The second study region is located on the eastern slopes of the Cordillera de Paucartambo,
Cusco in the drainage basin of the Río Kosñipata, southern Peru [17]. The study sites are
located in the Kosñipata valley and range from the submontane forest in the Amazonian foot-
hill of the Andes at 945 m to the cloud forest at 2410 m [17]. We hand-captured 94 frogs from
12 June to 31 July 2013 during nocturnal surveys conducted along the Paucartambo-Shintuya
road (S1 Fig). The road lies at the southern border of Manu National Park and of its buffer
zone. Manu NP covers 17,163 km2 of Amazonian lowland, montane and high-elevation
Andean habitats between 300 m and 4020 m elevation, and is the protected area harboring the
largest number of amphibians on Earth [48]. All frogs were first swabbed for Bd following stan-
dard methods (see below) and then euthanized by a 20% benzocaine overdose following guide-
lines of the Herpetological Animal Care and Use Committee [47] for tissue collection needed
for Rv analysis (see below).

Bd qPCR
We collected skin swabs [49] by stroking a dry synthetic cotton swab across the skin of each
frog; a standard technique used in previous surveys [17]. The swabbing protocol included 5
strokes on each side of the abdominal midline, 5 strokes on the inner thighs of each hind leg,
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and 5 strokes on the foot webbing of each hind leg for a total of 30 strokes/frog. We extracted
DNA from swabs by using Prepman Ultra1 (Life Technologies), and analyzed extracts with a
real-time PCR (qPCR) assay on a StepOnePlus™ Real-Time PCR System (Life Technologies) to
quantify the amount of genomic material [50].The assay uses genetic markers specific for Bd
(primers of ITS gene); and compares each sample to a set of standards (four serial dilutions at
concentrations from100 to 0.1 zoospore genomic equivalents, each in triplicate) to calculate a
genomic equivalent. Each plate also includes four negative controls. To calculate Bd infection
intensity, we multiplied the qPCR score by 80 to account for subsampling and dilution that
occurred during the DNA extraction, resulting in a zoospore equivalent (Ze) estimate for each
frog (Briggs et al., 2010; Vredenburg et al., 2010).

Ranavirus qPCR
qPCR was used to detect and quantify the presence of ranavirus DNA in the livers of frogs [32,
51]. DNA was extracted and purified from the livers, stored in ethanol, by DNeasy1 Blood
and Tissue mini-spin extraction kits (Qiagen Inc.), following the manufacturers protocol. To
standardize DNA used in qPCR analysis, total purified DNA was quantified with a Take3™
Microvolume Plate on an Epoch Spectrophotometer (BioTek Instruments INC) and diluted to
20 ng DNA � μL-1. Samples were assayed on a StepOnePlus in duplicate using TaqMan primers
and probes that amplify a 70-bp region within the ranavirusmajor capsid protein (MCP)
sequence. Reactions included 20 ng DNA � μL-1 in 20 μL reactions with TaqMan Universal
PCR Master mix (Life Technologies), 300 nmol forward rtMCP primer (5-ACACCACCGCC
CAAAA GTAC-3), 900 nmol reverse rtMCP primer (5-CCGTTCATGATGCGGATAATG-3),
and 250 nmol of rtMCP- probe (5-FAM-CCTCATCGTTCTGGCCATCAACCAC-TAMR
A-3). gBlocks1 gene fragments (Integrated DNA Technologies, Inc.) specific to the ranavirus
major capsid protein (MCP) sequence [52] were included in each 96-well qPCR plate as stan-
dards in log10 increments (100 to 106 copies) for quantification of viral concentrations in our
samples.

Statistical analyses
To assess Bd prevalence, swabs were categorized as Bd-positive when Ze>0 and as Bd-negative
when Ze = 0. For Rv prevalence, samples were considered Rv-positive with qPCR cycles of
C(t)< 34; a standard known to exclude false-positives. Sample sizes varied across analyses
because some frogs were successfully assayed for only one of either parasite (sample sizes
reported for each analysis). We calculated infection prevalence for Bd and Rv by dividing the
number of infected frogs by the total number of assayed frogs. We used the R package binom
to compute binomial 95% credible intervals intervals using Bayesian inference using Jeffrey’s
non-informative priors. To test if parasite abundance within individuals (zeros included; [53])
is associated with the probability of co-infection, we used logistic regression with parasite
abundance as a predictor and either Bd or Rv infection status (i.e. infected or not) as a response
variable. We then tested for facilitation among these parasites by correlation analysis of Bd and
Rv infection intensity (zeros excluded; [53]). Note that we parsed the samples into three dis-
tinct populations for these analyses. First, we analyzed the captive T.marmoratus separately
from wild frogs because this population, held in high densities, was unique in their high para-
site exposure and co-infection status (χ2 = 20.5, P< 0.001). Second, we compared all wild frogs
using logistic regression with frog taxa and parasite abundance as predictors of the probability
of co-infection. Last, we tested for elevation effects on parasite prevalence, intensity, and abun-
dance by focusing only on the genus Pristimantis; the most widely distributed taxa for which
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we had sufficient sample size. Here we used logistic regression with elevation class and parasite
abundance as predictors of the probability of co-infection.

Results
Telmatobius marmoratus sampled from the live trade in Cusco were heavily infected by Bd
(Table 1; prevalence = 91.9%, Credible Interval = 85.5–96.8%, n = 87), Rv (prevalence = 53.0%,
CI = 42.4–63.5%, n = 83), and co-infected (Fig 1; prevalence = 48.8%, CI = 38.1–59.5%,
n = 82). Bd infection intensity ranged from 101 to 106 zoospore equivalents (median = 103.1 Ze,
n = 80). 58% of individuals had Bd infection intensity values above 1,000 zoospore equivalents
and 24% were above the 10,000 zoospore threshold that is often associated with a high likelihood
of mortality [6, 54] (Fig 2A). Rv infection intensity ranged from 101 to 106 virion gene copy
equivalents (median = 102.7), and 43% of individuals had Rv viral loads above 103 viral copies
(Fig 2A). There was no association between Bd and Rv infection intensity (excluding zeros for
uninfected) among co-infected Telmatobius frogs (r = 0.22, P = 0.17, n = 39). The abundance of
either parasite within individuals (including zeros for uninfected) was not associated with the
probability of infection by the other (Bd:χ2 = 0.39, P = 0.53; Rv:χ2 = 2.0, P = 0.16).

Among the wild frogs sampled along the eastern slopes of the Andes, there was no differ-
ence in infection prevalence between stream/riparian dwellingHypsiboas and terrestrial,
direct-developing Pristimantis frogs (Fig 1; Bd odds ratio = 0.46, 95% CI = 0.17–1.21, P = 0.14;
Rv odds ratio = 1.45, 95% CI = 0.5–4.2, P = 0.61). Ranavirus infected three of the four Rhinella
manu sampled, while two of these frogs were infected by Bd (Fig 1). In R.manu, median Bd
infection intensity was low 0.5–0.7 Ze, while median Rv infection intensity was 104 viral copies
(range = 101.6 to 105). Among the stream-breeding Hypsiboas gladiator (n = 21), 65% were
infected by Bd, 40% by Rv, and 30% were co-infected; the difference in Bd and Rv prevalence
was not significant (Table 1; odds ratio = 2.1, 95% CI = 0.3–15.35, P = 0.64). Bd infection inten-
sity forH. gladiator ranged broadly from 0.5 to 105 zoospore equivalents (Fig 2B; median = 101.7

Ze, n = 13). Rv infection intensity ranged from 101 to 103.3 virion gene copy equivalents (Fig
2B; median = 102.1, n = 13). There was no association between Bd infection intensity and Rv
loads among co-infected wild frogs (r = -0.35, P = 0.22, n = 14). The abundance of Bd within
individuals was not associated with the probability of Rv infection (χ2 = 0.01, P = 0.91) or frog
taxa (χ2 = 2.0, P = 0.36). Rv abundance within individuals was marginally associated with the
probability of infection by Bd (χ2 = 3.8, P = 0.05; log odds estimate for uninfected/
infected = 0.25 ± 0.14, P = 0.07) but not frog taxa (χ2 = 2.7, P = 0.25).

Bd and Rv infection prevalence among seven species of direct-developing Pristimantis also
varied across an elevation gradient ranging from sub-montane forests at 900 meters to cloud
forests at 2400 meters (Fig 3). Bd prevalence varied across this gradient (χ2 = 13.9, P = 0.003),
driven by a sharp decline in the number of infections above 2100 meters. Rv infections were
common across all elevations (χ2 = 5.4, P = 0.15), but lowest below 1200 meters. Co-infection
was only present in animals in the cloud forest from 1200 to 2100 meters. Among these seven
Pristimantis species 39.4% were infected by Bd (Table 1; CI = 28.5–51.4%, n = 68), 38.2% were
infected by Rv (CI = 28.1–51.2%, n = 66), but only 9% were co-infected (CI = 4–18%, n = 6; Fig
1); Bd and Rv prevalence was significantly different among Pristimantis spp. (odds ratio = 0.26,
95% CI = 0.08–0.83, P = 0.02). Bd infection intensity for Pristimantis ranged from 0.1 to 104

zoospore equivalents (Fig 2B; median = 1 Ze, n = 68). Rv infection intensity ranged from 101 to
107.2 viral gene copy equivalents (Fig 2B; median = 102.6, n = 68). There was no association of
Bd and Rv infection intensity among the few co-infected frogs. Rv abundance within individu-
als was marginally associated with the probability of infection by Bd (χ2 = 4.8, P = 0.03; log
odds estimate for uninfected/infected = 0.45 ± 0.23, P = 0.05), as well as elevation (χ2 = 11.3,
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P = 0.01). These patterns were driven by the decline in Bd, but not Rv infections above 2100
meters (Fig 3; log odds estimate for uninfected/Bd infected = 2.1 ± 0.82, P = 0.01). The abun-
dance of Bd within individuals was not associated with the probability of Rv infection (χ2 =
0.86, P = 0.35) or elevation (χ2 = 6.6, P = 0.09).

Discussion
This is the first report of co-infection by Bd and Rv in South America, and the first report of
ranavirus infections among amphibians in Peru. These findings raise several crucial conservation
concerns for amphibians in the Andes, which is among the most species rich regions for amphib-
ians on Earth [55]. While many factors are threatening amphibians both in Peru and globally,
emerging diseases such as Bd induced chytridiomycosis are a primary factor contributing to
extirpations and even extinctions among amphibians. However, the extent to which interactions
among multiple emerging diseases may be contributing to population declines is unknown.

Several studies have reported co-ocurrence of Bd and Rv in a number of aquatic communi-
ties in North America [15, 16], and more recently Whitfield and Kerby [13] found co-infection

Fig 1. Prevalence of infection by the emerging pathogens Batrachochtrytium dendrobatidis (Bd) and Ranavirus (Rv) in frogs sampled during 2012
(live trade only) and 2013 (wild and live trade frogs) in Peru.While Telmatobius were sampled from live trade sources, the other species were wild
caught. Error bars are 95% Bayesian credible intervals using Jeffreys prior.

doi:10.1371/journal.pone.0145864.g001
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Fig 2. Infection loads in captive Telmatobius for both Bd and Rv (a); and in wild stream breedingHypsiboas gladiator and in 7 species of terrestrial,
direct-developing Pristimantis frogs (b).

doi:10.1371/journal.pone.0145864.g002
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in several species of frogs in Costa Rica. While Bd induced chytridiomycosis is undoubtedly a
primary driver of recent extirpations and extinctions of amphibians, especially in Central
America, the growing reports of Bd and Rv co-infection raise questions regarding the distribu-
tion and prevalence of Rv and these co-infections (in addition to other parasites like Ribeiroia
macroparasites), and to what extent concurrent parasite infections contribute to epizootics
[15]. We hypothesized that infection by either parasite could facilitate subsequent infection by
the other via processes such as immunosuppression, host resource depletion, and/or tissue dis-
ruption. However, our analysis of correlations among Bd and Rv infection intensity, as well as
the effects of parasite abundance on the likelihood of co-infection did not suggest such facilita-
tion between Bd and Rv in adult frogs. Indeed, the abundance of Rv in wild frogs was associated
with a marginally reduced probability of Bd infection, but this was driven by contrasting eco-
logical patterns of Bd and Rv prevalence in Pristimantis frogs at their elevation extremes (Fig
3). We do not believe, however, that our results are a definitive test of the facilitation hypothesis
because both parasites primarily infect larval amphibians and induce the greatest disease and
mortality in metamorphic and juvenile frogs; our data is all for adult frogs [32]. Given this, we
expect any facilitation to occur in larvae during initial exposure to these parasites and primary
infections. Experimental infection trials in a factorial design that accounts for developmental
stages are required to truly test for facilitation of co-infection.

Fig 3. The number of Bd and Rv infections in wild frogs in the genus Pristimantis (7 species) varied across an elevation range on the eastern
slopes of the Andes (N = total sample size for each elevation range).

doi:10.1371/journal.pone.0145864.g003
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Our results do suggest that infected adult frogs could serve as potential reservoirs for both
Rv and Bd. What is more, adult frogs may be an important source for epizootic outbreaks
among larval amphibian communities if during the reproductive season they shed these para-
sites into breeding ponds and streams [56]. Reproducing frogs may be induced to shed para-
sites if they are immunosuppressed during the breeding season, and quiescent infections thus
become active. Breeding frogs may be immunosuppressed, because the reproduction can
induce physiological stress [57]. During such periods of breeding or development when larvae
or frogs are potentially immunosuppressed is when facilitation between Bd and Rv is most
likely to be apparent. This view of parasite facilitation assumes that (i) such interactions
between parasites and/or their apparent effects on their host are temporary or periodic; and (ii)
that the state or condition of a host influences community interactions among co-infecting par-
asites [34, 36, 37, 58]. If these assumptions are true, then the detection of parasite interactions
and their effects on hosts are similar to the detection of life history trade-offs, which are only
apparent when animals are physiologically stressed [59, 60]. In the context of our stated
hypotheses, correlations of infection intensity between co-infecting parasites, and parasite
abundance effects on the likelihood of co-infection would only be apparent during life states in
animals when they are most vulnerable due to factors like physiological stress or shifts in criti-
cal developmental windows [32]. Given this, we suggest that future tests of co-infection in ani-
mals take into account the life stage/state and condition of hosts.

Wild amphibians, and most taxa for that matter, are rarely assayed for multiple infections,
especially during critical periods of infection or epizootic events. While chytridiomycosis is
likely the ultimate causative agent of mortality in recent amphibian declines, it is possible that
susceptibility to Bd infection is shaped by prior or concurrent infections by parasites such as
Rv. In addition, Bd infections may be contributing to the spread and invasion of other emerg-
ing pathogens such as Rv, if these parasites facilitate multiple infections via immunosuppres-
sion and host resource depletion [13]. Alternatively, it is possible that Rv is endemic to Peru
and does not strongly influence amphibians in this region. However, without greater surveil-
lance and data it is impossible to determine the threat posed by Rv and other potential co-
infecting parasites. Therefore, future surveys and amphibian conservation programs focused
on Bd should also test for the presence of Rv and monitor for signs of secondary infections. In
addition, broad surveys of Rv are warranted to determine if this parasite is a threat to many
already endangered amphibian species.

While Rv epizootics can be devastating, causing greater than 90% mortality among larvae in
an affected pond, these outbreaks are often rapid and sporadic, which make them difficult to
detect. In Peru, however, a recent report of diseased adult T.marmoratus frogs near Cusco
described animals exhibiting signs (lesions, edema) consistent with ranavirus infection (A.
Ttito, pers. comm.). Ranavirus induced disease in adult amphibians is alarming because this
could suggest a highly virulent strain is present in Peru; most Rv induced mortality is in meta-
morphic larvae [32]. Reports of ranavirus infections and associated epizootics in Central
America also could suggest that this disease is widespread and of potential conservation con-
cern [13, 61]. In addition, ranaviruses are not host-specific so a single virulent strain can infect
fish, reptiles and amphibians [23, 26–29], which suggests that this pathogen can threaten entire
wetland communities; as was recently described in ranavirus epizootics in Spain [10].

While ranavirus outbreaks occur sporadically [62, 63], the factors driving the cryptic pattern
of disease outbreaks are likely influenced by variation in susceptibility among species [30] and
life stages, with larvae nearing metamorphosis being most susceptible possibly due to the stress
associated with metamorphic tissue remodeling [32, 64, 65]. Ranavirus emergence and disease
outbreaks may also be linked to environmental change like altered habitats, changes in water
chemistry, pollution and climate change [33]; as well as potentially the stress imposed by
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infection with other diseases like Bd. Clearly, to understand the extent which Rv is distributed
in Peru and South America, its prevalence, and any threat it poses to amphibian conservation
in conjunction with other parasites, we need more extensive and thorough surveys and assays
testing for animal health [66]. Last, genome sequencing of Rv strains present in Peru and other
regions of the Americas could shed light on variance in distribution of differing strains, and
potentially the means of spread of these emergent diseases [10, 67–69].

Rv and Bd are water-borne parasites that are often associated with infections in the aquatic,
larval life-stage of most amphibians, and which impose the highest mortality during the meta-
morphic and post-metamorphic life-stage of aquatic amphibians. Our study documents for the
first time Rv and Bd co-infection in Pristimantis, which are largely terrestrial frogs that lay
their eggs in leaf litter and exhibit direct-development (i.e. small froglets hatch directly from
eggs with no free-swimming larval stage) and that comprise a sizable component of amphibian
diversity in the Andes [70, 71]. Because these frogs and their larvae interact little with ponds or
streams, our finding of high infection rates in Pristimantis frogs is rather surprising. We can
only speculate about the source(s) and mode of Bd and Rv transmission, but a likely source is
environmental. Bd spores and free Rv virions may be present in the moist leaf litter, and spread
to these habitats by infected individuals [17, 72]. Another source of exposure could be when
these frogs forage in or along riparian habitats that harbor these parasites [17]. Last, shedding
of virus from reproducing frogs may also be a source of transmission [56], if infected parental
frogs shed Rv or Bd onto the hatchlings, and leaf litter during egg laying and fertilization or if
they exhibit parental care. Further research is needed to characterize these potential patterns of
Rv and Bd presence in terrestrial habitats and their transmission dynamics.

An important means of potential Rv and Bd spread into these wild communities, with criti-
cal conservation implications, is infections in captive Telmatobius frogs, that are wild-caught
and harvested for human consumption [18–21]. Captive animals are kept in high densities in
communal tubs that favor the transmission of diseases, and dead animals as well as their water
are likely discarded without concern for the release of diseases to the environment [21]. Thus,
captive animals might become spreaders of pathogens that can spill over to wild populations.
Indeed, disease spillover from confined market to wild amphibian populations is a probable
route for the spread of ranaviruses in the United States [22, 69]. Clearly, the patterns of Rv and
Bd co-infection we have characterized in captive and wild populations in Peru warrant concern
and greater testing. To address this likely threat that the live-trade poses for disease spread, out-
reach and education are greatly needed to inform the sellers and consumers of the risks of live-
trade frogs for disease spread to wildlife.

In fact, seventy-four percent of Telmatobius species are threatened, and a quarter of these
threatened species are in the category of Critically Endangered in the IUCN Red List [46]. The
genus Telmatobius is endemic to the Andes, where it occurs from Ecuador to Argentina and
Chile, with the largest center of diversification in Peru and Bolivia. Chytridiomycosis has been
associated with population declines of Telmatobius throughout the Andes [5, 17, 20, 73–77].
For example, the three Telmatobius species known from Ecuador were extirpated in the 1990s
and are now thought to be extinct [75]. The last individuals of Telmatobius found in Ecuador
showed symptoms of chytridiomycosis [75]. Moreover, population declines of T.marmoratus,
T.mendelsoni and T. timens in Peru [5, 17, 20, 76] and of three species of Telmatobius in
Argentina [73] have been associated with outbreaks of Bd, and high prevalence of Bd infection
has been reported from high-elevation populations of T. jelskii in central Peru [48] and T. gigas
in Bolivia [77]. While Bd is thus known to threaten these [21] and other vulnerable frogs in
Peru [17], the extent to which Rv and co-infection have or are contributing to these declines is
unknown. Because amphibians globally are the most threatened group of vertebrates [46], we
believe that these co-infection patterns are of great concern and that future research should
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aim to detect the prevalence of Rv, Bd, and other parasites, as well as test their interacting roles
in driving threatened populations to extinction. With concerted efforts, and greatly increased
data regarding any such parasite interactions, and the role of humans in spreading these patho-
gens, we can increase our capacity to contain and mitigate the emergence of these and other
wildlife diseases.

Supporting Information
S1 Fig. Sampling locations for wild caught frogs in the Kosnipata valley, near Manu
National Park, Cusco, Peru.
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