Application of Expectation-Maximization Algorithm to the Detection of Direct-Sequence Signal in Pulsed Noise Jamming

Arif Ansari
Southern Illinois University Carbondale

R. Viswanathan
Southern Illinois University Carbondale, viswa@engr.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs

Published in Ansari, A., & Viswanathan, R. (1992). Application of expectation-maximizing algorithm to the detection of direct-sequence signal in pulsed noise jamming. Conference Record: IEEE Military Communications Conference, 1992 (MILCOM '92), 'Communications - Fusing Command, Control and Intelligence', v.3, 811-815. doi: 10.1109/MILCOM.1992.243994 ©1992 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Recommended Citation
http://opensiuc.lib.siu.edu/ece_confs/70

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
Application of Expectation-Maximization Algorithm to the
Detection of Direct-Sequence Signal in Pulsed Noise Jamming

Arif Ansari and R. Viswanathan
Department of Electrical Engineering
Southern Illinois University
Carbondale, IL 62901

ABSTRACT

We consider the detection of direct-sequence spread spectrum signal received in pulsed noise jamming environment. The Expectation-Maximization Algorithm is used to estimate the unknown jammer parameters and hence obtain a decision on the binary signal based on the estimated likelihood functions. The probability of error performance of the algorithm is simulated for a repeat code and a (7,4) block code. Simulation results show that at low signal to thermal noise ratio and high jammer power, the EM detector performs significantly better than the hard limiter and somewhat better than the soft limiter. Also, at low SNR, there is little degradation as compared to the maximum-likelihood detector with true jammer parameters. At high SNR, the soft limiter outperforms the EM detector.

I. INTRODUCTION

Spread-spectrum communication systems offer an inherent advantage of reducing interference. The reduction achieved depends on the processing gain. Pulsed, but broadband, noise jamming may cause considerable degradation in performance of a direct-sequence spread spectrum system [1]. The performance of the system may be further improved by using additional techniques [2-5].

We consider here the performance of a maximum-likelihood detector for the following detection problem [1]. Let the r_i's represent the outputs of the direct-sequence correlator, corresponding to different symbols transmitted as DS-BPSK signals and let θ^j_i, $i=1,\ldots,m$, $\theta^j_i \in \{-1,1\}$, $j=1,\ldots,2^m$ be one of the code vectors of a given (m,k) block code.

Choose one of the following M hypotheses,

$$H_j: \theta^j_i = \theta^j_i, \quad i=1,\ldots,m. \tag{1}$$

given the observations

$$H_j: r_i = \theta^j_i s + n_i + \epsilon_i, \quad i=1,\ldots,m \tag{2}$$

The significance of various variables appearing in (2) are explained below. For a given (m,k) block code, θ^j_i are known sequences for every j. In the case of repeat code, the same bit of information is transmitted m times, i.e., $\theta = \theta^j_i$, $i=1,\ldots,m$. The detection problem (1) reduces to

$$H_1: \theta = -1 \text{ vs. } H_2: \theta = +1 \tag{3}$$

Perfect interleaving is assumed so that the probability that a symbol is jammed is independent of any other symbol being jammed or not. Let ρ be the duty cycle of the pulse jammer n_{fl} with two sided power spectral density $N_0/(2\rho)$ and n_0 be the thermal noise with two sided power spectral density $N_0/2$. Both the noises are assumed to be independent, zero mean Gaussian. With an equivalent baseband representation for direct-sequence correlator, n is a zero-mean white Gaussian noise with known variance $\sigma^2 = N_0/2$, J_0 is zero mean Gaussian jamming noise with variance $N_0/(2\rho)$.

$Z_i \in \{0,1\}$ denote whether the ith symbol is jammed or not. They are independent random variables with $P(Z_i=1)=p$, J_0, J_0, and Z_i are all mutually independent. Z_i, ρ and $N_0/2$ are typically unknown. Assuming these parameters are known, we construct an optimal (but practically unrealizable) detector in section III. When Z_i's are known, the r_i's are Gaussian and when Z_i's are unknown, the r_i's are samples from a mixture density as shown below. The signal level, s, is assumed known. There may be situations where s cannot be determined easily and the discussions in this paper do not apply to those situations [2]. The Expectation-Maximization (EM) algorithm is used in order to obtain the estimates of ρ and $\sigma^2 = \sigma^2 + N_0/2$. The likelihood function with estimated jammer parameters is maximized to obtain a decision on the hypotheses for the testing problem in (1). A complete discussion of the EM algorithm can be found in [6]. Recently, the EM algorithm has been applied to other types of detection and estimation problems [7,8].

In section II we discuss how the EM algorithm can be applied to the testing problem outlined above. In section III, simulation results are presented for the repeat and block coding cases. The performances of the EM detector are compared to those of hard and soft limiters, an optimal detector, maximum likelihood and linear detectors. In section IV we discuss the results.
II. DIRECT SEQUENCE DETECTION AND EM ALGORITHM

Consider the detection problem stated in (1) and (2) with the observations being the sum of the data signal, the channel noise and the jammer noise. When Z_s's are unknown, the sum of the channel noise and the jammer component may be viewed as a variate from a mixture of two normal distributions with zero means, variances σ^2 and σ_j^2, and mixing ratios $1-p$ and p respectively. In other words, the interference is from channel noise alone with probability $1-p$ and from channel plus jammer with probability p. The observations (2) are distributed as

$$H_j: r_1 = p f_1(r_1) + pf_2(r_1)$$ (4)

where

$$f_1(r_1) = (1/2\pi \sigma^2) \exp[-(r_1^2/2\sigma^2)]$$ (5)

$$f_2(r_1) = (1/2\pi \sigma_j^2) \exp[-(r_1^2/2\sigma_j^2)]$$ (6)

Define the parameter vector $\theta = (\theta_1, \sigma_j^2, p)$, where $\theta = (\theta_1, \sigma^2, \sigma_j^2)$. The log-likelihood function is given by $L(\theta | g) = \sum_{i=1}^{m} \ln f(r_i)$. Then the proposed detector for g, which we shall call the EM detector, maximizes $L(\theta | g)$ using the estimates of σ_j^2 and p obtained via the EM algorithm.

A. Repeat Codes

Using the procedure in [11], the maximum-likelihood estimates of θ, σ_j^2, and p can be obtained as the simultaneous solution to the set of following equations:

$$\hat{\theta} = \arg \max_{\theta} L(\theta | g) = \theta (1-p, -1)$$ (7)

$$\hat{\sigma}_j^2 = \frac{1}{\sum_{i=1}^{m} p f_1(r_i) f_2(r_i)} \sum_{i=1}^{m} \frac{p f_1(r_i) f_2(r_i)}{f(r_i)}$$ (8)

$$\hat{p} = \frac{1}{\sum_{i=1}^{m} \hat{\theta} r_i} \sum_{i=1}^{m} \frac{\hat{\theta} r_i}{f(r_i)}$$ (9)

There may be several solutions to (7), (8), and (9), and the one which maximizes $L(\theta | g)$ has to be picked. Equations (7), (8), and (9) are used to provide the following iteration scheme. However, as explained later, the solution obtained via the iterations does not necessarily correspond to the global maximum of $L(\theta | g)$. Let $\hat{\theta}^{(p)}$ denote the estimate of θ at the pth iteration. Let $\hat{\theta}^{(p+1)} = +1$ or -1 whichever maximizes $L(\theta | g)$ (10)

$$\hat{\sigma}_j^{(p+1)} = \sum_{i=1}^{m} \left(r_i - \theta \right) \frac{f_1(r_i) f_2(r_i)}{f(r_i)}$$ (11)

$$\hat{p}^{(p+1)} = \frac{1}{\sum_{i=1}^{m} r_i} \sum_{i=1}^{m} \frac{f_1(r_i) f_2(r_i)}{f(r_i)}$$ (12)

where $f_1(r_i)$ and $f_2(r_i)$ are the density functions evaluated at r_i and $r_i^{(p)}$. A starting value, $\hat{\theta}^{(1)}$, is required. The iteration scheme is insensitive to these initial values and any reasonable set can be assumed [10]. For example we assume $\hat{\theta}^{(1)} = (0.5, 5, 1.0)$, and $\hat{\theta}^{(1)} = (0, 0)$ in all the simulations. Although $\hat{\theta}$ is not a allowed value for $\hat{\theta}$, it is used as an unbiased starting value for the EM algorithm. The decision on $\hat{\theta}$ given by the EM detector will always be +1 or -1 since these are the only allowed values in subsequent iterations.

B. Block Codes

Let the coded vector be \hat{g}. Then $\hat{g} = (\hat{\theta}, \hat{\sigma}_j^2, \hat{p})$ is the maximum-likelihood estimate of g given by $L(\theta | g) = \max \{ L(\theta | g) \}$ (13)

The maximum of $L(\theta | g)$ is to be searched over the M valid codes. The maximum-likelihood estimate of the jammer variance has to satisfy

$$\hat{\sigma}_j^2 = \frac{1}{\sum_{i=1}^{m} r_i} \sum_{i=1}^{m} \frac{r_i f_1(r_i) f_2(r_i)}{f(r_i)}$$ (14)

The only difference between equation (8) and equation (14) is the index i on $\hat{\theta}$ as they are no longer the same for each i. The equations for the maximum-likelihood estimate of $\hat{\theta}$ for the block codes remain the same as for the repeat code, although $f_1(r_i)$ and $f_2(r_i)$ as in equations (8) and (9), will have the appropriate g for each i.

The EM algorithm has been shown to result in a nondecreasing likelihood at each successive step and, under some conditions, to converge to a maximum-likelihood estimator [6,9]. However, in general the algorithm will converge to a compact set of stationary points.

35.1.2
III. SIMULATION PERFORMANCE

In this section, simulated performances of the EM detector, maximum-likelihood detector with known jammer parameters, the linear, hard-limiter, and soft limiter [1,4,5] are studied. The clipping level of the soft-limiter is set at \(a \). If \(a \) is also unknown, the resulting EM detector would be the linear detector which would also be the maximum-likelihood detector because the maximum-likelihood estimate of the common mean of the mixture of two normal distributions is the sample mean [12].

A. Repeat Coding Performance

The bit energy for a repeat code is given by \(E_b = m.s \), where \(m=7 \) is the code length assumed. In the case of repeat code, we look at an optimal, but unrealizable, detector for performance comparison purposes.

Optimal Detector: With \(Z_i \) known, the likelihood ratio for the testing problem (3) is given by

\[
L(g_i) = \frac{1}{\sqrt{2\pi}a_i} \exp\left(\frac{-X_i a_i^2}{2a_i^2}\right)
\]

(15)

where

\[
r = y_i \text{ if the symbol is jammed and } r = x_i \text{ if it is not. Equivalently, a test based on the likelihood ratio is given by}
\]

\[
T(d) = \frac{\sum_{i=1}^{m} y_i + \sum_{j=1}^{N_j} x_j}{\sigma_i + \sigma_j} \geq 0
\]

(16)

In order to implement this detector, value of \(\sigma_i \), and whether each sample is jammed or not, are needed. In this sense it is an ideal detector and the required information is usually not available. Let \(k \) be the number of jammed samples. The error probability of the optimal detector is given by

\[
P_{opt}(e) = \sum_{k=0}^{m} \binom{m}{k} (1-p)^{m-k} P_{opt}(e|k)
\]

(17)

where

\[
P_{opt}(e|k) = Q(\sqrt{mn-\frac{k}{s^2} + \frac{k}{(s^2+n^2)/2p})}
\]

and \(Q(.) \) is one minus the standard normal cdf.

The EM detector described in section II A is simulated for at least \(10^5 \) and upto \(10^5 \) trials for each probability of error estimation. Each trial creates a realization of \(p(r_1, r_2, \ldots, r_m) \) as in equation (2). The stopping criterion used for the EM algorithm iterations is the following rule of convergence of the likelihood functions:

\[
\text{abs}\left(\frac{L_{g_i}^{(p)}}{L_{g_i}^{(p-1)}} - \frac{L_{g_{-i}}^{(p)}}{L_{g_{-i}}^{(p-1)}}\right) < 0.01
\]

or if the number of iterations exceeded 30.

A benchmark for the performance of the algorithm is the simulated performance of the maximum-likelihood detector with known \(\sigma_i \) and \(p \), but unknown jammer state, that is, the maximum-likelihood detector based on the mixture density (4).

B. (m,k) Block Coding Performance

The energy per information bit for a (m,k) block code is given by \(E_b = m.s/k \). A (7,4) block code is assumed and hence a single error correcting capability is available. The hard limiter detector makes a decision on each bit of the coded word and a word decision error is made if the hard limiter makes an error in more than one bit. The soft limiter detector computes

\[
\text{arg max}_{j} \left\{ \gamma_j \right\}
\]

(18)

where \(\gamma_j \) is the output of the soft-limiter. The EM detector for the block coding case as described in section II B is simulated for 100,000 trials for each \(E_b/N_j \). The error probabilities of these detectors are shown in Figs. 1-2 against \(p \) for various \(s \), \(\sigma_i \), and \(E_b/N_j \) values, and in Figs. 3-6 against \(E_b/N_j \) for various \(s \), \(\sigma_i \), and \(p \) values.

IV. DISCUSSION AND CONCLUSIONS

Comparing the proposed EM detector with other schemes in terms of the probability of error performance as a function of \(p \) for different \(s \), \(\sigma_i \), and \(E_b/N_j \) values, it is observed that at low signal to thermal noise ratio (SNR=s/N_0), there is little degradation in performance as compared to the maximum-likelihood detector with known jammer parameters (Fig. 1). At high SNR, the EM detector performance is considerably poorer than the maximum-likelihood detector (Fig. 2), specially at low \(p \) values. The gap between the performances of the optimal (unrealizable) and the EM detector is considerable for large SNR values (Figs. 1-2). The same relative performances of the EM, the maximum-likelihood, and the optimal detectors are also observed when the probability of error is plotted as a function of \(E_b/N_j \) for different \(s \), \(\sigma_i \), and \(p \) values (Figs. 3-4). For (7,4) block code also, the EM and maximum likelihood detectors exhibit close probability of error performances at low SNR (Figs. 5, 6).

When the EM detector performance is close to that of the maximum-likelihood detector, the estimate of the likelihood function does not
necessarily correspond to the true likelihood function. It was observed that, after the EM algorithm had converged according to (18), the estimated jammer parameters did not converge to the true jammer parameters at all even when the probability of error curves for the EM and the maximum-likelihood detectors were close. With such a small sample size as 7, parameter convergence is not expected. The convergence of the EM algorithm is observed to be quite rapid. Very few times (ranging from single digits to a maximum of 50 out of 100,000 for all simulations) did the algorithm fail to converge according to (18) and had to exit after 30 iterations.

Comparing the performance of the EM detector to the other detectors, it is seen that it performs consistently better than the hard limiter detector at low SNR (Figs. 1, 3, 4). Compared to the soft limiter, the EM detector performs better at low SNR and high jammer power levels. For high SNR conditions, the soft limiter outperforms the EM detector (Fig. 2). In general, the (7, 4) block code performs better than the length seven repeat code at equivalent signal and noise conditions.

REFERENCES

Vols. I & II Rockville, MD: Computer Science, 1985

Fig. 3. Bit error probability for \(m = 7 \) repeat code.

Fig. 4. Bit error probability for \(m = 7 \) repeat code.

Fig. 5. Word error probability for \((7,4) \) block code.

Fig. 6. Word error probability for \((7,4) \) block code.