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Abstract: This work studies the transient responses and steady-state ripples of digital low dropout (LDO) voltage regulators.
Simulation models as well as closed-form expressions are provided for estimating the LDO output settling behaviour after load
current or reference voltage changes. Estimation equations for the magnitude and frequency of LDO output steady-state ripples
are also presented. The accuracy of the developed models is verified by comparing estimation data with results obtained from
circuit simulations. The use of the developed estimation equations in design space exploration is also demonstrated.

1 Introduction
With the wide use of fine-grain power management in modern
VLSI circuits [1, 2], digital low dropout (LDO) voltage regulators
are gaining significant research interests and a large number of
digital LDO circuits are recently reported [3–17]. The transition
from analog to digital LDOs is mainly due to the difficulties in
designing power-efficient high-gain amplifiers at low-voltage and
advanced technology nodes. Such high-gain amplifiers are crucial
in analogue LDOs for minimising the difference between the LDO
output voltage and input reference Vref. Such difference is called
error voltage and denoted as Verr [18].

In digital LDO circuits, comparators [3] or voltage controlled
oscillators [4] are often used to detect or measure Verr. Also,
instead of a single large power device, a digital LDO uses an array
of small power transistors, which can be individually controlled by
digital signals. Fig. 1 shows a simplified digital LDO circuit to
illustrate its operation [3]. If the LDO output is higher than Vref, the
comparator output will cause the digital control logic to decrease
the number of conducting power devices; otherwise, the control
circuit turns on more power devices. By this feedback mechanism,
the digital LDO output is kept at the level of Vref. 

Unlike the high-gain amplifier in an analogue LDO circuit,
whose output is proportional to Verr, the comparator in a digital
LDO circuit only detects if Verr > 0 or Verr < 0. As a result, the
feedback factor of the digital LDO control loop is not constant,
making it more challenging to derive the closed-loop transfer
function of the digital LDO control loop. Meanwhile, estimating
digital LDO transient behaviour from its open-loop transfer
function is not accurate because previously established methods for
predicting transient behaviour from open loop transfer functions
are all based on the assumption that the feedback factor does not
change during the system settling process [19]. Our early work
developed a piecewise analytical model for predicting digital LDO

output settling behaviour after a load change [20]. With
approximating the on-resistance of the power devices as constant
R, closed-form expressions for estimating the maximum ripple
voltage and settling time are derived [20]. In this work, the
previous piecewise analytical model is improved by considering
the dynamic changes of the equivalent on-resistance of the power
device array. Also, the model is extended to predict the LDO
transient behaviour after voltage reference changes. Furthermore,
this work studies the steady-state output ripples and presents
estimation equations for ripple magnitude and frequency. The
accuracy of the developed models and equations is validated by
comparing with circuit simulations. The use of the developed
model for early design space exploration is also demonstrated.

This paper is organised as follows: Section 2 reviews related
work on modelling digital LDO circuits. The model developed in
our early work is also briefly discussed in this section. The
improved model that considers the changes of equivalent on-
resistance of the power device array is discussed in Section 3.
Techniques to model LDO transient behaviour in responding to
reference voltage changes are presented in Section 4. Methods for
estimating digital LDO steady-state ripples are described in Section
5. The validation of the developed models and the application of
the models in design space exploration are presented in Section 6.
The paper is concluded in Section 7.

2 Related work
A number of works that develop analytical models for LDO
circuits have been reported in literature. In [21, 22], comprehensive
frameworks for analysing the stability of LDOs with active
feedback compensation techniques are presented. Also, techniques
for modelling LDO susceptibility to electromagnetic interference
are discussed in [23]. Complimentary to these techniques, this
work develops models for estimating digital LDO transient
behaviours, such as ripple magnitudes after load current or voltage
reference changes. Recently, various techniques to enhance LDO
transient response, such as using dual control loops in [22],
dynamic biasing in [24], or event-driving logic in [25], have been
reported. Such enhance techniques can be included LDO modelling
as shown in [22, 25].

To capture the discrete-time behaviour of circuit blocks used in
digital LDOs, z-domain models are often used in digital LDO
models. For the circuit shown in Fig. 1, the comparator and the
control logic can be modelled by z-domain expressions.
Meanwhile, the circuit at the LDO output node is a continuous-
time circuit that can be described by an s-domain function. Fig. 2
shows the system-level model of the digital LDO, assuming that
the digital control logic is implemented by bi-directional shiftFig. 1  Simplified digital LDO circuit
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registers [3]. In the model, the comparator is represented by a
subtraction operation. The output of the control logic is effectively
the accumulation of the comparator output over time and hence is
modelled by a digital integrator followed by a zero-order hold
function. GD represents the gain of the control logic, which is
larger than one when LDO transient response enhancement
techniques are used. 

The LDO output node is modelled by a first-order linear system
with transfer function (GA/1 + (s/ωout)), where ωout = (1/R ⋅ C), R
and C are the LDO output resistance and load capacitance,
respectively. GA is the proportional constant that relates the
numerical value of the digital control output and the LDO output
voltage. By translating the above s-domain expressions into z-
domain functions, the z-domain open-loop transfer function of the
digital LDO can be derived as [6]

TF z = GD ⋅ GA

z − 1 z − e−(ωout/ f clk) (1)

where f clk is the clock frequency of the circuit. The open-loop
transfer function has two poles: one is located at the unit cycle and
the other is at e−(ωout/ f clk). The expression of the second pole reveals
some insights about the digital LDO settling behaviour as
discussed in [6]. Alternatively, if we substitute z−1 by e−s/ f clk, the
above transfer function can be translated into an s-domain
expression and it is used to study the LDO stability in [5].
Nevertheless, the difficulty to use such open-loop transfer

functions to predict digital LDO transient responses after load or
reference changes is that the feedback factor is not constant during
the settling process as discussed earlier.

The piecewise analytical model developed in [20] focuses on
the voltage and current relation in time domain. It models the LDO
output node using the circuit in Fig. 3b. Following the small signal
analysis principle, it treats steady values as 0 and focuses on the
changes of signals. Hence

iin(t) − vout t
R = iload t + C ⋅ d(vout t )

dt (2)

d(iin(t))
dt = κ ⋅ IPMOS ⋅ f clk (3)

where iin and iload are the currents conducted by the power devices
and the load current, respectively; R is the equivalent on-resistance
of the combined conducting power devices; IPMOS is the current
conducted by a single power transistor; and κ is 1 or −1 depending
on whether the number of conducting power transistors is
increasing or decreasing. Both this approach and the modelling
techniques in [25] start from the current and voltage relation in
time domain. However, they focus on different perspectives of
LDO operation and use different analysis methods. The discussion
in [25] focuses on LDO stability and relies on a state space model.
Our model in [20] focuses on LDO settling parameters and
involves deriving piecewise expressions to approximate LDO
output waveforms. 

Fig. 4 illustrates the LDO output response to a step increase on
the load current. Immediately after the load current increase, the
LDO output Vout t  becomes lower than Vref and the LDO starts to
turn on more power devices, hence κ = 1. When Vout t  reaches its
valley denoted by Vpeak1 in Fig. 4, iin t  is increased to the level of
iload(t). However, the LDO will continue to increase iin(t) before
Vout t  crossing the Vref level; and the extra current helps bring
Vout t  back to the desired Vref level. After Vout t  exceeds the Vref
level at time trec1, Vout t  will continue to increase because
iin t > iload(t). Meanwhile, the LDO starts to decrease the number
of conducting power devices and κ = − 1. This mechanism leads
to the voltage ripples at the LDO output when it responds to a load
current change. 

Owing to the changes of κ value, the Vout t  expression has to be
derived in a piecewise manner. For the example illustrated in
Fig. 4, the Vout t  expression during the time period from 0 to trec1

can be derived as [20] (see (4)) where

X = − Δiload ⋅ R − IPMOS ⋅ f clk ⋅ R2 ⋅ C
Y = IPMOS ⋅ f clk ⋅ R

Z = Δiload ⋅ R2 ⋅ C + IPMOS ⋅ f clk ⋅ R3 ⋅ C2

(5)

With the help of the above equations, the peak voltage value Vpeak1

and the time that it reaches the peak, tpeak1, during this selected time
period can be solved by (dvout t /dt) = 0. Similarly, the voltage
peaks and their corresponding times within other time periods can
be derived. The work in [20] also shows that the peaks of the
voltage ripples in LDO settling process decay exponentially with
time and an expression for estimating LDO settling time after load
change is also derived.

3 Modelling LDO transient response to load
current change
The previous piecewise analytical model [20] assumes that R has a
constant value during the LDO output transition period. Since R is

Fig. 2  Digital LDO system-level model [6]
 

Fig. 3  Circuit model for LDO output node
(a) LDO output node circuit, (b) Simplified circuit model

 

Fig. 4  LDO output response to a load current increase
 

vout t = X + Y ⋅ t + Z
R ⋅ C e−(t /R ⋅ C)

= IPMOS ⋅ f clk ⋅ R ⋅ t − Δiload ⋅ R + IPMOS ⋅ f clk ⋅ R2 ⋅ C ⋅ 1 − e−(t /R ⋅ C)
(4)
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affected by the number of conducting power transistors, which can
change dramatically in responding to large load changes, the actual
R value in real circuits often exhibits large changes in LDO output
settling process. This section enhances the early model by
considering such changes on R value. In the following discussion,
we use R(t) to denote the equivalent on-resistance of the power
device array. For a digital LDO circuit with relatively high input
voltage, e.g. VDD ≥ 0.7 V [4, 5, 8], the conducting power devices
typically operate in linear region and hence these devices can be
treated as resistors and the equivalent on-resistance can be
estimated as

R(t) = VDD − Vout(t)
Iin(t) (6)

However, when the LDO is operating with a very low input voltage
[3, 6, 9], the conducting power devices are likely operating in
saturation region. The output resistance of a single conducting
power device is ro = (VA/IPMOS), where VA is the Early voltage of
the MOS device. Thus

R(t) = VA
IPMOS ⋅ N(t) = VA

Iin
(7)

where N(t) is the number of conducting power transistors. The two
equations can be put into a uniformed format as

R t = VEQ
Iin t = VEQ

Iin + iin(t) (8)

where VEQ = VDD − Vout when power devices operate in linear
region; and VEQ = VA when power devices operate in saturation
region. Note that Iin t  is written as the sum of two terms in the
above equation. The first term is the steady-state current before the
transient response; the second term is the current deviation from
the steady state during its transient response.

Substituting R t  expression in (8) to (2), we obtain:

d vout(t)
dt + vout t

Iin
VEQ ⋅ C + iin t

VEQ ⋅ C = iin t − iload(t)
C (9)

Steps of solving this differential equation are provided in Appendix
1. The obtained Vout(t) expression is presented in (10). Clearly, this
model considers the fact that the equivalent on-resistance of the
power device array exhibits different values along the process of
the LDO circuit adjusting the number of conducting devices. Since
R(t) is affected differently by load current increase or decrease,
sign(Δiload) is used in (10) to distinguish the two scenarios. If load
current increases, sign Δiload = 1; otherwise sign Δiload = − 1.
Similar to the piecewise analytical equation in [20], the expression
in (10) can be used in a piecewise manner to numerically compute
LDO transient responses following the steps discussed in [20].
Since the new model more precisely captures the equivalent on-
resistance of the power device array during the LDO transient
responses, it is more accurate compared to the previous model in
[20].

4 Modelling LDO transient responses to
reference voltage change
Digital LDOs are often used in dynamic voltage scaling
applications, where the output voltage is frequently changed [1, 2,
10] by varying LDO reference input Vref. An important parameter
that characterises the LDO transient response in such scenarios is
rise time trise, which is defined as the time interval that the LDO
output departures from its original level and reaches the new
reference voltage level for the first time. Interestingly, the model
developed in the previous section also applies to this situation. This
is due to the fact that the LDO system relies on the same
mechanism to respond the load current change or reference voltage
change. For example, after a load current increase, the LDO output
voltage drops below Vref and the LDO feedback loop starts to
increase the number of conducting power transistors until the LDO
output reaches Vref. Similarly, after a reference voltage increase,
the LDO output becomes smaller than Vref and the LDO feedback
loop responses similarly. To use the developed model numerically
computing the LDO output waveform after reference voltage
change ΔVref, we need set Δiload = 0 and replace sign Δiload  by
sign(ΔVref), where sign ΔVref = 1 for voltage reference increase
and sign ΔVref = − 1 for voltage reference decrease (see (10)) .
When ΔVref is small, the vout(t) expression given in (4) can be
approximated by the third-order Taylor series expansion.
Subsequently, equation vout trise = ΔVref can be simplified to:

a ⋅ trise
3 + b ⋅ trise

2 + d = 0 (11)

where

a = X
6 ⋅ R ⋅ C 3 , b = − X

2 ⋅ R ⋅ C 2

d = − ΔVref

(12)

Note that the expression of X is given in (5). The derivation of the
above equation as well as steps to solve it is provided in Appendix
2. The obtained expression for trise is directly listed as follows:

trise = − b + a ⋅ t0 + sign d b2 − 2 ⋅ a ⋅ b ⋅ t0 − 3 ⋅ a2 ⋅ t0
2

2 ⋅ a
(13)

where t0 is given in (35) in Appendix 2. This expression will be
useful in the prediction of LDO output steady-state ripples as
discussed in the next section.

5 Modelling LDO output steady-state ripple
Even in the steady state, digital LDO output always exhibits small
ripples, which become power supply noise for circuits powered by
the LDO output. The steady-state ripples are caused by the finite
control resolution of the discrete-time feedback loop. In this study,
we use tζ to represent the time that the LDO output voltage is at the
peak or nadir of the ripples as shown in Fig. 5. In addition, we use
Nζ to represent the number of conducting power devices at time tζ;
and use N∗ to represent the ideal N value such that the total current
conducted by the power device array equals the load current. Since

vout t = VEQ 1 − e−(1/VEQ ⋅ C) Iin ⋅ t + sign( ⋅ iload) ⋅ IPMOS ⋅ f clk ⋅ (t2/2)

+ π ⋅ VEQ
2 ⋅ sign( ⋅ iload) ⋅ IPMOS ⋅ f clk ⋅ C

× e− (Iin
2 /2 ⋅ VEQ ⋅ C ⋅ sign( × iload) ⋅ IPMOS ⋅ f clk) + (1/VR0 ⋅ C) Iin ⋅ t + sign( ⋅ iload) ⋅ IPMOS ⋅ f clk ⋅ (t2/2) ⋅ Δiload + Iin

× erfi IRO
2 ⋅ VEQ ⋅ C ⋅ 2 ⋅ VEQ ⋅ C

sign(Δiload) ⋅ IPMOS ⋅ f clk

−erfi Iin + sign(Δiload) ⋅ IPMOS ⋅ f clk ⋅ t
2 ⋅ VEQ ⋅ C ⋅ 2 ⋅ VEQ ⋅ C

sign(Δiload) ⋅ IPMOS ⋅ f clk

(10)
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(dvout t /dt) |t = tζ = 0, there is no current charging or discharging
capacitor C at time tζ, referring to Fig. 3. From (2), we have:

vout tζ = iin tζ − iload ⋅ R = Nζ − N∗ ⋅ IPMOS ⋅ R (14)

At the peak of the ripple, the LDO output is above the reference
level and vout tζ > 0. Thus, (14) indicates Nζ > N∗. Similarly, at
the nadir of the ripple, Nζ < N∗. Meanwhile, the N value always
decreases during the time that the LDO output is above the
reference level. This is because the LDO feedback loop is working
on bringing the LDO output down to the reference level by
reducing the number of conducting power devices. For a similar
reason, the N value always increases when the LDO output is
below the reference level. These observations lead to the
conclusion that the peak or nadir always occur before N = N∗ as
shown in Fig. 5. In the figure, we also use T1 and T2 to denote the
intervals between the times that the LDO control has the ideal N∗

value and the time that the LDO output crosses the reference level,
where the changing trend of N is reversed. Since the LDO control
decreases or increases N at the same rate, we have T1 = T2. This
implies that at the steady-state Nζ should be as close to N∗ as
possible. However, due to the finite control resolution, Nζ may not
reach the exact N∗ value (which may not be an integer) and hence

the maximum of Nζ − N∗ is 1. Substituting this value to (14), we
obtain the upper bound of the steady-state ripple magnitude:

VRIPPLEMAX = IPMOS ⋅ R (15)

The LDO output behaviour starting from time t = tζ is similar to
the system response to a reference voltage change of VRIPPLEMAX.
The duration from t = tζ to the time that the LDO output reaches
the reference level is trise. As illustrated in Fig. 5, trise is
approximately one-quarter of the ripple period. Thus, we have:

f RIPPLEMIN = 1
4 ⋅ trise(VRIPPLEMAX) (16)

where trise(VRIPPLEMAX ) can be estimated using (13). Since the upper
bound of the ripple magnitude is used in the above estimation, the
obtained result should be the lower bound of the ripple frequency,
noting that the larger the ripple magnitude is, the larger trise is.

6 Simulation results
To verify the accuracy of the derived models, three digital LDO
circuits were designed using a 0.13 µm CMOS technology. The
designs use the topology in Fig. 1. The schematics of the
comparator and control logic are depicted in Fig. 6. The control
logic is similar to that in [3] and it consists of a 256-bit
bidirectional shift register. Each bit of the shift register controls a
power device. The left input of the shift register is tied to 0 and its
right side input is connected to logic 1. If the comparator output is
1, indicating VLDO < Vref, the register shifts in 0's from it left input
to turn on additional power devices; otherwise, the register shifts in
1's from its right input for turning off excessive power devices. For
the convenience of discussion, the three designs are referred to as
Designs I, II and III and their key design parameters are listed in
Table 1. The designed LDO circuits were simulated using Cadence
spectre tool with net lists generated from schematics. Since the
LDO circuits operate with low clock frequencies and their output
node capacitance is dominated by the large load capacitance, the
schematic simulation should be reasonably accurate. 

Fig. 7 shows the transient response of Design I when its load
current is changed from 50 to 250 μA at 100 μs. The LDO
reference input is 0.3 V in this case. The LDO output waveform
obtained from circuit simulation is depicted by the solid line in the
figure. The waveforms computed by the previous and proposed
analytical models are shown by thin dash line and thick dash-dot
line, respectively. Clearly, it shows that the analytical model
developed in this work more accurately estimates the LDO
transient response compared to the model in [20]. Additional
circuit simulations with different load changes were also conducted
for all the three LDO circuits with various Vref values. The
maximum ripple voltages Vr, max obtained from circuit simulation
and estimated by the model developed in this work are compared in
Table 2. It shows that the estimations from the proposed model are
fairly close to the results from circuit simulations. 

Circuit simulations were also conducted to investigate the
accuracy of using the developed model to predict LDO transient
responses after reference voltage changes. Table 3 compares the
model estimations with results obtained from circuit simulation for
rise time and the maximum overshoot voltage after LDO reference
voltage changes. Note that the reference voltage of LDO Design II
is switched from 0.45 to 0.35 V and hence its overshoot voltages
have negative values, indicating that the LDO output will first go
<0.35 V and then gradually settle at the reference level in its
transient response. The comparison in Table 3 shows that the
values estimated by the developed model and the results obtained
from circuit simulations are reasonably close, which validates the
claim that the developed model is also applicable to estimating
digital LDO transient responses to voltage reference changes. 

Circuit simulations were also conducted to examine the
accuracy of the estimation equations for the steady-state output
ripple magnitude and frequency. The LDO circuit used in this study

Fig. 5  LDO output steady-state ripples
 

Fig. 6  Circuits used in LDO implementations
(a) Comparator used in LDO circuits, (b) Bi-directional shift register for LDO control

 

Table 1 Key design parameters of LDO circuits used in
circuit simulation
LDO circuits I II III
VDD, V 0.5 0.5 0.5
power device (W/L) 0.4/0.12 0.8/0.12 1.2/0.12
f clk, MHz 2 2 2.5
Cload, nF 100 50 100
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has power transistor size as 0.4 μm/0.12 μm. Different clock
frequencies, load currents and output capacitance are selected in
simulations to have four test cases as summarised in Table 4. As
discussed in Section 5, the results from (15) and (16) are the upper
bound of the ripple magnitude and lower bound of the ripple
frequency, respectively. The comparisons in Table 4 confirm the
above statements. To examine how load current affects steady-state
behaviour, Test Cases I and II were selected such that they only
differ by load current values. The comparison between the two
shows that the ripple magnitude decreases with the increase of load
current. Increased load current results in more conducting power
devices and hence reduced R value. Therefore, the ripple
magnitude is reduced as indicated in (15). The comparison also
shows that the steady-state ripple frequency is increased with the
increase of load current, which is mainly due to the decrease of

ripple voltage and hence reduced trise value. Test Cases III and IV
only differ by their output voltage for examining the effect of the
reference voltage on the steady-state behaviour. It shows that
reducing the reference voltage increases the ripple magnitude and
decreases the ripple frequency, which is mainly due to the increase
of R at the LDO output node. 

Finally, the derived models and estimation equations can be
used to locate the ranges of key LDO design parameters for
meeting the targeted transient performance. This helps designers
effectively explore the design space at early design stage. The
following illustrates how to use the developed models to partition
the design space with multiple design constraints. It assumes that
the LDO power supply, reference voltage, and load capacitance are
selected as: VDD = 0.5 V, Vref = 0.45 V, C = 200 nF. Also, the
minimum LDO load current is expected to be 50 μA in the targeted
applications. The targeted performance specifications include: (i)
the steady-state ripple magnitude should be smaller than 1 mV; (ii)
after 50 μA load current change the LDO output settling time
should be smaller than 150 μs with settling error Vϵ < 5 mV. As
discussed earlier, the steady-state ripple magnitude strongly
depends on IPMOS, the current conducted by a single power switch;
the settling behaviour after load change is affected by both IPMOS
and clock frequency f clk. Thus, the design space in this example is
a two-dimensional space with f clk and IPMOS as its horizontal and
vertical axes as shown in Fig. 8. 

When the LDO experiences the minimum load current, it has
the largest output resistance R and hence the largest steady-state
ripple magnitude. From the above selected design parameters, we
know the LDO output resistance is 1 kΩ when it has the minimum
load current. Thus, to satisfy the steady-state ripple magnitude
requirement, the current of a single power switch should be smaller
than 1 µA according to (15). This defines the ripple constraint
boundary of the design space shown in Fig. 8. To satisfy the
settling time requirement, the method discussed in our early work
[20] was used to generate a curve that further partition the design
space as shown in Fig. 8. To verify the obtained design space
partition, six design configurations were simulated with using
Cadence spectre tool. The three configurations located outside of
the compliance region are indicated by symbol ‘×’ and the other
three within the compliance region are represented by ‘▯’. The
settling time and steady-state ripple magnitude measured from
actual circuit simulations are listed beside the symbols. The units
of the settling time and steady-state ripple magnitude are
microsecond and millivolt, respectively. Due to limited space in the
plot, the units are not displayed in the figure. Also, for two design
configurations located in the compliance region, their maximum
ripple voltages after load change are smaller than the error voltage
used to determine settling time. Hence, they automatically satisfy
the settling time requirement and their settling times are not
displayed. These design cases and their circuit simulation results
confirm the validity of the design space partition.

Fig. 7  Simulated and estimated transient response to load current change
 

Table 2 Comparison of simulated and predicted maximum
ripple voltage after load changes
LDO circuits I II III
Vref, V 0.45 0.4 0.3
Iload change, μA 75→150 100→300 100→600
simulated Vr, max, mV 12.4 4.7 70.1
predicted Vr, max, mV 10.6 4.9 74.5

 

Table 3 Comparison of simulated and predicted rise time
and maximum overshoot voltage after Vref change
LDO circuits I II III
Iload, μA 200 300 500
Vref change, V 0.3→0.35 0.45→0.35 0.35→0.4
simulated trise, μs 61.3 61.1 27.1
predicted trise, μs 57.4 53.5 29.2
simulated Vos, mV 38.2 −57.5 23.8
predicted Vos, mV 38.6 −57.4 29.8

 

Table 4 Comparison of simulated and predicted steady-
state output ripple voltage and ripple frequency
Test cases I II III IV
Vref, mV 450 450 480 400
f clk, MHz 2 2 1 1
C, nF 100 100 50 50
Iload, μA 50 200 100 100
VRIPPLE, mV from simulation 1.25 0.32 0.18 4.1
predicted upper bound for VRIPPLE, mV 1.3 0.33 0.2 7.3
f RIPPLE, kHz from simulation 22.13 48.47 45.55 14.2
predicted lower bound for f RIPPLE, kHz 20.95 40.95 37.1 10.9

 

Fig. 8  Design space partition to simultaneously satisfy steady-state ripple
and settling time constraints
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7 Conclusion
This work develops analytical models and closed-form equations
for estimating digital LDO transient performance as well as steady-
state ripples. The accuracy of the developed models and equations
is validated by comparing estimation results with data obtained
from circuit simulations. The use of the estimation equations for
design space exploration is also demonstrated in the paper. The
developed models and equations can be integrated into design
automation tools or directly used by designers to predict LDO
transient performance at early design stage.
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10 Appendix
 
10.1 Appendix 1

This appendix provides the key steps of solving (9). Assume that
there is a function μ(t) satisfying (17) listed below. Multiplying
both sides of (9) by μ(t) results in a perfect derivative expression
on the left hand side of the resultant equation. Thus with the help
of μ(t), (9) can be solved by integration

d μ(t)
dt = IRO

VEQ ⋅ C + iin t
VEQ ⋅ C ⋅ μ(t) (17)

Using (1/μ(t))(d μ(t) /dt) = (d/dt)log μ(t)  and substituting (3) into
(17) yields:

∫ d
dt log μ(t) dt = ∫ IRO

VEQ ⋅ C + sign(Δiload) ⋅ IPMOS ⋅ f clk ⋅ t
VEQ ⋅ C dt (18)

In the above expression, sign(Δiload) is used to indicate if load
current increases or decreases as discussed earlier.

Performing integration on both sides of (18) gives:

μ(t) = e(1/VEQ ⋅ C) IRO ⋅ t + sign(Δiload) ⋅ IPMOS ⋅ f clk ⋅ (t2/2) + Constant (19)

It can be further simplified to:

μ(t) = e(1/VEQ ⋅ C) IRO ⋅ t + sign(Δiload) ⋅ IPMOS ⋅ f clk ⋅ (t2/2) (20)

Multiplying (9) by the obtained μ(t) expression leads to (21).
Introducing substitution terms given in (22) and integrating both
sides of (21) yields the definite integral expressed in (23). Finally,
evaluating the integral in the given interval and dividing it by
eCA ⋅ t + CB ⋅ t2 yields vout t  expression given in (24). Back substituting
the terms in (22) leads to (10)

d e(1/VEQ ⋅ C) IRO ⋅ t + sign(Δiload) ⋅ IPMOS ⋅ f clk ⋅ (t2/2) ⋅ vout t
dt

= e(1/VEQ ⋅ C) IRO ⋅ t + sign(Δiload) ⋅ IPMOS ⋅ f clk ⋅ (t2/2) ⋅ iin t − iload(t)
C

(21)

CA = IRO
VEQ ⋅ C CB = sign(Δiload) ⋅ IPMOS ⋅ f clk

2 ⋅ VEQ ⋅ C

CC = sign(Δiload) ⋅ IPMOS ⋅ f clk
C CD = Δiload

C

(22)
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eCA ⋅ t + CB ⋅ t2 ⋅ vout t = ∫
0

t
eCA ⋅ t + CB ⋅ t2 ⋅ CC ⋅ t − CD dt

= e−(CA2/4 ⋅ CB)

4 ⋅ CB(3/2) 2 ⋅ CB ⋅ CC ⋅ e( CA + 2 ⋅ CB ⋅ t 2/4 ⋅ CB)

− π ⋅ CA ⋅ CC + 2 ⋅ CB ⋅ CD ⋅ erfi CA + 2 ⋅ CB ⋅ t
2 ⋅ CB 0

t

(23)

vout t = CC
2 ⋅ CB 1 − e− CA ⋅ t + CB ⋅ t2

+ e−( CA + 2 ⋅ CB ⋅ t 2/4 ⋅ CB)

4 ⋅ CB(3/2) π ⋅ CA ⋅ CC + 2 ⋅ CB ⋅ CD erfi CA
2 ⋅ CB

−erfi CA + 2 ⋅ CB ⋅ t
2 ⋅ CB

(24)

10.2 Appendix 2

This appendix derives the third-order Taylor series expansion to
approximate the LDO output trajectory. Express the third-order
series expanded at t = 0 with unknown coefficients as

vout t = a ⋅ t3 + b ⋅ t2 + c ⋅ t (25)

By definition of the expansion it follows that:

a = d3 vout t
6 ⋅ dt3

t = 0
= X

6 ⋅ R ⋅ C 3 e−(t /R ⋅ C)

t = 0
= X

6 ⋅ R ⋅ C 3 (26)

b = d2 vout t
2 ⋅ dt2

t = 0
= − X

2 ⋅ R ⋅ C 2 e−(t /R ⋅ C)

t = 0
= − X

2 ⋅ R ⋅ C 2 (27)

c = d vout t
dt t = 0

= Y + X
R ⋅ C e−(t /R ⋅ C)

t = 0
= Y + X

R ⋅ C (28)

The LDO response to a reference voltage change is computed via
(4) by setting Δiload to zero. The rise time trise of the LDO output
after a step change ΔVref of the reference voltage can be
approximated via vout trise = ΔVref. From (25), the rise time is one
of the three roots of:

a ⋅ t3 + b ⋅ t2 + c ⋅ t − ΔVref = 0 (29)

Introducing notation d = − ΔVref and noticing that c = 0 when
Δiload = 0, the above equation is written as

a ⋅ t3 + b ⋅ t2 + d = 0 (30)

If the magnitude of d is not too large, (30) has three real roots.
Thus an arbitrary solution of (30) may or may not be the rise time

to ±ΔVref. For the special case where the linear term of a third
degree polynomial equation is zero, the simplified cubic formula is
given as

t0 = − b3

27 ⋅ a3 − d
2 ⋅ a + b3 ⋅ d

27 ⋅ a4 + d2

4 ⋅ a2
3

+ − b3

27 ⋅ a3 − d
2 ⋅ a − b3 ⋅ d

27 ⋅ a4 + d2

4 ⋅ a2
3 − b

3 ⋅ a

(31)

Also, within the domain of interest, the term under the square root
is always negative. Thus with the substitutions:

A = − b3

27 ⋅ a3 − d
2 ⋅ a , B = b3 ⋅ d

27 ⋅ a4 + d2

4 ⋅ a2 (32)

Equation (31) can be simplified to:

t0 = A ± B ⋅ i3 + A ∓ B ⋅ i3 − b
3 ⋅ a (33)

The complex result is then easily evaluated in polar form:

t0 = A2 + B26 ⋅ e±(i ⋅ arctan (B/A) /3) + e∓(i ⋅ arctan (B/A) /3) − b
3 ⋅ a (34)

As expected imaginary components cancel out in the equation. For
the real component, arctan x  naturally only reveals one of two
possible solutions, located in the first and fourth quadrants of the
complex plane. The desired solution depends on the sign of A. If
A > 0, sign A = 1 and the solution lies within quadrant one.
However, if A < 0, sign A = − 1 and π is added to the argument
of the cosine function in (35), describing the solution in the third
quadrant of the complex plane. (Due to the factor 1/3 resulting
from the cubic root, the argument is still kept within the first
quadrant.)

t0 = − b
3 ⋅ a + 2 ⋅ A2 + B26

× ⋅ cos arctan (B/A) + π (1 − sign(A)/2)
3

(35)

As mentioned earlier, in the domain of interest there exist three real
roots, two of which are positive. t0 in (35) yields the positive root
not corresponding to the rise time of the LDO output. Since t0 is a
root of (30), t − t0  must be a factor of (30). Performing
polynomial division gives the second-order polynomial:

a ⋅ tRISE
2 + b + a ⋅ t0 ⋅ tRISE + b + a ⋅ t0 ⋅ t0 = 0 (36)

Finally, the positive root of (36) corresponds to the rise time of the
LDO output to ±ΔVref. Its solution is given explicitly in (13).
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