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Abstract 

High-linear energy transfer (High LET) irradiation has significant cytotoxic effects on 

different cancerous, stem-like, cells (CSLCs) such as colon CSLCs. A review of the literature 

has indicated that the presence of gold nanoparticles (GNPs) enables low LET irradiation to 

produce a highly non-homogeneous dose distributions like high LET irradiation.The purpose 

of this study was to evaluate the radio-responsiveness of HT29 colon CSLCs under low LET 

irradiation (X-ray) and in the presence of GNPs.Radio-responsiveness was evaluated using 

the ϒ-H2AX foci formation assay, the clonogenic assay, the cell cycle progression assay and 

analyses of radiobiological parameters.In the presence of GNPs, the survival fraction of 

HT29 CSCLs was significantly reduced, and caused significant changes in the radiobiological 

parameters after irradiation. In addition, ϒ-H2AX assay showed that in the presence of 

GNPs, the persistent DNA double strand breaks (DSBs) were significantly increased in 

irradiated HT29 CSLCs. The relative biological effectiveness (RBE) value of GNPs with X-

rays was about 1.6 for HT-29 CSLCs at the D10 stage  when compared to X-rays alone. 

Therefore, the combination of GNPs with X-ray irradiation has potential to kill HT29 CSLCs 

greater than the X-rays alone, and may be considered as an alternative for high LET 

irradiation. 

Keyword: High LET, gold nanoparticle, cancer stem-like cell, DNA double-strand breaks 
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Despite all the recent developments in cancer therapy, colorectal cancer recurrence is 

still a  crucial problem, and the reason for this phenomenon is not fully understood (1,2). 

Many studies support the hypothesis implies that  cancer stem-like cells (CSLCs) contribute  

to the recurrence of the tumor (3,4). Given the important role of colorectal CSLCs in the 

failure of conventional radiotherapy, designing a new radiotherapeutic strategy is imperative 

to aid colorectal CSLCs elimination. 

Based on recent studies, high-linear energy transfer (High LET) irradiation has 

various  advantages (1-4). These include  increased relative biological effectiveness (RBE), 

less cell cycle dependency and inducing unrepairable double strand breaks (DSB) comparing 

to low LET irradiation, X-ray energy (5,6). In the recent reports, it has been demonstrated 

that High LET  irradiation increases killing effects on the CSLCs of colorectal (2), pancreatic 

(7), glioblastoma (6,8), human tongue (9) and breast (10) cells. However, expensive 

establishment of high LET caused some limitations to access this modality (2,11). Therefore, 

the improvement of conventional radiotherapy effects by using some strategies such as 

application of a radiosensitizer can be considered as an effective and affordable method. 

In the last decade, gold nanoparticles (GNPs) were presented as good radiosensitizers owing 

to an increased absorption dose of radiation. Based on the recent nano-dosimetry model, in 

addition to the production of relatively high energy Photo and Compton electrons, interaction 

between radiation and GNPs produce a number of secondary electrons (12). These electrons 

include a shower of low energy and small range Auger electrons that deposit their energy in 

the vicinity of the GNPs and cause highly inhomogeneous dose distributions on the 

nanoscale. A combination of extremely high absorbed doses and exceedingly small volumes 

is the common characteristic that can be frequently seen around particle tracks in high LET 

irradiation (13). Consistently, our previous study showed that the enhancement of absorbed 

dose in HT29 cancer cells under low LET (9MV X-ray) irradiation in the presence of GNPs 
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(14). Moreover, several studies showed that in the presence of GNPs, the number of ϒ-H2AX 

foci was increased in irradiated cancer cells which was due to an increased DNA DSBs (15–

17). 

Based on these evidences, we hypothesized that the combination of GNPs and low LET 

irradiation may efficaciously target CSLCs. To this end, we first evaluated the resistance 

mechanism of HT29 CSLCs to the low LET irradiation through radiobiological parameters, 

cell cycle progression, cell cycle redistribution and the number of induced DNA DSBs. In 

this study, the changes in above mentioned parameters were assessed in the presence of 

GNPs. To the best of our knowledge, this study is the first to explore whether the 

combination of GNPs and X-ray irradiation can enhance radiosensitization of HT29 CSLCs 

and may be considered as an alternative to high LET irradiation.  

Methods 

Cell culture  

Colorectal (HT29) cell line was purchased from Pasteur Institute (Tehran, Iran). Cells were 

cultured in RPMI1640 (Gibco-Invitrogen) supplement by 10% fetal bovine serum, (Gibco-

Invitrogen) and 1% penicillin/streptomycin (Sigma- Aldrich). The cells were incubated at 

humidified atmosphere in 37 °C with 5% CO2. The cells’ medium was changed every two 

days. In order to isolate CSLCs with ability to form spheroid like structure, parental cells 

subcultured  in serum free DMEM/F12 medium (SFM) on collagen type I coated plates 

(Col/SFM) as reported previously (18–20). The morphological changes of HT29 cells and 

formation of spheroid in Col/SFM at various time points investigated with an inverted 

microscopy (Nikon TS100). Also, for viewing the three dimensional conformation of HT29 

spheroid on collagen coated plate using a scanning electron microscopy (SEM), samples were 

prepared as previously reported (21). HT29 CSLCs and parental cells were incubated with 
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final concentration of 80 µM GNPs, 24 h before irradiation. The optimum concentration of 

GNPs was evaluated in our previous study  (14). 

Evaluation of stemness parameters    

Flow cytometry: CD133 expression was assessed in single cell suspensions of HT29 CSLCs and 

parental cells. Briefly, the cells were washed twice with PBS and suspended in the sample buffer 

(PBS, 0.5% BSA and 2mMEDATA). After adding FCR blocking reagent and anti CD133 (CD133/PE 

Human monoclonal, Miltenyi Biotech), the samples were mixed and incubated in the dark for 30 min 

at 40C.The analysis was performed with FACS caliber (BD Biosciences, USA) using the Cell Quest 

software. 

Quantitative real-time, reverse transcription PCR (qRT-PCR): Relative gene expression were 

analyzed using qRT-PCR. Total RNA was extracted from HT29 CSLCs and parental cells using 

GeneAll RiboEx kit (GeneAll Biotechnology, Korea) according to the manufacturer's protocol. 

Complementary DNA (cDNA) was synthesized using the SuperScript II reverse transcriptase 

(Invitrogen). qRT -PCR was performed with an ABI PRISM 7300 instrument (Applied Biosystems, 

US) using SYBR Green PCR Core Reagents (Thermo scientific). The primes used are shown in table 

S1. Standard curves were drown using serial dilution of pooled cDNA, including seven dilutions from 

1/10 to 1/1000. The PCR efficiency was calculated using Eq.1 

Eq.1    E% = 10(1 / Slope) −  1 × 100 (22) 

The change in relative mRNA expression of  stemness genes (23,24), Nanog, Oct4, c-MYC and 

CD133, was assessed using the standard curve method (25). All samples were normalized to GAPDH 

gene expression as the internal control. 

 

 

 

 

Irradiation 
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Irradiation was performed using a clinical accelerator (Neptun 10 PC) at source-to-surface 

distance (SSD) = 100 cm, and 20 × 20 cm2 field size. Two centimeters of a Plexiglass sheet 

(PMMA) was placed on the top of the plate to serve as a built-up material for the 9 MV 

beam. The plate was placed in a phantom made of Plexiglass with a sized cavity of 

12.5×8.5×1.5 cm3 at the center (Fig S1). Mega-voltage radiation (9 MV) was delivered at a 

total dose of 2, 4, 6 and 8 Gy with a dose rate of 300 cGy min-1. In vivo radiation diode 

dosimetry measurements were done for the beam calibration and the variation within a field 

was smaller than 2% for each well. After irradiation, cells were incubated at 37°C, 5% CO2. 

Clonogenic   assay 

Survival fraction was determined based on colony formation assay. Cells were seeded in 6 

well plate before irradiation. Fifteen day after irradiation, the cells were rinsed with PBS, 

fixed and stained with 4% paraformaldehyde solution, Hematoxylin &Eosin stain, 

respectively. Colonies with more than 50 cells were counted in triplicate with Image Master 

2D platinum software. The relative cell surviving fraction was calculated by dividing the 

number of colonies of treated cells by that of the control (26). 

Radioresistance analysis  

Radiobiological parameters: In order to analyze the radiobiology parameters two prevalent 

models (1.) Linear Quadratic Model (LQ-model) and (2.) Multi-targets single hit Model have 

been suggested in this study (27). 

For a single acute dose, Radiation survival curve was fitted using aforementioned models. 

Eventually, α, β, Mean Inactivation Dose (MID), n and D0 radiobiological parameters were 

calculated using Eq 2, 3 and 4.  In presence of GNPs, the sensitivity enhancement ratio (SER) 

value  and the RBE value at D10 (dose required to reduce the survival fraction to 10%), were 

calculated according to Eq.5,6 (6,8). 

http://www.google.com/url?sa=t&rct=j&q=paraformaldehyde%20solution&source=web&cd=2&cad=rja&uact=8&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.scbt.com%2Fdatasheet-281692.html&ei=royqU-_pBsGr0QWizYHICg&usg=AFQjCNF1o7WCGUU_NHyRoqxY55AxjPVr2Q&bvm=bv.69620078,d.d2k
http://www.google.com/url?sa=t&rct=j&q=paraformaldehyde%20solution&source=web&cd=2&cad=rja&uact=8&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.scbt.com%2Fdatasheet-281692.html&ei=royqU-_pBsGr0QWizYHICg&usg=AFQjCNF1o7WCGUU_NHyRoqxY55AxjPVr2Q&bvm=bv.69620078,d.d2k
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Eq.2  𝑆 = 𝑒𝑥𝑝(−(𝛼𝐷 + 𝛽𝐷2)) 

Eq.3  𝑀𝐼𝐷 =  ∫ 𝑆(𝐷)𝑑(𝐷) 

Eq.4 𝑆 = 1 − (1 − 𝑒
−𝐷

𝐷0
⁄ )𝑛 

Eq.5 SER =  MID (X − ray)/MID (X − ray + GNPs) 

Eq.6 RBE =  D10 (X − ray)/D10 (X − ray + GNPs)   

Cell cycle analysis: Cells were trypsinized and washed twice in PBS, then 106 cells fixed 

overnight in 70 % ethanol at -20˚C. The cells were centrifuged, re-suspended in 0.5 ml 

Propidium iodide(PI) staining solution (containing 50 µgml−1 PI and 10 µgml-1 RNase) for 

30 min at RT. Sample were analyzed using a FACS Calibur flow cytometer (BD Biosciences, 

USA). Cell cycle distribution was evaluated before irradiation and 24 hours after exposure to 

2 and 6 Gy irradiation doses. 

ϒ-H2AX  detection by Immunofluorescence: Phosphorylation of histone H2AX is a 

quantitative biomarker for identification of DNA double strand breaks (DSBs) in a cell (28). 

HT29 CSLCs and parental cells were seeded into six-well tissue culture plates containing a 

sterilized cover glass and irradiated with 4 Gy of X-ray in presence and absence of GNPs. 

Cultures were fixed for 20 min with freshly 4% paraformaldehyde and permeabilized with 

0.1% Triton X-100, 2 and 24 hours after irradiation. Cells were blocked with  5% BSA in 

PBS for 40 min at room temperature. The samples were incubated with anti-phospho-histone 

H2AX (Ser139, clone JBW301) mouse monoclonal IgG1 (Upstate) overnight at 4°C and 

followed by secondary antibodies Alexa Fluor1 488 donkey anti-mouse IgG (H + L) for 

45min at room temperature. The cell nuclei were stained with 49, 6-diamidino-2-phenylindole 

(DAPI) for 10 min. The cover slips were mounted on microscope slides using Vectashield 

antifade (Vector Laboratories, Burlingame, CA) and examined with a fluorescence 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0ahUKEwjU5b3v2b_JAhWLWRQKHZNwBu0QFgghMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPropidium_iodide&usg=AFQjCNGNtOzo3USUSECABq-o-lsAzh28xg&sig2=sr-ZG34nBFHRlXZhQVatVw&bvm=bv.108538919,d.d24
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0ahUKEwjU5b3v2b_JAhWLWRQKHZNwBu0QFgghMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPropidium_iodide&usg=AFQjCNGNtOzo3USUSECABq-o-lsAzh28xg&sig2=sr-ZG34nBFHRlXZhQVatVw&bvm=bv.108538919,d.d24
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microscope (Olympus, Magnification:100x objective). The number of ϒH2AX foci were 

counted in 25 nucleus, at least. 

Statistical analysis 

All values are expressed as means ± SD. Differences less than 0.05 (p<0.05) were considered 

statistically significant. All experiments were performed in triplicate and repeated at least 

three times. 

Results  

Serum-free medium unregulated expression of stemness genes and formed sphere 

like structures in HT29 colorectal cancer cells 

 
It is conspicuous that differentiated carcinoma cells die a few days after incubation in serum 

free culture medium and the cells with stem cell features survive and grow as spheroid like 

structure (29). As showed in Fig. 1 sphere formation was started from the third day and 

spheres reached to maximum size after 10 days in Col/SFM. After approximately 10 days of 

culture, the spheres emerged like a ball, round with a smooth surface. Also, an SEM image 

revealed that they had a vaulted structure in Col/SFM (Fig. 2). 

Fig. 1 

Fig. 2 

Flow cytometry analysis indicated that the proportion of CD133, as a specific surface marker 

for colon CSLCs, in parental HT29 cells was approximately 25%. However, in Col/SFM the 

percentage of CD133 in HT29 CSLCs was dramatically increased to 84% as shown in Fig. 3a 

In qRT-PCR analysis, we found that the expression of stemness genes, Nanog, Oct4, c-MYC 

and CD133 was more highly unregulated in the HT29 CSLCs compared with the parental 

cells (P-value<0.05) (Fig. 3b). 
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Fig. 3 

Cell cycle progression differs in HT29 CSLCs and parental cells 

Cell cycle distribution is one of the intrinsic factors that affect the degree of 

radiosensitization. As displayed in fig. 4a, HT29 CSLCs had a significantly higher proportion 

of G0/G1 phase cells compared with parental cells (P<0.05), whereas G2/M phase proportion 

was significantly lower (P <0.05). This result indicated that HT29 CSLCs population are in 

quiescence state and , as a result, they are more radiation-resistant than their parental cells 

(30,31). 

 

Radiation remarkably redistribute HT29 parental cell cycle but have less effect on 

CSLCs 
Activation of cell cycle check point is one of the mechanisms of  DNA damage repair (32). 

Figure. 4a shows that the cell cycle distribution for HT29 CSLCs and parental cells 48 hours 

after 2Gy and 6Gy irradiation. The results indicated that in parental cells a dose-dependent 

cell cycle delay at G2/M phase accompanied by a proportional decrease of cells in G0/G1 

phase. By contrast, less prominent G2 phase retardation was displaced in HT29 CSLCs at 

different radiation doses. In other words, under the same irradiation dose, cell cycle arrest 

effects of radiation on HT29 CSLCs were significantly weaker than those on parental cells 

and irradiation did not induce significant changes in the cell cycle phase distribution of HT29 

CSLCs compared with parental cells (fig. 4b, c). 

Fig. 4 

Radiation in the presence of GNPs decrease the radioresistance of   HT29 CSLCs 

The radiosensitivity of HT29 CSLCs and parental cells in presence and absence of GNPs 

were analyzed using clonogenic assay. Cell survival curves and related radiobiological 

parameters are presented in Fig. 5 and Table 1, respectively. Compared with parental cells, 
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HT29 CSLCs have shown higher survival following irradiation in a wide dose range (P-value 

<0.05).  

HT29 CSLCs and parental cells survival fraction at 2Gy became 91% and 71%, respectively 

(P-value<0.05). Shoulder of HT29 CSLCs survival curve (n) turned wider than parental cells. 

Extracted radiobiological parameters from dose response curve for MID, and D0 were 

significantly higher than the observed in parental cells (P-value <0.05), whereas linear 

component of survival curve (α) was significantly smaller in HT29 CSLCs than parental cells  

The survival fraction of HT29 CSLCs and parental cells in presence of GNPs significantly 

decreased rather than the irradiation alone. The SER value of HT29 CSLCs and parental cells 

were 1.8 and 1.4, respectively. Moreover, changes in linear component and shoulder of 

survival curve in presence of GNPs were evaluated. These parameters determine the type of 

irradiation-induced cell death and present the difference between high and low LET 

energy(33). Surprisingly, in presence of GNPs linear component of HT29 CSLCs 

significantly increased and shoulder of survival curve decreased, as expected for high LET 

energy (P-value<0.05)(33). We found that the RBE value of HT29 CSLCs and parental cells 

for X-ray + GNPs beam relative to X-ray alone at D10 level were about 1.6 and 1.27, 

respectively.  

Fig. 5 

Table. 1 

Induction and persistence of DNA-DSBs in presence of GNPs were increased in 

both HT-29 CSLCs and parental cells.  

DNA DSBs were investigated following 4Gy X-ray irradiation in HT29 CSLCs and parental 

cells by ϒ-H2AX assay. As shown in fig.6, the number of foci induced after 2h in parental 

cells was significantly higher than those induced in CSLCs (p<0.05). These results indicate 

that parental cells were more susceptible to DNA DSBs. In addition, the number of 
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persistence ϒ-H2AX foci 24h after irradiation, unrepairable DNA DSBs, in HT-29 CSLCs 

was lower than parental cells (P-value<0.05). Compared to radiation alone in the presence of 

GNPs the number of ϒ-H2AX foci induced 2 and 24 hours after irradiation in both HT29 

CSLCs and parental cells were significantly increased (P-value<0.05).  

Fig. 6 

 

Discussion 

Based on the recent studies, CSLCs population is highly resistant to conventional radiation 

therapy (2,3,34). Thus, the purpose of this study is to evaluate the radiosensitization  

enhancement of CSLCs in the third most common malignancy, colon cancer (35), in the 

presence of GNPs and low LET irradiation (X-ray). To approach this goal, we used the HT29 

as the most radioresistant colon cancer cell line (36,37). The HT29 CSLCs were firstly 

isolated and characterized; then, the intrinsic radioresitance properties were evaluated. 

Spheroid like structures in Col/SFM expressed CD133 surface marker by 84%. Similarly, the 

mRNA level of the stemness related genes such as CD133, Oct4, c-MYC and Nanog was 

relatively high. These results were in consistent with previous reports that used SFM medium 

for CSLCs  enrichment (19,20,29). 

The intrinsic radio responsiveness of HT29 CSLCs was investigated with clonogenic survival 

curves. As it was shown  in the previous studies (38,39), low value of  linear component (α) 

of  survival curve indicated high intrinsic radioresistance, low induced lethal damage and low 

apoptosis stimuli. Therefore, aforementioned intrinsic characteristics have been expected for 

our spheroid like structures because α parental was higher than α CSLCs in HT29 cell line (see Fig 

5 and table 1). Similarly, a high value of survival curve shoulder (n) observed in HT29 

CSLCs (see Fig 5 and table 1), revealed  high potential repair of sublethal and potential lethal 
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damage as it was previously reported (39,40). Consistently, ϒ-H2AX assay showed fewer 

susceptibility to DNA DSBs induction in HT29 CSLCs than parental cells at 2h after 

irradiation which suggests high radioresistance for HT29 CSLCs (41,42). Unrepairable DNA 

DSBs were determined 24 hours after irradiation by counting the number of persisted ϒ-

H2AX foci (6,43) . The fewer number of persisted ϒ-H2AX foci in HT29 CSLCs indicates a 

larger DSBs restoration capacity than parental cells (6,44–46).   

Therefore, more complex DNA DSBs such as those occurred in high LET-irradiation are 

needed for HT29 CSLCs eradication. Furthermore, the cell cycle distribution before and after 

irradiation as a key parameter of intrinsic radio responsiveness (47) was  also investigated. 

Before irradiation, HT29 CSLCs had higher G0/G1 and lower G2/M phase proportion 

compared to its parental cells. This may  indicate that they are relatively quiescent and have 

slow cycling rate as was previously  reported for CSLCs (39,48). Quiescent state precipitates 

an intrinsic defense mechanism that  enables CSLCs to be resistant  to therapeutic approaches 

targeting  rapidly dividing cells(49). Forty-eight hours after irradiation, there was no obvious 

change in the cell cycle distribution of   HT29 CSLCs; however, the population of cells in G2 

phase was significantly increased in parental cells (Fig 4). The remarkable ability in repairing 

irradiation damages may enable CSLCs  to pass checkpoint arrests more rapidly than parental 

cells (50). Consequently, in line with previous reports (39,48), our results suggest that 

alternation in the checkpoint response might allow HT29 CSLCs to circumvent the 

proapoptotic effects of radiation therapy and finally causes a decrease in cell death and an 

increase in proliferation activity. 

CSLCs properties such as propensity to quiescence, enhanced DNA repair,  unregulated cell 

cycle control systems and  free radical scavenging mechanisms are able to tolerate the effects 

of treatments such as low LET irradiation in which the production of free radicals causes  

sub-lethal and potential lethal damage (40,51). Controversially, a direct action with high LET 
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irradiation predominantly induces clustered unrepairable DNA damages that finally increases 

RBE and decreases cell-cycle-dependent radiosensitivity (52,53). In this study, we showed 

that the combination of GNPs with X-ray energy can enhance radiosensitization of HT29 

CSLCs. The results revealed that GNPs significantly increase α and decrease n components 

of survival curve due to an increased absorbed dose. Additionally, unrepairable DNA DSBs 

in CSLCs significantly were increased in the presence of GNPs. These results may be  

consistent with the expected high LET irradiation effects (6,33,54).  

The most characteristic that distinguished high-LET radiation from low-LET radiation is 

induction of more serious DNA DSBs, described by higher value of the relative biological 

effectiveness (55,56). The colony assay of HT29 parental cells showed the RBE values of 

1.27 in vitro at D10 for X-ray + GNPs (Table1). In previous studies (54,57), using HIMAC 

carbon-ion beams the RBE value of 1.06 to 1.33 for a 13-keV/mm-beam on different cancer 

cell lines such as brain, pancreas and lung tumors was reported. Furthermore, the RBE value 

of HCT116 and Sw480 colon cancer cell lines for a SOBP carbon ion beam, was reported 

1.63 and 1.74 for a 50-keV/mm-beam, respectively (2). These results suggested that the 

calculated RBE value induced by GNPs+X-ray may be almost in consistent with the range of 

13-keV/mm-beam carbon-ion. Additionally, RBE value calculated at the D10 level for HT29 

CSLCs was about 1.6 that significantly was higher than parental cells. Theoretically, these 

findings can be explained by new nanodosimetric models (12,58,59). In the presence of 

GNPs, production of Auger electrons with low energy and small range results in highly 

inhomogenous dose distributions on the nanoscale. Therefore, in parallel with previous 

studies targeted CSLCs with heavy ion (2,6,8,10), it can be implied that the GNPs+X-ray 

induces more complex DNA damages compare to X-ray due to higher RBE value of  HT29 

CSLCs than parental cells . Moreover, these results can suggest that the combination has a 

promising potential to destroy HT29 cancer stem–like cells. 



14 
 

The results of survival curves indicated that this has an advantage over X-rays to target HT29 

CSLCs. Thus, this method can be considered as an alternative for high LET therapy; 

however, further evaluation in in vivo conditions is required. 
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Table:  

Table 1. Radiobilogical parameters of HT29 CSLCs  and parental cells after irradiation 

Parameters Parental cells CSLCs 
Parental cells 

+GNPS 
CSLCs+ GNPs 

SF2 75% 92% 56% 78% 

α 0.14 0.03 0.25 0.1 

MID 5.02 10.39 3.61 5.8 

n 1.6 2.2 1.1 1.8 

D0 3.4 5.1 3.2 4.5 

D50 4.29 10 2.68 5 

SER ̶ ̶ 1.4 1.8 

RBE ̶ ̶ 1.27 1.6 
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Figure legend: 

Figure 1.   Inverted optical microscopy showed the growth   of spheroid liked structure that formed in 

Col/SFM (Magnification: 40x objective). 

Figure 2. SEM images of HT-29 spheroid like structure after 10 days of culture in Col/SFM 

Figure 3 Expression of CD133 surface marker (a) and stemness genes (b) in HT-29 CSLCs and parental 

cells 

Figure 4. Cell cycle analysis of HT29 CSLCs and parental cells before and after irradiation with different 

radiation deses.  (a) Distribution of cell population to different cell cycle phases were analyzed using flow 

cytometry analysis. (b), (c) column graph showing the results from flow cytometry analysis.  

Figure 5. The dose responsive curves of HT29 CSLCs and parental cells in presence and absence of GNPs 

Figure 6. The number of γH2AX foci in HT-29 CSLCs and Parental cells after 4Gy irradiation in 

presence and absence of GNPs 
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