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Here we present the genome sequence and annotation of the wild
olive tree (Olea europaea var. sylvestris), called oleaster, which is
considered an ancestor of cultivated olive trees. More than 50,000
protein-coding genes were predicted, a majority of which could be
anchored to 23 pseudochromosomes obtained through a newly con-
structed genetic map. The oleaster genome contains signatures of
two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28
and ∼59 Mya. These events contributed to the expansion and neo-
functionalization of genes and gene families that play important
roles in oil biosynthesis. The functional divergence of oil biosynthe-
sis pathway genes, such as FAD2, SACPD, EAR, andACPTE, following
duplication, has been responsible for the differential accumulation
of oleic and linoleic acids produced in olive compared with sesame, a
closely related oil crop. Duplicated oleaster FAD2 genes are regu-
lated by an siRNA derived from a transposable element-rich region,
leading to suppressed levels of FAD2 gene expression. Additionally,
neofunctionalization of members of the SACPD gene family has led
to increased expression of SACPD2, 3, 5, and 7, consequently result-
ing in an increased desaturation of steric acid. Taken together, de-
creased FAD2 expression and increased SACPD expression likely
explain the accumulation of exceptionally high levels of oleic acid
in olive. The oleaster genome thus provides important insights into
the evolution of oil biosynthesis and will be a valuable resource for
oil crop genomics.

oil crop | whole-genome duplication | siRNA regulation | fatty-acid
biosynthesis | polyunsaturated fatty-acid pathway

As a symbol of peace, fertility, health, and longevity, the olive
tree (Olea europaea L.) is a socioeconomically important oil

crop that is widely grown in the Mediterranean Basin. Belonging to
the Oleaceae family (order Lamiales), it can biosynthesize essen-
tial unsaturated fatty acids and other important secondary me-
tabolites, such as vitamins and phenolic compounds (1). The olive
tree is a diploid (2n = 46) allogamous crop that can be vegetatively
propagated and live for thousands of years (2). Paleobotanical
evidence suggests that olive oil was already produced in the Bronze
Age (3). It has been thought that cultivated varieties were derived
from the wild olive tree, called oleaster (O. europaea var. sylvestris),
in Asia Minor, which then spread to Greece (4). Nevertheless, the
exact domestication history of the olive tree is unknown (5). Because
of their longevity, oleaster trees might even be related to Neolithic
olive tree ancestors (2). Although the natural long generation time

of olive trees has traditionally hindered breeding in this species,
there are a few breeding programs involving sexual crosses that
have generated interesting varieties for novel uses, like “Chiquitita,”
specifically selected for high-density hedgerow orchards (6).
The olive is tightly associated with the Mediterranean cuisine.

However, its consumption also spread to America (United States,
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We sequenced the genome and transcriptomes of the wild olive
(oleaster). More than 50,000 genes were predicted, and evidence
was found for two relatively recent whole-genome duplication
events, dated at approximately 28 and 59 Mya. Whole-genome
sequencing, as well as gene expression studies, provide further
insights into the evolution of oil biosynthesis, and will aid future
studies aimed at further increasing the production of olive oil,
which is a key ingredient of the healthy Mediterranean diet and
has been granted a qualified health claim by the US Food and
Drug Administration.
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Mexico, Brazil, Argentina, and Peru), Asia (China and India), and
Australia. Aside from cultural reasons, this expansion was mainly
because of the recognition of the beneficial dietetic properties of
olive oil as a source of healthy fatty acids and micronutrients (e.g.,
antioxidants such as phenolic compounds, including vitamin E). In

fact, olive oil has been granted a qualified health claim as reducing
the incidence of cardiovascular disease (i.e., coronary heart dis-
ease) (7) by the US Food and Drug Administration (FDA; docket
no. 2003Q-0559). As such, it represents the third FDA-approved
claim for conventional foods, after nuts and omega-3 fatty acids.

a1
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Fig. 1. The genomic landscape of oleaster. The outer layer represents the karyotype ideogram (colored blocks), with minor and major tick marks labeling
each 5 Mbp and 25 Mbp, respectively. Genome features across the 23 chromosomes (distinct characters shown as different colors, as indicated in the legend).
Gene density per megabase pair. Gene expression patterns in average RPKM (range of RPKM values plotted from 0 to >1,000). Tandem duplication density
per megabase pair. Percentage heat map of repeat coverage per megabase pair. Percentage of TEs per megabase pair (ranges of values plotted from
0 to >50). Inner circular representation shows interchromosomal synteny.
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Moreover, olive tree products and byproducts are also used for
pharmaceutical and cosmetic purposes.
Traditionally, olive oil is obtained by pressing olive fruits. Olive

fruits consist of 20–30% (wt/wt) oil, 17% cellulose, 4% carbohy-
drates, 2% protein, and 0.1% micronutrients (1), with the rest
(46.9–56.9%) being water. Polyols (mannitol) and oligosaccharides
(raffinose and stachyose) are synthesized in olive tree leaves, being
further exported with sucrose into the fruits, for general metabo-
lism and as precursors of olive oil biosynthesis (8). Starting from a
carbon source such as sucrose, long-chain fatty acids are synthe-
sized, modified, and degraded by the activity of enzymes, including
fatty-acid synthases, elongases, desaturases, and carboxylases (9).
Fatty acids are the major constituent of triacylglycerols (TAGs). In
olive oil, TAGs are mostly composed of monounsaturated oleic
acid (C18:1; ∼75% of all TAGs), followed by saturated palmitic
acid (C16; ∼13.5%), polyunsaturated linoleic acid (c18:2 ω-6;
∼5.5%), and α-linolenic acid (c18:3ω-3; ∼0.75%) (10).

Results
Assembly of the Oleaster Genome. The wild olive tree genome was
shotgun-sequenced (220× coverage), generating 515.7 Gbp of data
(SI Appendix, Table S1). SOAPdenovo (11) was used to assemble
the sequence reads, which resulted in a draft genome assembly of
1.48 Gbp, with the scaffold shortest sequence length at 50% of the
genome of 228 kbp (SI Appendix, Table S3), which is in agreement
with genome size estimations from flow cytometry (SI Appendix,
Fig. S1) and k-mer analysis (∼1.46 Gbp; SI Appendix, Fig. S2A and
Table S2). By using a newly constructed genetic map, 50% of
sequences longer than 1 kbp (∼572 Mbp) could be anchored into
23 linkage groups (Fig. 1 and Tables 1 and 2).

Genome Annotation. The annotation of the oleaster genome was
carried out by combining three different approaches, namely ab initio
prediction, homology-based prediction, and transcriptome mapping
(Fig. 1 and Tables 1 and 2). Approximately 51% of the genome
assembly was found to be composed of repetitive DNA (Fig. 1),
which is less than what was found for the draft genome of a
recently published cultivated olive tree (63%) (12). Genome
comparisons between oleaster and nine other plant species showed
differences in gene numbers, transcript lengths, and proportions of
transposable elements (TEs; SI Appendix, Table S5B). TEs and
interspersed repeats occupied ∼43% of the genome (Tables 1 and
2 and SI Appendix, Table S7). LTRs were the most abundant type
of TE (40.3% of genome), which is in agreement with a previous
analysis of a cultivated olive tree (38.8% of genome) (13), followed
by DNA-type TEs (4.6%; SI Appendix, Table S7). A total of 50,684
protein-coding genes were predicted on the current assembly, of
which 47,124 genes (93%) were confirmed by RNA sequencing

(RNA-seq) data. Further, 31,245 genes were located on the an-
chored pseudochromosomes (Fig. 1 and SI Appendix, Fig. S6 and
Tables S8 and S9).
Approximately 90 million small RNA (sRNA) reads from six

different tissues were used for noncoding RNA (ncRNA) anno-
tation (SI Appendix, Figs. S8 and S9 and Tables S10 and S11). A
total of 498 conserved miRNA families and 125 novel miRNAs
were identified. Considering highly conserved miRNAs and their
function, 29,842 miRNA–target pairs, including 7,849 unique
target genes, were predicted. Totals of 4,606, 1,937, and 630
miRNA targets were associated with transcription factors, stress-
response genes, and metabolism genes, respectively (SI Appendix,
Table S12).
Oleaster protein-coding genes were functionally characterized

through Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes (KEGG), which allowed annotation of 72.42% and
50.14% of all genes, respectively (SI Appendix, Table S13). KEGG
metabolic pathway annotations of oleaster and 11 other plant
species, including other oil crops such as Sesamum indicum (sesame)
and Glycine max (soybean), as well as Populus trichocarpa (poplar)
as a reference tree genome, Utricularia gibba (bladderwort) and
Mimulus guttatus (monkey flower) as close relatives within the
Lamiales, and Fraxinus excelsior (European ash tree) as a member
of the Oleaceae family, showed a majority of oleaster genes to be
involved in folding, sorting, and degradation (n = 4,263); bio-
synthesis of secondary metabolites (n = 2,236); carbohydrate
metabolism (n = 1,905); and lipid metabolism (n = 811). Protein
clustering of predicted oleaster genes with genes of other sequenced
plant species resulted in 17,208 gene families, 1,070 of which were
oleaster-specific and 7,522 were shared with the Lamiales F. excelsior,
S. indicum,M. guttatus, and U. gibba. Although the number of gene
families is largely consistent across the different species, the ole-
aster genome contains a large number (n = 8,986) of unique genes
(SI Appendix, Fig. S11 and Table S14).

Genome Evolution. The oleaster genome contains multiple signa-
tures of paleopolyploidy events. Distributions of synonymous
substitutions per synonymous site (KS) for the whole paranome
(the set of all duplicated genes in the genome; SI Appendix, Fig.
S12A) and duplicates retained in colinear regions only (i.e., ex-
cluding duplicates from small-scale duplications; SI Appendix, Fig.
S12B) consistently showed two clear peaks of duplicates at KS
values around 0.25 and 0.75, respectively. Peaks at similar KS
values have been reported for duplicated genes in the genome of
European ash (F. excelsior, a sister to oleaster in Oleaceae) (14).
Most likely, these peaks indicate two rounds of ancient whole-
genome duplication (WGD) in the oleaster lineage (15) shared

Table 1. Statistics of the wild olive tree genome and assembly

Features Statistics

Genome
Size (n, Gbp) 1.48
Karyotype (chromosomes, 2n) 46 = 2n
GC content, % (with/without Ns) 36.8/38.8
High-copy repeat no.

No. LTR/Gypsy and Copia 1,182,454
No. LINE 43,834
No. DNA TE 219,901
No. unknown 42,630

Gene 50,684
Assembly
No. scaffold >100 bp/>1 kbp 2,356,597/42,843
N50 > 100 bp/>1 kbp 228.62/364.6

N50, shortest sequence length at 50% of the genome assembly.

Table 2. Statistics of wild olive tree genome annotation

Annotation No. Total size, Kbp

Size, bp

Average Maximum Minimum

mRNA 50,684 65,933.6 1,300.9 48,863 99
CDS 50,684 52,756.9 1,040.9 16,602 99
Exon 235,149 65,933.6 223.4 7,913 1
Intron 184,465 87,396.5 473.8 42,191 10
miRNA 411 49.979 113.33 24 21
tRNA 798 59.716 74.83 95 63
rRNA 773 121.906 121 1,804 29
snRNA 422 47.737 113 217 62
Tandem

repeat
454,960 372,874.8 819.57 500,000 25

TE protein 428,172 23,958.1 559.54 5,505 24
Transposon 320,201 150,867.9 471.16 5,928 11
5′-UTR 15,172 8,002.1 527.42 38,088 5
3′-UTR 15,075 7,337 486.7 47,263 5
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by olive and ash (14). To establish the age of these two WGDs,
absolute phylogenomic dating (16) was carried out. Absolute dating
suggests that the most recent WGD had occurred approximately 26–

30 Mya (Fig. 2A) and the older one approximately 57–63 Mya (Fig.
2B). As with many other WGDs in different plant lineages, the latter
event seems to have occurred close to the Cretaceous–Paleogene
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Fig. 2. Oleaster genome evolution. (A and B) Phylogenomic dating of O. europaea var. sylvestris paralogs. Absolute age distribution for the most
recent WGD event (KS of approximately 0.25; SI Appendix, Fig. S12A), with a consensus WGD age estimate of 28 Mya and 90% CI of 26–30 Mya
(A). Absolute age distribution for the older WGD event (KS of approximately 0.75; SI Appendix, Fig. S12B), with a consensus WGD age estimate of 59
Mya and 90% CI of 57–63 Mya (B). The solid black line represents the KDE of dated paralogs, and the vertical dashed black line corresponds to its peak,
which was used as the consensus WGD age estimate. Gray lines represent density estimates from 2,500 bootstrap replicates, whereas vertical black
dotted lines indicate the corresponding 90% CI for the WGD age estimate. Blue histogram shows the raw distribution of dated paralogs. (C ) Estimation
of divergence time. Blue numbers on the nodes are divergence time to present (in Mya). The two Oleaceae WGDs are indicated on the tree (blue
rectangles), as are other known WGDs described in the literature for the species shown (gray rectangles; faded rectangles indicate that an absolute date
has not been estimated). Note discussion of phylogenetic relationships in SI Appendix, S.3.2. (D) Fourfold degenerate (i.e., 4DTv) distributions for
S. indicum, V. vinifera, and O. europaea var. sylvestris. Abscissa and ordinate represent 4DTv distance [using the HKY85 (Hasegawa–Kishino–Yano–1985)
model] and percentage of homologous gene pairs, respectively.
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extinction event, providing additional evidence that WGDs—at
least in plants—might be linked with periods of environmental change
or upheaval (17).

Paleopolyploidy events of similar age have been reported for
other asterids in this period. Within the Solanales, a shared whole-
genome triplication has been found in the lineage leading to Solanum
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Fig. 3. Oleic-acid biosynthesis pathway in oleaster. Genes involved in oleic-acid biosynthesis with their differential expression patterns in stem (marked as “S”), leaf
(“L”), pedicel (“P”), and fruit ( “F”) tissues are shown. Heat-map data correspond to start (July; “J”) and end (November; “N”) time points for olive oil biosynthesis. The
first step of such biosynthesis is catalyzed by Acetyl-CoA carboxylase (ACC), carboxylating Acetyl-CoA to form malonyl-CoA, which is converted to malonyl-acyl carrier
protein (ACP) by S-malonyltransferase (SMT). Malonyl-ACP first reacts with 3-keto acyl-ACP, which is elongated by six reaction cycles in which chain-extender units are
added. Then, fatty-acid synthases (FASs) act on that substrate to produce saturated fatty-acid 16-carbon palmitate, which will be desaturated to form unsaturated fatty
acids, such as oleic acid in oleaster. ACPTE, ACP-hydrolase/thioesterase; BCCP, biotin carboxyl carrier protein; EAR, enoyl-ACP reductase; Exp, expanded; FabG,
β-ketoacyl-ACP reductase; FabZ, β-hydroxyacyl-ACP dehydrase; FAD, fatty-acid desaturase; KAS, β-ketoacyl-ACP synthase; SACPD, stearoyl-ACP desaturase; SMT,
S-malonyltransferase. Sesame expression data were retrieved from the Sesame Functional Genomics Database (SesameFG; www.sesame-bioinfo.org/SesameFG/).
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tuberosum (potato) and Solanum lycopersicum (tomato), with an
estimated age approximately 57–65 Mya, using methods similar to
the ones used here (16). Within the Lamiales, multiple WGDs
independent from the paleopolyploidy in the Solanales have been
described: two or three in the lineage leading to U. gibba (one of
which could be shared withM. guttatus) (18) and one in the lineage
leading to S. indicum (estimated age similar to tomato) (19). This
latter one and the oldest WGD in U. gibba could denote the same
event, possibly even shared with the older WGD in the oleaster
and ash lineage, or both could be independent ones, partly depending
on their phylogenetic relationship (SI Appendix, S.3.2). Mean
estimates for the divergence of oleaster from S. indicum are 69–
74 Mya (20–22) or even older (23, 24) (Fig. 2C). Duplication and
speciation events analyzed using fourfold synonymous third-codon
transversion rates (4DTv) also showed that there were probably
two WGDs in oleaster and one WGD in S. indicum, and that these
likely occurred after their divergence (Fig. 2D). Thus, the afore-
mentioned dates and 4DTv patterns suggest that both WGD
events inferred from the oleaster genome (as well as from the
ash one) are specific to Oleaceae and occurred independently of

the WGD in the lineage leading to S. indicum, M. guttatus, and
U. gibba (Fig. 2C; see also ref. 14). This seems further supported by a
phylogenomic analysis of duplicates from the older oleaster WGD,
in which a majority of trees supported an Oleaceae lineage-specific
event (SI Appendix, S.3.4, Fig. S13, and Table S15). High colin-
earity among oleaster chromosomes forms additional evidence for
WGDs. At least 78 duplicated homologous genomic segments,
12 of which are intrachromosomal, were identified in the oleaster
genome. Among them, chromosomes 1 and 12 (4,743 genes), 7 and
14 (2,300 genes), and 6 and 21 (1,361 genes) are remarkably co-
linear (SI Appendix, Fig. S14 and Table S16).

Evolutionary Analysis of Oil Biosynthesis. Olive oil is mainly com-
posed of TAG formed by fatty acids (10). Here, genes involved in
oil biosynthesis were annotated and grouped according to their
sequence identity, pathway, and enzyme codes. KEGG pathway
analysis of genes related to oil biosynthesis in oleaster and 11 other
species showed that the oleaster genome has the highest fraction
of pathways related to lipid metabolism and secondary metabolite
biosynthesis. Among 308 described pathway annotations, some of
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Fig. 4. Oleic-acid biosynthesis pathway in oleaster. (A) Oil content of oleaster and sesame with major genes involved in oil biosynthesis. (B) Heat-map analyses
of oleaster and sesame FAD2 and SACPD genes. Blue lines indicate paralogs, which share orthologs with sesame. The arrow represents up-regulation of FAD2-
3 gene, compared with other paralogs, in July unripe and November ripe fruits. Genes with green font color indicate unique genes in the wild olive tree, which
have no orthologous counterpart in sesame, whereas red font color represents orthologous genes. Sesame genes are labeled with turquoise color. (C and D)
Phylogenetic trees showing the duplication history of sesame and oleaster FAD2 and SACPD genes. Blue squares show duplicated genes after WGD and
tandem duplications (SI Appendix, Fig. S28A). DAP, days after pollination.
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them, such as Ca2+-transporting ATPase (K01537), acyl-CoA oxidase
(K00232), and phosphatidylserine decarboxylase (K01613), are
highly represented in the oleaster genome compared with others.
To further compare the evolution of oil biosynthesis between
oleaster and another major oil-bearing crop, oleaster and sesame
genes were subjected to InParanoid ortholog analysis (25). Among
2,327 oil biosynthesis genes in oleaster, 2,025 seem to have homo-
logs in sesame. After excluding outparalogs, 911 groups of orthologs
could be built, with 1,232 inparalogs for olive tree and 1,171
inparalogs from sesame. Interestingly, 563 oil biosynthesis genes
showed a strict one-to-one orthology between oleaster and sesame
(despite independent WGD in oleaster and sesame), whereas the
rest of the inparalogs (669 in oleaster and 608 in sesame) were the
result of independent and lineage-specific duplication events (see
Fig. 2 C and D). Furthermore, 94 of 267 genes (35%) were found
to be unique to oleaster, in comparison with sesame, in terms of oil
biosynthesis metabolic pathway annotation. Comparing orthologous
genes between oleaster and sesame showed that a large proportion
of genes required for oil biosynthesis have been maintained as du-
plicated genes in the oleaster genome (1,962 genes in 221 families).
In contrast, only a small number of gene families (54 genes in 27
families) showed contraction in oleaster.

Fatty-acid biosynthesis is one of the major steps of complex oil
biosynthesis (26). It includes elongation, degradation, and bio-
synthesis of unsaturated fatty acids and is carried out through the
activity of a large number of genes encoding fatty acid synthases,
elongases, desaturases, and carboxylases. Although the poly-
unsaturated fatty acid (PUFA) pathway is common in plants, and
a considerable number of orthologous gene families (n = 911, as
detailed above) are shared between oleaster and sesame, many
important gene families involved in the oil biosynthesis pathway
were found to be expanded in the oleaster genome compared
with sesame (Fig. 3 and SI Appendix, Fig. S17). Besides the ex-
pansion of some oil biosynthesis gene families in the oleaster
genome, the contraction of gene families encoding degrading/
catabolic enzymes (such as dehydrogenases and hydrolases) may
also be responsible for the differential fatty-acid accumulation in
oleaster and sesame. For instance, the number of linoleic acid
metabolism genes was found to be significantly smaller for oleaster
(n = 20) than for sesame (n = 164).
To explore functional divergence following duplication, expres-

sion analyses were performed in different tissues collected from ripe
and unripe fruits. Interestingly, it was observed that the expression
of duplicated oleaster fatty-acid desaturase (FAD2) genes (FAD2-1,
FAD2-2, FAD2-4, and FAD2-5) was down-regulated in fruit tissues,
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Fig. 5. Regulation of FAD2 gene expression by siRNA. Possible siRNA-binding sites are marked on 5′-UTRs. Interestingly, siRNA can bind to FAD2-1, FAD2-2,
FAD2-4, and FAD2-5 transcripts but cannot bind to FAD2-3 transcripts because of the presence of 12 additional nucleotides in the binding site (SI Appendix,
Fig. S27). Red lines show siRNA molecules. CDS, coding sequence.
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especially during the lipid-accumulation ripening stage. Suppression
of the expression of these genes causes reduced desaturation of
oleic acid into linoleic acid (Fig. 4). FAD2 genes underwent at least
two rounds of WGD events in oleaster, but only one duplication
event in sesame (19) (Fig. 4 B–D). By mapping sRNA reads to
10-kbp regions encompassing the oleaster FAD2 genes (SI Appen-
dix, Fig. S26), we discovered that an siRNA, which originated from
a TE-rich region (27), may bind specifically to the 5′-UTR region of
duplicated copies of the FAD2 gene transcripts, repressing expres-
sion in the fruit tissues. Because of the presence of an additional
12 nt at the siRNA-binding site, the FAD2-3 transcript, unlike the
other FAD2 transcripts, may not be regulated by the activity of the
siRNA in ripe fruit (Fig. 5 and SI Appendix, Fig. S27). The FAD2-3
gene is actively expressed in fruits and is responsible for the con-
version of only a relatively low amount of oleic acid into linoleic
acid (Fig. 4B). Sesame seeds also showed a differential expression
pattern for FAD2 genes (FAD2-1 and FAD2-2), but with low di-
versity (FAD2, π = 0.0016), as reported previously (19). Conse-
quently, silencing effects caused by siRNA on FAD2 olive gene
transcripts (FAD2-1, -2, -4, and -5; Fig. 5), and the low diversity in
FAD2 genes of sesame (19), are likely responsible for the higher
accumulation of oleic acid in oleaster with respect to sesame.
Oleic acid as a major component of olive oil is formed by de-

hydrogenation from stearic acid by stearoyl-ACP desaturase
(SACPD), after which it is desaturated into linoleic acid by FAD2
(7). Expression measurement of oleaster SACPD genes showed
that SACPD1 and 2 have up-regulated expression in leaf tissues,
whereas SACPD7 is highly expressed in fruit tissues. On the con-
trary, SACPD5 was found to be overexpressed in stem and pedicel
tissues. Additionally, expression patterns of SACPD1, 5, and 6
were found at relatively low levels in other tissues (Fig. 4B).
It appears that the oleaster key genes involved in the PUFA

pathway such as enoyl-ACP reductase (EAR), β-ketoacyl-ACP
synthase II (KASII), β-ketoacyl-ACP reductase (FabG), acyl
carrier protein (ACP)-hydrolase/thioesterase (ACPTE), SACPD,
and FAD2 have been expanded by WGD and/or segmental du-
plications (SI Appendix, Figs. S28 and S29 and Table S17).
Synteny analysis suggests that oleaster FAD2-1/-2 and SACPD6/7
paralogs have been duplicated through WGD (SI Appendix, Fig.
S29A). Furthermore, EAR (52 genes), ACPTE (9 genes), FabG
(34 genes), and KASII (7 genes) were shown to be expanded by
WGD (SI Appendix, Figs. S28 and S29 B–E) and tandem and
segmental duplications and now have different expression pat-
terns (Figs. 3 and 4).

Discussion
To date, besides the wild olive tree, the sequencing and assembly of
two cultivated olive tree genomes have been reported, namely O.
europaea cv. Leccino (13) and O. europaea cv. Farga (12), at ∼4×
and ∼150× coverage, respectively. The latter, with a size of 1.31
Gbp, was preliminary annotated solely by using RNA-seq data,
which resulted in more than 56,000 protein-coding genes (12).
Compared with the oleaster genome presented here, the cultivated
olive tree has a smaller genome size, albeit with a higher number of
genes. Unlike some previous reports on olive tree genome data,
which lacked chromosome anchoring and genome-wide functional
annotation (12, 13), our study includes a near-complete repre-
sentation and localization of genes, repeat elements, and sRNA, as
well as functional and metabolic annotations and an evolutionary
analysis of oil biosynthesis genes.
Absolute dating of the two identified WGD events in oleaster and

4DTv patterns suggest that both WGDs, which seem to be shared
with the ash tree, are specific to Oleaceae and independent from
WGDs reported in other non-Oleaceaen Lamiales, including
S. indicum (sesame; Fig. 2C). This is also consistent with synteny
results from the ash tree genome (14). The age of the older WGD is
close to the Cretaceous–Paleogene boundary. Additional Oleaceaen
genomes will be required to determine which of the other lineages

within Oleaceae, apart from ash, share either of the twoWGDs, and
whether one or both are related to patterns of diversification within
the family (28).
The expansion of gene families and the functional divergence of

genes playing important roles in oil biosynthesis may explain the
higher accumulation of oleic acid (∼75% of olive oil) rather than
linoleic acid (∼5.5% of olive oil) in oleaster (10). In sesame seed
oil, both types of fatty acids are more evenly present (∼40%) with
lower variation (±5%; Figs. 3 and 4A) (19, 29). As a result of gene
expansion and loss events in oleaster with respect to the PUFA
pathway genes responsible for the accumulation of oleic and
linoleic acids, the fatty-acid content of olive oil greatly differs from
that of sesame seed oil (10, 19) (Fig. 4A).
Here, consistent with a previous report (27), we also describe

an siRNA sequence that originated from a TE-rich genomic
region. To inhibit expression of duplicated copies of FAD2 gene
transcripts, this regulatory siRNA may specifically bind to the
5′-UTR region of the transcripts in fruit tissues during the oil
production period. In a previous study (30), it was reported that
mutations associated with a duplication of the Oleate Desaturase
(OD) gene caused its silencing by binding of an siRNA, further
promoting accumulation of high levels of oleic acid in sunflower
seeds. Similarly, suppression of FAD2 gene expression as a result
of gene expansion probably leads to the high oleic acid content
in oleaster.
Based on expression analysis, SACPD6/7 may have evolved

through subfunctionalization or neofunctionalization events fol-
lowing their duplication (Fig. 4B). On the contrary, FAD2-1/-2
have probably retained similar functions, as their expression patterns
have not changed (Fig. 4B). Compared with sesame, expansion of
SACPD genes (SACPD1–7) in oleaster has likely led to increased
desaturation activity and increased expression through neo-
functionalization of SACPD2, 3, 5, and 7 in fruit and stem tissues
(Fig. 4B). Thus, neofunctionalized SACPD gene copies in oleaster
are likely also responsible for the differences in oleic and linoleic
acid contents of olive and sesame (19, 30). Recently, it was observed
that mutations in the soybean SACPD-C gene promote higher
accumulation of leaf stearic acid content, as well as changes in leaf
structure and morphology (31). Therefore, SACPD1 and 2, which
are highly expressed in leaves, might be related to leaf morphology
as well as oleic acid accumulation in fruit with overexpressed levels
of SACPD7 (Fig. 4B).

Methods
A full description of the study methods is provided in the SI Appendix.

Plant Material. A wild olive tree (2n = 46) was selected for whole-genome
shotgun and transcriptome sequencing. Genomic DNA was isolated from
leaf tissue (32).

Genome and Transcriptome Sequencing. Sequencing libraries were prepared
and sequenced on the Illumina HiSEq 2000 platform, followed by assembly
with SOAPdenovo (11). Transcriptome libraries of four tissues including leaf,
stem, pedicel, and fruit (ripe and unripe), collected from two different
seasons, were also sequenced.

Genome Assembly. All sequence reads were assembled with the SOAPdenovo
software (11, 33) producing a reference sequence of the oleaster genome. A
total of 319.39 Gbp of clean data were assembled into contigs and scaffolds
by using the de Bruijn graph-based assembler of SOAPdenovo with the
following four steps: (i) building contigs and scaffolds, (ii) filling gaps,
(iii) removing redundancy, and (iv) reconstructing scaffolds.

Genetic Map Construction and Chromosome Anchoring. DNA samples of each
F1 individual and parents were digested with PstI-MseI restriction enzymes
and then ligated with enzyme-compatible adapters. To increase the number
of PstI-MseI fragments, PCR amplifications were performed as described (34).
The DArTsEq (35) genotyping-by-sequencing (GBS) approach was used to
identify SNPs. GBS data were analyzed by using a regression-mapping algo-
rithm of JoinMap 4.0 software (Kyazma) to enable linkage-map construction.
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MapChart 2.0 (36) was used for the graphical presentation of linkage maps.
Genetic linkage maps were constructed to develop the integrated genome
map for anchoring the scaffolds by using 94 individuals from a cross-pollinated
population of a cross between cultivars Memecik and Uslu. For chromosome-
scale pseudomolecule construction, two maps were established from two
progenies: both F1 progenies of 92 individuals (Memecik × Uslu). An inte-
grated map including 1,307 markers was established (37) based on double
heterozygous loci (38, 39). Genetic markers were mapped onto the scaffolds by
using the Burrows–Wheeler Aligner software module for alignment (40) with
default parameters. Afterward, anchoring of assembled scaffolds to genetic
maps was achieved by applying the ALLMAPS software (41).

Repeat Element Analyses. Homology-based and de novo approaches were
used to find TEs in the oleaster genome. The homology-based approach
involved applying commonly used databases of known repetitive sequences,
along with programs such as RepeatProteinMask and RepeatMasker (42).
RepeatModeler (www.repeatmasker.org/RepeatModeler.html) was used with
two ab initio repeat-prediction programs (RECON and RepeatScout) to iden-
tify repeat-element boundaries and family relationships among sequences.
Tandem repeats were also searched for in the genome by using Tandem
Repeats Finder (43).

Gene Prediction. Homology-based and de novo methods, as well as RNA-seq
data, were used to predict genes in the O. europaea var. sylvestris genome.
GLEAN (44) was used to consolidate results. Protein sequences of Arabidopsis
thaliana, S. indicum, S. tuberosum, and Vitis viniferawere aligned with TBLASTN
and genBLASTA (45) against the matching genomic sequence by using
GeneWise (46) for accurate spliced alignments. Next, the de novo gene-
prediction methods GlimmerHMM (47) (https://ccb.jhu.edu/software/
glimmerhmm) and Augustus (48) were used to predict protein-coding
genes, with parameters trained for O. europaea var. sylvestris, A. thaliana,
S. indicum, S. tuberosum, and V. vinifera.

Genome Annotation. Functional annotation was achieved by comparing
predicted proteins against public databases, including UniProtor the UniProt
Knowledgebase, KEGG, and InterPro. Results are available online at the Olive
Genome Browser (olivegenome.org) and Online Resource for Community
Annotation of Eukaryotes (ORCAE; bioinformatics.psb.ugent.be/orcae). Gene-
family clustering was performed by OrthoMCL (49).

Evolutionary Analyses. The GTR+gamma evolutionary model was applied to
reconstruct a phylogenetic tree by using 231 single-copy orthologous genes
from 12 different plant genomes. KS-based age distributions of oleaster
were also constructed to unveil WGD events in oleaster (15). Absolute dating
of two identified WGD events in the oleaster genome was performed as
previously described (16) (SI Appendix, S.3). SyMAP (50) was used to identify
synteny with other species (i.e., S. indicum, V. vinifera, P. trichocarpa, and
S. tuberosum). Circos (51) was applied to generate a circular visualization of
the oleaster genome features. InParanoid was used to identify orthologs
and paralogs with sesame involved in the oil biosynthesis pathways. Addi-
tional information is provided in SI Appendix, S.3.

Availability of Data. The oleaster genome assembly has been deposited in the
National Center for Biotechnology Information (NCBI) GenBank database
(https://www.ncbi.nlm.nih.gov/genbank; accession no. MSRW00000000; BioProject
record ID PRJNA350614). Transcriptome datasets were deposited in the NCBI
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra; accession nos.
SRR4473639, SRR4473641, SRR44742, SRR4473643, SRR4473644, SRR4473645,
SRR4473646, and SRR4473647). The genome and annotation files were
also uploaded into ORCAE (bioinformatics.psb.ugent.be/orcae), Phytozome
(https://phytozome.jgi.doe.gov), and the olive genome consortium Web site
(olivegenome.org).
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