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Abstract: This study presents a monolithic received signal strength indicator (RSSI) 

and an ultra-low power SAR ADC for 5.8GHz DSRC transceiver in China electronic 

toll collection systems. In order to meet the stringent requirement of wide input range 

for the transceiver, two RSSIs collaborate with auxiliary ADC circuits to provide the 

digitalized received signal strength to the digital baseband of a transceiver. The RSSI 

design achieves fast transient response, low power consumption, and a small die area 

with internal active low-pass filters instead of external passive ones. The proposed 

design has been fabricated using a 0.13µm 2P6M CMOS technology. Measurement 

results show that the overall input dynamic range is 86dB with an accuracy of ±1.72dB 

and a transient response of less than 2µs. Compared with the state-of-the-art designs in 

the literature, the overall input range and transient settling time are improved by at 

least 14.6%, and 300%, respectively. 

Keywords—RSSI, ADC, electronic toll collection, fully integrated, ultra-low power 

I.  Introduction 

Electronic toll collection (ETC) systems are widely deployed in intelligent transportation 

systems around the world. In 2015, Chinese Ministry of Communications issued the latest 

Chinese ETC standard, which adopts Amplitude Shift Keying (ASK) modulation and 

Dedicated Short Range Communication (DSRC) at 5.8 GHz. A complete ETC system 

consists of road side units (RSU) and an on-board unit (OBU). An OBU system requires low 

cost, small form factor, low power, good reliability, large dynamic range, and long battery 

life [1-2]. An on-chip fully integrated design, which is composed of RF, analog, and digital 

baseband circuits, is well suited to meet these requirements in OBU systems.  

The amplitude of input signal received at an OBU typically varies significantly. A 

received signal strength indicator (RSSI) circuit can be used to detect and inform the input 

signal level to the baseband of an OBU system, which runs an automatic gain control (AGC) 

algorithm to adjust the receiver gain and ensure continuous coverage (i.e., no dead zone) for a 

wide range of input power levels (e.g., 80dBm). AGC demands a wide dynamic range, good 

linearity, and fast settling time of RSSI circuits [3]. Moreover, since the OBU system is 

battery powered and attached to a vehicle window, it is desired to minimize power 



consumption and limit off-chip components to improve user convenience and system size. 

However, up to date, traditional RSSI circuits [3-7] [10] and [12] have difficulties to realize 

wide input ranges (e.g., 80dBm). These RSSIs also exhibit slow transient response, high 

power consumption, and low level of system integration due to the use of large off-chip 

capacitors. Therefore, it is attractive to develop novel RSSI circuits or system architectures 

that enable higher levels of system integration, a wider input range, lower power 

consumption, and faster settling time. This is the focus of this paper.  

This work makes the following contributions: (a) a new DSRC transceiver architecture is 

proposed, where two identical RSSI circuits work together to achieve a wide dynamic range. 

Each RSSI circuit consists of only on-chip devices, resulting in a much smaller die size while 

achieving fast settling time and low power consumption. To the best of our knowledge, this is 

the first work in the literature to present design details of monolithic RSSI circuits. (b) We 

have implemented and fabricated the proposed RSSI design with an ultra-low power SAR 

ADC in a standard 0.13µm CMOS technology. Measurement results demonstrate the benefits 

of this proposed design in terms of chip area, detection accuracy, power consumption, input 

dynamic range, and transient response. Compared with the state-of-the-art designs in the 

literature, the overall input dynamic range and transient settling time are improved by at least 

14.6%, and 300%, respectively. 

This rest of this paper is organized as follows. In Section II, the proposed RSSI 

architecture in a 5.8GHz DSRC transceiver is presented and analyzed. The details of RSSI 

circuit analysis and implementation are described in Section III. Chip measurement results 

are introduced and discussed in Section IV. Section V concludes the paper. 

II. Proposed RSSI Architecture 

A. DSRC Transceiver Architecture 

 

Fig. 1. Overall architecture of the developed 5.8 GHz DSRC RF-SoC transceiver  

Fig. 1 illustrates the overall hardware architecture of a 5.8GHz DSRC transceiver, which 

includes a wake-up block (WuRx), a receiver (Rx), a transmitter (Tx), a phase-locked loop 

(PLL), a power management block, and a baseband. The entire system operates in three 
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modes: Tx, Rx, and sleep. The signal from/to antenna is controlled by baseband to switch 

among Tx, Rx, and WuRx blocks. A wake-up receiver (WuRx) is required to achieve long 

battery life. The WuRx block is only active in standby mode. The PLL, which includes LC-

VCO block, offers local oscillator (LO) signal for Rx and Tx. To reduce power consumption, 

a duty controller is also realized in the baseband to enable/disable the Rx. 

Rx is composed of a low-noise amplifier (LNA), a down-conversion mixer (MIXER), a 

band-pass filter (BPF), RSSI circuits (RSSI1 and RSSI2), programmable gain amplifiers 

(PGA1 and PGA2), auxiliary ADCs (Aux ADC1 and Aux ADC2), a main ADC buffer, and an 

attenuator for AuxADC2. The BPF is inserted between the MIXER and PGA1. Thus the out-

of-band noise and spur, such as flicker noise and DC offset at low frequency, adjacent-

channel signals at high frequency, can be removed before the in-band signal is passed into 

PGA1. The in-band noise can be avoided by using an active BPF with a 10dB gain. The 

received signal strength has a large variation when a vehicle approaches an ETC system. In 

order to keep an appropriate signal level into the main ADC in Fig. 1, it is necessary to adjust 

the gain of each block in the Rx according to the detected signal strength. In the proposed 

architecture, two RSSI blocks (RSSI1 and RSSI2) and two auxiliary ADC blocks are 

embedded in Rx. The received input signal strength from the antenna is assessed by two 

RSSIs and then digitized by the subsequent auxiliary ADCs. The digitized RSSI signals are 

provided to the baseband. Our system relies on an AGC algorithm to control the gain of each 

block in Rx.  

Fig. 2 depicts the flowchart of proposed AGC algorithm. Once the Rx is enabled, gains of 

Rx circuits enter to gain mode 1. Then, the RSSI1 circuit begins to detect the signal power. 

After the digitized RSSI1 signal is provided to the baseband, based on the signal range of 

RSSI1, the gains of LNA, MIXER, and PGA1 will be adjusted. For example, if the received 

input signal is within the range 4, gain mode 3 is first applied. Then, the RSSI1 value is 

assessed again, the gain mode of LNA, MIXER, and PGA1 is updated accordingly. Finally, 

RSSI2 begins to detect the signal magnitude. Based on the value of RSSI2, the AGC 

algorithm will regulate the gains of PGA2 and ADC buffer. Both RSSIs are always detecting 

the signal strength, the baseband decides which one to read at any given time. 

Fig. 3 plots the gain settings of RSSI1 and RSSI2 circuits for different input signal strength 

according to the proposed AGC algorithm. LNA has three gain options: maximum (Max), 

middle (Mid), and minimum (Min). MIXER and PGA1 have two gain options: maximum 

(Max) and minimum (Min). As the gains of BPF and attenuator circuits are fixed, both 

circuits are not varying with the signals of RSSI1 and RSSI2. The gains of LNA, MIXER, and 

PGA1 are adjusted according to the RSSI1 reading. The gains of PGA2 and ADC buffer are 

adjusted after reading the RSSI2 value. In this design, LNA, MIXER, and PGA1 support 

coarse gain adjustment, while PGA2 and ADC buffer support fine gain adjustment. After 

reading RSSI1, the gain modes of LNA, MIXER and PGA1 are determined as listed in Table 

I. After reading RSSI2, the gain modes of PGA2 and ADC buffer are finalized by the 

complete AGC algorithm in digital baseband. If there is no convergence when reading RSSI2, 

the AGC algorithm will return to start over. According to entire system requirements, the 

targeted input power levels is from -86dBm to 0dBm. As the input signal passes through the 

LNA, MIXER, PGA1 and PGA2 in Fig. 1, each RSSI only needs to handle a portion of the 

whole input signal range. For design simplicity, two RSSIs are designed to be identical, and 

used at different locations of signal path where signal strength to be detected is distinct. An 

attenuator added to RSSI2 to accommodate the higher power level and ensure proper 

detection range for RSSI2. Observed from Fig. 3, an operation range of 40dB is sufficient for 

each RSSI circuit.  



TABLE I. Summary of gain settings of various blocks in targeted receiver input power range 

Gain 

mode 

Receiver input 

power (dBm) 

LNA gain 

(dB) 

MIXER 

gain (dB) 

PGA1 gain 

(dB) 

PGA2 

gain (dB) 

ADC buffer 

gain (dB) 

1 -86 ~ -65 Max Max Max 
Setup by complete AGC 

algorithm in digital 

baseband for fine gain 

control 

2 -65 ~-53 Max Max Min 

3 -53 ~ -38.5 Mid Min Max 

4 -38.5 ~ 28 Mid Min Min 

5 -28 ~ 0 Min Min Min 

 

 

Fig. 2. AGC flow and RSSIs setting flow 
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Fig. 3. Proposed range settings and gain modes of our RSSI circuit 

B. Conventional RSSI Architecture 

 

Fig. 4. Conventional RSSI circuit architecture  

Fig. 4 depicts the conventional RSSI architecture, which consists of a dc offset subtractor, 

a summer circuit, two external passive low-pass filters (LPFs), several limiting amplifiers and 

rectifiers for successive detection [5, 8-9]. The traditional RSSI circuit is based on passive 

low-pass filters with discrete RC components. In order to achieve low bandwidth, large 

capacitance and resistance are required in passive low-pass filters. Due to big area overhead, 

capacitance usually does not integrate on chip. Therefore, extra pads and wiring metal are 

used for off-chip capacitor connection. In contrast, fully integrated active LPFs have the 

advantages of being smaller, lighter, more reliable and less expensive. The dc offset 

cancellation (DCOC) loop includes external LPFs, which increases chip area. The input 

signal is processed through this amplifier chain. In each stage, the voltage signal is converted 

into current domain with a logarithmic transfer function. The summer circuit superimposes 
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output currents of all stages. Then, another external LPF filters out AC components and 

converts the total current into a voltage as the RSSI output. The use of two external passive 

LPFs excludes monolithic integration, increases chip area and signal settling time. 

C. Proposed RSSI architecture 

 

Fig. 5. Proposed RSSI circuit architecture  

A new RSSI architecture is proposed in Fig. 5, where the most left rectifier is removed and 

two external LPFs are replaced. The input signal is amplified by three cascade limiting 

amplifiers. Three rectifiers convert the output signals of these limiting amplifiers into a 

current. If the input signal is very small, the RSSI output voltage is also small. Thus, it leads 

to a bad signal to noise ratio (SNR) of subsequent auxiliary ADC and hence degrades the 

performance of AGC algorithm. To address this challenge, a novel summer circuit is 

proposed, which superimposes the output currents of rectifiers and the bias currents. Note the 

bias currents do not vary with the RSSI input, so the bias currents can be treated as constants. 

To mitigate the impact of process variation, two calibration schemes are developed to change 

bias currents and adjust the load resistor (RLOAD) through digital baseband. 

III. RSSI Circuit Implementation 

A. Limiting amplifier and rectifier 

In [12], a limiting amplifier is a differential one with a gain of 10dB and 250µA at a 1.8 V 

supply. Yet, this design is not efficient because of a complex circuit structure. As shown in 

Fig. 6(a), the proposed design adopts a two-stage amplifier as the fixed gain stage. The circuit 

outlined by dotted lines provides the bias voltage (Vbias), which is generated by Ibias1 through a 

diode connected transistor M0. The source and drain terminals of M9 and M10 are connected 

together to act as bypass capacitors. The proposed rectifier circuit [3, 5, 11] is drawn in Fig. 

6(b), where the unbalanced source-coupled differential pairs rectify the input signals. The 

transistor sizes of M2 and M4 are k (k>1) times of M1 and M3. When there is no input signal, 

the output current Irec reaches its peak value. The output current Irec is expressed as 

𝐼rec = (ID2 + ID4) − (ID1 + ID3)  (1) 

Here ID1, ID2, ID3, ID4 are drain current of M1, M2, M3, M4. This proposed rectifier circuit 

exhibits good linearity, full-wave rectification, and insensitivity to process variation. 
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Fig. 6. (a) Proposed limiting amplifier circuit, and (b) Proposed rectifier circuit 

B. DC offset cancellation 

In a limiting amplifier, offset cancellation is essential to eliminate any offset due to device 

mismatch. An offset cancellation usually consists of an LPF and an offset subtractor. An 

external passive LPF is used in [4-6]. In [10-11], the use of AC-coupling prevents DC offset 

from propagating along the amplifier chain. A common drawback of these prior works is the 

use of large resistor or capacitor, which increases settling time of an RSSI circuit and requires 

extra chip area. The closed loop gain Hclosed and low cut-off frequency, ωL is expressed as 

[21] 

𝐻closed(𝑠) =
𝐴

1+𝐴𝐹
=

AfA0
N(𝜔0+𝑠)

(AfA0
N+1)𝜔0+𝑠

     (2)        00  N

fL AA   (3)         𝜔0 =
1

CfRf
     (4) 

Here, Af and A0 are the gains of offset subtractor and limiting amplifier, respectively, N is 

the stages of limiting amplifiers covered in the DCOC, ω0 is the -3dB frequency of external 

passive LPF. In Rx, the input signal frequency to the RSSI circuit is 5MHz. From the 

equation (4), the required resistance Rf and capacitance Cf are large. In the proposed RSSI 

design, we utilize an active LPF to decrease the size of capacitance and resistance. Based on 

the fundamental circuit analysis, the input-referred offset voltage is approximated as 

    𝑉𝑂𝑂𝑆 =
A

1+Aβ
𝑉𝐼𝑂𝑆 ≅

𝑉𝐼𝑂𝑆

β
     (5) 

Here VOOS and VIOS are the output-referred and input-referred offsets of the RSSI circuit, β 

is the gain of the LPF, and A is the total gain of the limiting amplifier [9]. As the gain of an 

active LPF is much higher, the output-referred offset is much less. 



 

(a)                                                                   (b) 

Fig. 7.  (a) proposed LPF circuit (b) offset subtractor 

Fig. 7(a) depicts the proposed LPF circuit. M3 and M4 work in the deep linear region as 

resistors. Fig. 7(b) shows an offset subtractor, whose inputs are the outputs of the LPF circuit. 

Fig. 8(a) shows the frequency response, where a -3dB bandwidth of 60Hz is observed. Fig. 

8(b) shows the frequency response of the limiting amplifier, whose gain is 46dB and 

bandwidth is from 170 kHz to 16MHz. The achieved 67dB dc offset suppression effectively 

rejects low-frequency signals. 

 
Fig. 8.  Frequency response of (a) the active LPF, and (b) the limiting amplifier 

C. I-V conversion circuit 

In [3-5], the total output current of rectifiers is filtered by a first-order passive LPF, which 

results in long settling time and large die area. In Fig. 9, the proposed I-V conversion circuit 

of current to voltage is shown. To solve the above issues, we design an on-chip active LPF to 

replace the external passive LPF. The required resistance and capacitance are decreased, as 

well as transient response time. The output current IRSSI is shown as 

IRSSI = ID1 + ID2 - Irec (10) 

Irec is the total current from the three stages full-wave rectifiers. ID1 and ID2 are drain currents 

of M1 and M2. Ibias5 is provided by the common bias generator. The output voltage (VRSSI) is 

proportional to the input power. 
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Fig. 9. Proposed I-V conversion circuit 

D. Calibration 

Process variation affects the circuit performance, such as dynamic range and output 

voltage range. We integrated two calibration schemes. First, Fig. 10 is the bias generator, 

where the bias current is controlled by Iadj<4:0> to turn on/off current mirrors. Fig. 11(a) 

plots the simulation results of RSSI output voltage and error versus Iadj. Second, the load 

resistor (RLOAD) is controlled by the digital signal Radj<1:0>. Fig. 11(b) plots the simulation 

results of RSSI output voltage and error versus Radj. Fig. 12 shows the corner simulation 

results of RSSI output voltage before and after calibration. We can see that the RSSI variation 

for three cases of process corners and temperatures are reduced from 2.5dB to 1dB with 

calibration. 
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Fig. 11.  RSSI output and error versus (a) Iadj and (b) Radj 
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Fig. 12. (a) Corner simulation results of RSSI output (a) before and (b) after calibration 
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E. SAR ADC 

We propose an 8-bit successive approximation register (SAR) analog-to-digital converter 

(ADC), in which the logic control circuit, comparators, and capacitive reference network are 

main sources of power consumption. In the literature, several energy-efficient methods [13-

16] have been presented to reduce the switching energy of SAR ADCs. The number of 

conversion bits can be adjusted to balance between the area, power, conversion rate, and 

accuracy [18-19]. In [18], a 10-bit SAR ADC is implemented with a 5-bit DAC, and 

consumes 4.4 µW at a 0.5V supply voltage. In contrast to conventional 10-bit SAR ADCs, 

the total capacitance can be reduced by more than 96%. In [19], a 5-bit DAC helps to realize 

an 8-bit SAR ADC with 212nW at a 1V supply voltage. For SAR ADCs, the conversion rate 

is inversely proportional to the resolution. It is reported [17] that synchronous logic control 

for the ADCs is not power efficient. The design in [20] achieves a sampling rate of 40MS/s 

with doubled power consumption. Therefore, asynchronous operation of comparators gets rid 

of a high-frequency clock and greatly improves the power efficiency [17]. Fig. 13 shows the 

proposed SAR ADC circuit, where the segmented and VCM-based [16] methods are used to 

reduce power consumption. Compared to the traditional binary weighting method, the total 

capacitance is reduced by 50%. In order to reject common-mode noise, a differential 

architecture is adopted [15]. The simulation results of DNL and INL are shown in Fig. 14(a). 

The conversion rate is 32.768MHz with a 1.5V supply voltage. The peak values of DNL and 

INL are -1/1.5 LSB and -1.8/1.8 LSB, respectively. The simulated FFT spectrum shows an 

input frequency is close to 5MHz as shown in Fig. 14(b). The simulation results of signal-to-

noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are 47.633 dB 

and 62.673dB, respectively. The effective number of bits (ENOB) is found to be 7.62. 
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Fig. 13. Proposed SAR ADC Circuit 

 

(a)                                                                     (b) 

Fig. 14. Simulation results of DNL and INL, and FFT power plot 



IV. Chip Measurement Results and Discussions 

The proposed 5.8GHz RF-SoC transceiver is fabricated using a 0.13µm CMOS process. 

Since there are no specific pads in the chip layout to enable measuring the RSSI circuit alone, 

we measure the overall circuit performance of the RSSI and SAR ADC. The chip 

measurement environment and the die micrograph are shown in Fig. 15. The active area of a 

RSSI is 0.07 mm2. A QFN package encapsulated the die. Chip measurements were carried 

out using a dc power supply (i.e., Instek SPS-1230), a signal source generator (i.e., Agilent 

N5182B), a synthesized clock generator (i.e., Stanford Research System CG635) and a test 

signal controller. The table in Fig.15 summarizes the performance results of a RSSI and an 

SAR ADC. In this table, the performance results for RSSI and SAR ARC were measured and 

simulated, respectively. A RSSI only consumes 0.5mW in active mode, while in sleep mode 

it consumes 36nW. Due to the use of on-chip active LPFs, the on-off settling time of this 

design is less than 2µs. 

 

Fig. 15. Chip measurement environment, micrograph, and performance summary 

Fig. 16 plots the measurement results of a RSSI circuit varying with the RSSI input power. 

We can observe that its linear operation range is from -60dBm to -20dBm. The absolute value 

of the measurement error is less than 1.72dB. Fig. 17 shows the measurement results of 

RSSI1 and RSSI2 during the entire chip testing, in which the input power of Rx varies from -

90dBm to 0dBm. Under the control of proposed AGC algorithm, appropriate gain settings 

were adjusted based on the input signal strength. Compared with Fig. 3, the chip 

measurement curves in Fig. 17 validates the correct operation of the proposed AGC algorithm. 

Table III provides a comprehensive comparison of this work with other state-of-the-art 

designs in the literature. The proposed design demonstrates significant advantages in the 

overall chip area, power consumption, accuracy, and off-on settling time. The overall input 

dynamic range achieved is from -86dBm to 0dBm using our AGC algorithm, with an 

accuracy of ±1.72dB. The transient response is less than 2µs. Compared with these existing 

designs [3-7] [10] [12], the overall input dynamic range and transient settling time are 

improved by at least 14.6%, and 300%, respectively. Power consumption and accuracy are 

also better than most of these existing designs in the literature. All of these design 

enhancements are due to the proposed new RSSI circuits and system architecture. 

Main ADC

Aux ADC1

Aux ADC2

Buffer

RSSI2

RSSI1

chip under test

SAR ADC RSSI

Area (mm2) 0.026 Area (mm2) 0.07

Power (mW) 0.516
Power (on 

duty) (mW)
0.5

Peak DNL -1.2 ~ 1.5
Power (off 

duty) (nW)
36

INL (LSB) -1.8 ~ 1.8 Accuracy (dB) <  1.72

Sampling 

rate (MHz)
32.77

Dynamic range 

(dBm)
-60 ~ -20

SNDR (dB) 47.63 On-off settling 

time (µs)
< 2

SFDR (dB) 62.67

ENOB (dB) 7.62 Accuracy (dB) <  1.72



 

Fig. 16. Measurement results of RSSI output voltage versus RSSI input power 

 
Fig. 17. Measurement results of RSSI1 and RSSI2 during the entire system testing 

TABLE II. Comparison of the proposed RSSI with state-of-the-art designs in the literature 

Performance Metric 

IEEE 

2007 

[4] 

IEEE 

2008 

[3] 

CMCE 

2010 

[5] 

IEEE 

2011 

[10] 

TCSC 

2013 

[6] 

IEEE 

2014 

[12] 

IEEE 

2016 

[7] 

This 

work 

Overall chip area (mm2) 0.052 0.2 0.11 0.16 0.21 0.6 0.85 0.14 

Supply voltage (V) 2.5 1.8 1.8 1.2 1.8 1.8 1.5 1.5 

Process (µm) 0.13 0.18 0.18 0.13 0.18 0.18 0.18 0.13 

Total power (mW) 9 4.5 3.7 1.8 2.34 4.68 0.54 1 

Accuracy (dB) ±1 ±2 ±1.5 ±0.5 ±2 ±1 ±2 ±1.72 

Overall  input dynamic 

range (dB) 
56 75 55 56 70 51 75 86* 

Off-on settling time (μs) N/A 20 N/A N/A N/A N/A 8 2 

*this overall dynamic range is achieved by using the proposed algorithm with two RSSIs, 

each of which has a dynamic range of 40dB. 

 



V. Conclusion 

In this paper, a novel RSSI circuit and architecture are proposed and implemented using a 

0.13µm CMOS process for a 5.8GHz DSRC ETC system.  The removal of one rectifier and 

external RC components decreases die size and power consumption. Internal active LPFs in 

the DCOC loop enables full on-chip integration of RSSI circuit, which effectively leads to 

fast transient response. In order to meet the requirement of the wide input range, two RSSIs 

with a smaller dynamic range and a proposed algorithm are used instead of one RSSI with a 

larger dynamic range. Thus, the design complexity of the RSSI circuit is alleviated. Chip 

measurement results show the overall input dynamic range is 86dB with an accuracy of 

±1.72dB, and the transient response is less than 2µs. Compared with the state-of-the-art 

designs in the literature, the overall input range and transient settling time are improved by at 

least 14.6%, and 300%, respectively. 
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