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ABSTRACT 

Insight into environments that contribute recruits to adult fish stocks in riverine systems is vital 

for effective population management and conservation. Catfish are an important recreational 

species in the Mississippi River and are commercially harvested. However, contributions of main 

channel and tributary habitats to catfish recruitment in large rivers are unknown. Stable isotope 

and trace elemental signatures in otoliths are useful for determining environmental history of 

fishes in a variety of aquatic systems, including the Mississippi River. The objectives of this 

study were to identify the principal natal environments of channel catfish Ictalurus punctatus and 

blue catfish I. furcatus in the middle Mississippi River (MMR) using otolith stable oxygen 

isotopic composition (δ18O) and strontium:calcium ratios (Sr:Ca). Catfishes were sampled during 

July-October 2013-2014 and lapilli otoliths were analyzed for δ18O and Sr:Ca. Water samples 

from the MMR and tributaries were collected seasonally from 2006-2014 to characterize site-

specific signatures. Persistent differences in water δ18O and Sr:Ca among the MMR and 

tributaries (including the upper Mississippi, Illinois, and Missouri rivers as well as smaller 

tributaries) were evident, enabling identification of natal environment for individual fish. Blue 

and channel catfish stocks in the MMR primarily recruited from the large rivers (Missouri and 

Mississippi) in our study area, with minimal contributions from smaller tributaries. Recruitment 

and year class strength investigations and efforts to enhance spawning and nursery habitats 

should be focused in the large rivers with less emphasis in smaller tributaries.    
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INTRODUCTION 

 Identifying critical habitats utilized by fishes for spawning, foraging, and refuge is vital 

for effective population management and conservation. Insight into environments and habitats 

that contribute recruits to adult stocks, as well as juvenile dispersal from natal environments, is 

important in understanding metapopulation dynamics (Hanski and Gilpin, 1997). However, 

information regarding spawning locations and early life stage dispersal are often limited and 

particularly challenging to obtain for species inhabiting large river systems (Phelps et al., 2012). 

Many riverine species move significant distances for spawning, growth, and refuge (Fausch et 

al., 2002), and understanding these movements and dispersal patterns is essential for developing 

the most appropriate spatial scales for management (Smith and Whitledge, 2011).   

Large rivers and their tributaries offer a variety of habitats whose contributions to fish 

populations are not well understood. Alteration of geomorphic and hydrological complexity of 

large rivers through channelization, dredging, fragmentation, bank stabilization, and flow 

manipulation has contributed greatly to global declines of riverine species (Galat and 

Zweimüller, 2001). Tributaries may be important contributors to fish assemblages in large rivers, 

particularly at their confluences (Brown and Coon, 1994; Robinson et al., 1998; Benda et al., 

2004). Tributaries that are less altered than the mainstem river may fulfill habitat and life history 

requirements of large-river fishes despite anthropogenic modification of mainstem habitat and 

flow regime (Neely et al., 2009; Pracheil et al., 2009). A recent study of distribution patterns of 

large-river specialist fishes in the Mississippi River basin found that tributaries above a threshold 

discharge (166 m3/s) contained ≥ 80% of the local pool of these species; thus, relatively large 

tributaries represent potential focal areas for conservation of large-river specialist fishes 

(Pracheil et al., 2013). However, the extent to which tributaries represent sources of recruits to 

large river fish populations, particularly species that are not large river specialists, is not well 

understood.  

Catfishes are important recreational species in the Mississippi River and are 

commercially harvested (Pitlo, 1997). Channel catfish Ictalurus punctatus and blue catfish I. 

furcatus are native to the Mississippi River and occur in a wide variety habitats, but are 

characteristic of large, relatively turbid streams and rivers (Pflieger, 1997; Graham, 1999). Blue 

catfish are generally regarded as large-river specialists (Graham, 1999; Pracheil et al., 2013), 

whereas channel catfish are more widely distributed and occupy habitats ranging from small 

rivers and impoundments to large rivers (Smith, 1979; Pflieger, 1997).  Channel and blue 

catfishes may travel great distances in rivers for spawning and foraging (Graham, 1999; Hubert, 

1999), and numerous telemetry studies have documented migratory behaviors and seasonal 

habitat use patterns of adults (Pugh and Schramm, 1999; Garrett and Rabeni, 2011; Tripp et al., 

2011). However, knowledge of the principal natal environments and early life habitat use and 

movement patterns for large river catfishes are limited.  

Microchemical and stable isotopic analyses of fish otoliths are powerful techniques for 

addressing questions regarding environmental history of fishes in numerous freshwater 

environments, including the Mississippi River and tributaries (Zeigler and Whitledge, 2011; 

Phelps et al., 2012; Norman and Whitledge, 2015).  Trace element and stable isotopic 

compositions of otoliths reflect those of environments occupied by a fish (Kennedy et al., 2002; 

Wells et al., 2003), are unaltered metabolically following deposition (Campana and Thorrold, 

2001), and serve as natural markers of environmental history of individuals. Association of 

otolith biochronology with elemental and isotopic composition enables retrospective description 



4 

 

of fish environmental history (including natal environment identification) when an individual has 

resided in chemically distinct locations for a sufficient period of time to incorporate the signature 

of those sites (Kennedy et al., 2002; Whitledge et al., 2007). Otolith chemistry has not been 

applied to identify recruitment sources of catfishes in large rivers. However, Smith and 

Whitledge (2011) validated relationships between water and catfish otolith trace elemental and 

stable isotopic compositions; data from a relatively small sample of catfishes from the Middle 

Mississippi River (MMR) were suggestive of multiple recruitment sources.   

The goal of this study was to determine the principal natal environments of blue catfish 

and channel catfish in the MMR. Specific objectives were to verify that previously reported 

differences in water trace elemental and stable oxygen isotopic compositions among the MMR 

and its tributaries (Zeigler and Whitledge, 2010; Smith and Whitledge, 2011; Zeigler and 

Whitledge, 2011; Myers et al., 2012; Phelps et al., 2012) persisted across years and develop a 

classification model to identify natal river of individual catfish based on relationships between 

water and otolith trace elemental and stable isotopic compositions (Smith and Whitledge, 2011). 

Relative abundances of resident and immigrant origin catfishes were estimated, along with 

catfish movements between chemically distinct environments.   

   

METHODS 

Study area 

 The MMR is the unimpounded section of the river that extends 309 km from the mouth 

of the Missouri River (MOR) to the confluence of the Ohio River and supports recreational and 

commercial catfisheries. Our study area encompassed the entire MMR and included all major 

tributaries along this reach. Water samples were collected from 12 Mississippi River main stem 

and tributary locations (Figure 1). These locations included two sites in the upper Mississippi 

River (pool 25 and 26), two sites in the MMR (Thebes, IL, and Chester, IL), four tributaries of 

the Mississippi River on the Missouri side (Apple Creek, Headwater Diversion Channel, 

Meramec River, and MOR), and four tributaries of the Mississippi River on the Illinois side (Big 

Muddy River, Clear Creek, Illinois River, and Kaskaskia River). Fish sampling sites were 

divided among three reaches of the MMR to assess spatial differences in principal recruitment 

sources of catfishes (Figure 1). The first reach extends from the mouth of the MOR to the 

Kaskaskia River confluence and is influenced by three relatively large tributaries (Illinois River, 

MOR, and upper Mississippi River) with mean annual discharges greater than 651 m3/s and one 

smaller tributary (Meramec River) with a mean annual discharge of 92 m3/s (USGS 2015a, 

2015b). The second reach of the MMR extends from the Kaskaskia River confluence to Big 

Muddy River confluence; this reach is influenced by a single tributary (Kaskaskia River) with a 

mean annual discharge of 109 m3/s (USGS 2015a). The third reach ranges from the mouth of the 

Big Muddy River to the Ohio River confluence and is influenced by relatively small tributaries 

(Apple Creek, Clear Creek, and Headwater Diversion Channel) with mean annual discharges of 

less than 14 m3/s and the Big Muddy River with a mean annual discharge of 60 m3/s (USGS 

2015a, 2015b).         

 

Water collection and analyses  

Duplicate 20-mL water samples for strontium and calcium concentrations (for calculation 

of Sr:Ca ratios) and stable oxygen isotopic composition were collected from each site (Figure 1) 

during June-October 2013 and 2014 to verify persistence of differences in stable isotopic and 
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elemental signatures among the Mississippi River and its tributaries that were present during 

2006-2012 (Zeigler and Whitledge, 2010, 2011; Smith and Whitledge, 2011; Myers et al., 2012; 

Phelps et al., 2012; Norman and Whitledge, 2015). Water samples for stable oxygen isotope 

analysis were collected in scintillation vials and sealed with Parafilm® to restrict evaporative loss 

and fractionation (Kendall and Caldwell, 1998). Samples were analyzed for stable oxygen 

isotopic composition using a high-temperature conversion elemental analyzer (TC/EA) 

interfaced with a Thermo Finnigan Delta V® isotope ratio mass spectrometer at the Southern 

Illinois University Mass Spectrometry Facility. Stable oxygen isotope ratios were expressed in 

the standard delta (δ) notation, defined as the parts per thousand (ppt) deviation between the 

isotope ratio of a sample and standard material (Vienna Standard Mean Ocean Water for water 

δ18O): 

δ18O (‰) = [(Rsample / Rstandard) – 1] x 1000; 

where R represents 18O/16O. Analytical precision estimated from analysis of laboratory standards 

was 0.07‰.  Water samples for analysis of strontium and calcium concentrations were filtered 

using acid-cleaned polypropylene syringes and Whatman Puradisc 0.45-µm polypropylene 

syringe filters (Shiller, 2003; Rude et al., 2014) and refrigerated until over-night shipment and 

analysis at the Center for Trace Analysis, University of Southern Mississippi. Following 

acidification and dilution of water samples in the laboratory (Rude et al., 2014), samples were 

analyzed for 44Ca and 88Sr in high resolution using a Thermo-Finnigan Element 2 (Thermo 

Fisher Scientific, Waltham, MA, USA) inductively coupled plasma mass spectrometer (ICPMS). 

Precision of analysis based on repeated measurements of standards was better than ± 2% (2 SD). 

Elemental concentration data for water samples were converted to molar Sr:Ca ratios 

(mmol/mol).   

   

Otolith preparation and analyses 

Blue catfish and channel catfish were collected from six sites in the MMR (Figure 1) 

during summer 2013 and 2014 using low-pulse DC electrofishing, trawls (Herzog et al., 2005) 

and hoop nets. Individuals in our sample were less than 545 mm TL (< age 8) to allow direct 

comparison with water chemistry data; fish exceeding this length may represent individuals old 

enough to be from year classes (Pflieger, 1997; Oliver, unpublished data) outside the range of 

years for which we have water chemistry data for the MMR and tributaries (2006-2014). 

Catfishes were euthanized with MS-222, placed on ice during transport back to the laboratory, 

and stored frozen until otolith removal. 

Lapilli otoliths were removed from each fish by sectioning through the supraoccipital 

bone 3-5 mm anterior to the base of the pectoral fins (Buckmeier et al., 2002; Smith and 

Whitledge, 2011). Otoliths were extracted using nonmetallic forceps, rinsed with distilled water, 

and stored dry in polyethylene microcentrifuge tubes until further analysis. One otolith from each 

fish was analyzed for stable oxygen isotopic composition. Whole otoliths from young-of-year 

(YOY) individuals were pulverized with a mortar and pestle to provide a fine powdered sample 

for analysis. Otoliths from older juveniles and adults were embedded in Epo-fix epoxy (Electron 

Microscopy Sciences Inc., Hatfield, PA), sectioned in the transverse plane using a Buehler 

ISOMETTM (Buehler Inc., Lake Bluff, IL, USA) low-speed saw, sanded using silicon carbide 

sandpaper (800 and 1000 grit) to obtain a 1.3-1.5 mm section centered on the otolith nucleus, and 

polished with lapping film. Sectioned otoliths were mounted on acid-washed glass microscope 

slides using cyanoacrylate glue. Approximately 300 µg of powdered sample was drilled from the 
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nucleus (reflecting natal environment) of each sectioned otolith using a New Wave Research 

(Portland, OR) micromill and stored in Labco Exetainer (Labco, Ltd., Lampeter, UK) tubes. 

Stable oxygen isotope analysis of otolith subsamples was conducted using a ThermoFinnigan 

Delta V isotope ratio mass spectrometer interfaced with a Gas Bench II (Thermo Fisher 

Scientific, Waltham, MA, USA) carbonate analyzer. All measurements are reported in standard 

delta notation (δ18O, ‰) relative to the Vienna Pee Dee Belemnite standard. Analytical precision 

estimated from analysis of laboratory standards was 0.09‰ for δ18O.  

The second otolith from each fish was used for analysis of Sr:Ca. Otoliths from YOY fish 

were mounted whole on acid-washed glass microscope slides using cyanoacrylate glue, sanded 

(1000 grit) in the sagittal plane to reveal the nucleus, ultrasonically cleaned for 5 minutes in 

ultrapure water, and dried for 24 h under a laminar flow hood. Similarly, otoliths from larger 

juveniles and adults were prepared as described above for stable oxygen isotope analysis, but 

were sanded (800 and 1000 grit) to achieve a 0.5-0.7 mm section revealing annuli, mounted to 

microscope slides using double-sided tape, cleaned and dried as described for YOY Sr:Ca 

otoliths, and stored in acid-washed polypropylene Petri dishes. Sectioned and whole otoliths 

were analyzed for strontium and calcium concentrations using a Perkin-Elmer DRC II (Perkin-

Elmer Life and Analytical Sciences, Shelton, CT, USA) inductively coupled plasma mass 

spectrometer (ICPMS) coupled with a CETAC Technologies (Teledyne CETAC Technologies, 

Omaha, NE, USA) LSX-213 laser ablation system.  The laser ablated a transect extending from 

one side of the otolith core to the edge of the opposite side of the otolith (beam diameter = 100 

μm, scan rate = 5 μm/s, laser pulse rate = 10 Hz, laser energy level = 75%, wavelength = 266 

nm).  A standard developed by the U.S. Geological Survey (MACS-3; CaCO3 matrix) was 

analyzed by laser ablation every 15-20 samples to adjust for possible instrument drift.  Each 

sample analysis was preceded by a 30 s gas blank measurement. Isotopic counts were converted 

to elemental concentrations (μg/g) after correction for gas blank, matrix, and drift effects (Ludsin 

et al., 2006). Mean limit of detection for 88Sr was 0.06 µg/g; concentrations of 88Sr in all otoliths 

were well above the detection limit. Strontium concentration was normalized to calcium 

concentration based on the consideration of calcium as an internal standard and the 

stoichiometric calcium concentration in aragonite. Otolith microchemistry data are reported as 

Sr:Ca ratios (mmol/mol). 

Movements between chemically distinct environments (Figure 4) were assessed by 

examining laser transect data (otolith core to edge) for shifts in otolith Sr:Ca indicative of inter-

river movement.  For each fish, we quantified movement [0 (no movement) or 1 (movement)] 

within each year of life; species, year class, and age were documented. Age was estimated using 

incremental measurements corresponding to otolith annuli to assess year of life for individual 

catfish. Year class was obtained by subtracting the total number of increments by the year of 

capture. 

           

Statistical analyses 

One-way analyses of variance (ANOVAs) followed by Tukey’s honestly significant 

differences (HSD) tests for multiple comparisons were conducted to assess differences in both 

mean water Sr:Ca and mean water δ18O among sampling sites. Least-squares linear regressions 

were updated from Smith and Whitledge (2011) to characterize relationships between water and 

known otolith Sr:Ca and δ18O; this included new water data from our sample period (Figure 3a, 

b). We combined water data among all years and seasons within a given site to calculate the 5th 
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and 95th percentiles of water parameter data for each site using the MEANS procedure in SAS 

(SAS version 9.3, Cary, North Carolina).  

 Identification of natal environment for catfish collected in the MMR required 

classification of ranges of otolith Sr:Ca and δ18O signatures representative of each potential natal 

environment. PROC GLM in SAS was used to calculate 95% confidence limits around predicted 

otolith Sr:Ca and δ18O that corresponded to the 5th and 95th percentiles of water Sr:Ca and δ18O 

for each natal environment category (MOR, Mississippi River, and tributaries; refer to Results) 

using the updated regression from Smith and Whitledge (2011) relating water and otolith Sr:Ca 

and δ18O for catfishes. The 95% confidence limits around predicted otolith Sr:Ca and δ18O 

values served as thresholds that defined the upper and lower limits of expected otolith Sr:Ca and 

δ18O signatures for each natal environment (Figure 4). These ranges of expected otolith Sr:Ca 

and δ18O values for each category were used to identify the natal environment of catfishes of 

unknown origin collected in the MMR. Natal environment was assigned to individual catfish by 

comparing otolith core Sr:Ca (first 25 µm of laser ablation transects) and δ18O with otolith Sr:Ca 

and δ18O signature range limits defined for each category (Figure 4).  

 A loglinear model (Poisson and Negative Binomial distributions and log link) with a 

residual scale parameter was used to assess differences in frequencies of catfish from the three 

categories of potential natal environments (MOR, Mississippi River, or tributaries) between 

species, collection years (2013 and 2014), and river reach using the GLIMMIX procedure in 

SAS. Additionally, movement probabilities between chemically distinct environments were 

calculated for each year class within each species and assessed with logistic regression in a 

generalized linear model framework (Binomial distribution and logit link) using the GLIMMIX 

procedure in SAS. The Pearson Chi-Square divided by the degrees of freedom statistic (closest to 

1) was used as the goodness-of-fit test for all models in conjunction with the Akaike information 

criterion values (smallest relative to other models). An α ≤ 0.05 was designated for all statistical 

tests.             

 

RESULTS 

Water chemistry parameters  

 Mean water Sr:Ca differed among river systems sampled during this study (F9,119 = 

68.82, p < 0.0001) with the highest water Sr:Ca occurring in the MOR (Figure 2a). The Big 

Muddy River and the MMR exhibited intermediate water Sr:Ca values while other tributary 

systems including the upper Mississippi River, Illinois River, Kaskaskia River, Meramec River, 

Apple Creek, Clear Creek, and the Headwater Diversion Channel showed the lowest Sr:Ca 

values. Similarly, mean water δ18O values differed among the MMR and its tributaries (F9,135 = 

26.37, p < 0.0001) with the most negative water δ18O value occurring in the MOR (Figure 2b). 

The upper Mississippi River and the MMR exhibited intermediate δ18O values whereas the 

Illinois River, Kaskaskia River, Meramec River, Apple Creek, Clear Creek, and the Headwater 

Diversion Channel showed the least negative δ18O values. Significant differences were observed 

between the MOR and all other river systems sampled in this study based on mean Sr:Ca and 

δ18O values (Figure 2a,b). In general, the MMR was significantly different from its tributaries 

aside from the Big Muddy River based on Sr:Ca (Figure 2a) and the upper Mississippi River 

based on δ18O (Figure 2b). Due to the inability to clearly distinguish certain tributary systems 

using water Sr:Ca and δ18O, these tributaries (Illinois River, Clear Creek, Headwater Diversion 

Channel, Apple Creek, Big Muddy River, Kaskaskia River, and the Meramec River) were 
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combined to represent a single tributaries (TRB) category that was used in analysis of natal 

environment. Also, the MMR and upper Mississippi River could not be clearly distinguished 

with water δ18O, resulting in these two systems being combined to represent the Mississippi 

River (MSR) as a natal environment category. Therefore, the MOR, MSR, and TRB represented 

the natal environment categories for unknown origin catfish collected in the MMR.   

        

Relationships among water and otolith chemistry and natal environment classification  

 Otolith Sr:Ca from known environmental history catfishes was strongly correlated with 

water Sr:Ca values (F1,27 = 198.50, R 2= 0.88, p < 0.0001; Figure 3a). Otolith δ18O was also 

highly correlated with water δ18O for catfishes of known environmental history (F1,20 = 57.41, R2 

= 0.74, p < 0.0001; Figure 3b).  

 Differences in water Sr:Ca and δ18O among the MOR, MSR, and TRB systems and the 

highly significant linear relationship between water and known otolith Sr:Ca and δ18O for 

catfishes enabled prediction of upper and lower 95% confidence limits for otolith Sr:Ca and δ18O 

“signatures” characteristic of individuals that originated in each of these systems that could 

potentially supply recruits to catfish stocks in the MMR (Figure 4).  Some overlap in predicted 

otolith signature limits for the three natal environment categories (MOR, MSR, and TRB) was 

present, resulting in some combinations of otolith Sr:Ca and δ18O values that were not unique to 

a single natal environment category (Figure 4).     

     

Natal environments of MMR blue and channel catfish 

 A total of 152 blue catfish and 175 channel catfish were collected from the MMR during 

summer 2013 and 2014 (Figure 1). No significant differences based on origin, collection year, 

and river reach were detected between species. However, slight differences among origins within 

species did occur: blue catfish: Pearson χ2 / DF = 0.72, F5,10 = 27, p < 0.0001; channel catfish: 

Pearson χ2 / DF = 1.19, F5,10 = 5.57, p = 0.0035. For blue catfish, the majority of our sample 

originated in the MOR (Figure 5a) with an estimated contribution of 53% to 68%. The MOR 

supplied significantly more recruits when compared to all other potential sources (t10 = 5.02-7.24, 

p ≤ 0.005). The MSR was found to have an estimated contribution of 22% to 46% (Figure 5a) 

and supplied significantly more recruits than TRB (t10 = 4.6, p = 0.0092). Tributaries contributed 

the lowest percentage of individuals for blue catfish (1% to 11%; Figure 5a) and the frequency of 

fish in this category was significantly lower when compared to the MSR and MOR (t10 = 4.6; 

6.11, p = 0.0092; 0.0012). 

 The MOR had an estimated contribution of 31% to 59%, whereas the MSR had an 

estimated contribution of 26% to 67% for channel catfish (Figure 5b); frequencies of channel 

catfish originating in these two natal environments were not significantly different.  Tributaries 

contributed a smaller percentage of channel catfish (1 to 18%; Figure 5b) and the frequency of 

fish that originated in tributaries was significantly lower when compared to those that originated 

in the MSR and MOR (t10 = 3.85; 4.07, p = 0.0280; 0.0202).  

 

Movements between chemically distinct environments  

Movement probabilities of blue catfish were significantly higher than channel catfish 

(F1,641 = 7.24, p = 0.0073). No significant interactions of species by year class, species by age, or 

species by year class by age were detected between species, resulting in similar movement 

probability patterns among species (Figure 6a, b). Within species, year class probabilities were 
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significantly different (F6,641 = 6.57, p < 0.0001) and year class by age probabilities were also 

significantly different (F15,641 = 1.71, p = 0.0453).  

    

DISCUSSION 

 The influence of tributaries on recruitment of numerous fishes in large river networks has 

not been well documented. Large rivers support specialized fauna and often rely on a high degree 

of connectivity with large tributaries to meet the life history requirements of large-river specialist 

fishes (Neely et al., 2009; Pracheil et al., 2009; Pracheil et al., 2013). Relatively large tributaries 

(discharge ≥ 166 cubic meters per second) represent nearly all of the species richness present in 

mainstem rivers and provide opportunities for conserving large-river biota (Pracheil et al., 2013). 

In the present study, the majority of tributaries contributed minimal percentages of recruits to 

MMR blue and channel catfish stocks. Consistent with the findings presented in Pracheil et al. 

(2013), blue catfish (a large-river specialist) primarily recruited from the largest rivers in our 

study area and had minimal influence from smaller tributaries. Similarly, channel catfish (not a 

large-river specialist) recruited primarily from the largest rivers and less than 18% of individuals 

originated in smaller tributaries. This finding is somewhat surprising given the wider distribution 

of channel catfish in Missouri and Illinois compared to blue catfish (Smith, 1979; Pflieger, 1997) 

and suggests that the findings presented by Pracheil et al. (2013) regarding tributary size might 

apply to species other than large-river specialists. However, further research with other non- 

large-river specialist fishes in different river reaches is needed to determine the influence of 

tributary size on recruitment dynamics. Furthermore, future research into the habitat 

characteristics and utilization by channel catfish in smaller tributaries is needed to identify 

factors underlying the relatively small contribution of these small tributaries to channel catfish 

recruitment in the MMR, given that they are not a large-river specialist species. 

 Both blue and channel catfish stocks received a substantial contribution of recruits from 

the MOR. For blue catfish, the MOR contributed significantly more recruits than all other 

sources, whereas for channel catfish, the MOR was not significantly different from the 

Mississippi River. Several potential factors may be important in this finding. The MOR 

confluence defines the upper boundary of the MMR, and its influence as a recruitment source 

was consistent for each species among all three MMR reaches. This consistent influence of the 

MOR as a source of catfish recruits throughout the MMR is likely a result of its size and 

proximity to the MMR. Mean annual discharge for the MOR is 2,476 m3/s (USGS 2015b), more 

similar to that of the MMR than its other tributaries. This similarity may be more conducive for 

meeting the life history requirements of large river species such as catfish (Graham, 1999; 

Hubert, 1999). The MOR also contributes substantially to age-0 Scaphirhynchus sturgeons found 

in the MMR (Phelps et al., 2012), suggesting that the MOR may be an important recruitment 

source for a variety of fish species that occur in the MMR. The lower MOR and MMR are 

unimpounded reaches of each river (Phelps et al., 2012), promoting greater connectivity and 

exchange between these two systems, which may increase availability of habitats required by 

different life history stages of large river species such as catfish. 

 Closure of the commercial catfishery on the lower MOR may also explain the relatively 

high percentage of MMR catfishes that originated in the MOR. In an attempt to reallocate catfish 

resources to recreational users and alleviate overharvest, commercial harvest of catfishes in the 

lower MOR (i.e., the final 1,241 kilometers of the MOR) was closed in 1992 (Galat et al., 1996). 

Numerous studies have shown that changes in both commercial and recreational fishing 
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regulations can positively impact catfish fisheries and increase mature fish abundance and 

recruitment (Pitlo, 1997; Colombo, 2007). Following the commercial harvest closure, the 

average length of catfishes in the MOR increased significantly and the standing crop of age 4-7 

channel catfish increased to 58% in 1996-1997 (Mestl, 1999; Stanovick, 1999).  Enhanced 

standing stocks and recruitment may partially account for the substantial export of recruits that 

from the MOR to the MMR.  Our data suggest that the substantial influence of the MOR and 

minimal influence of other MMR tributaries on recruitment of MMR catfishes persists over time 

due to representation of multiple year classes (2008-2014) in our samples. These year classes 

represent hydrologically different years with discharge ranges varying among years both within 

and among river systems (USGS 2015a, 2015b).  Thus, the observed patterns of catfish 

recruitment sources in the MMR are not solely reflective of very wet or very dry years.  We were 

unable to explicitly test for differences in recruitment sources based on year class due to unequal 

sample sizes among year classes for each species. More extensive sampling of multiple year 

classes will be required to determine whether contributions of the potential natal environments 

(MOR, MSR, and TRB) examined in this study are consistent through time. In addition, other 

large river segments with relatively larger or more numerous tributaries may derive a higher 

portion of recruits from these systems for certain species, especially large-river specialist species 

(Pracheil et al., 2013), and continuing research in this area will aid in evaluating the ecological 

role of large river tributaries and how the MMR compares to other rivers and other sections of 

the Mississippi River.  

 Our data also provide evidence of exchange of catfishes between the MOR, MSR, and 

TRB environments despite certain limitations in our ability to describe specific movements of 

blue and channel catfish. Only a single otolith chemical marker (Sr:Ca otolith transect data) was 

used, resulting in a loss of resolution between chemically distinct environments. Our movement 

estimates are likely biased low as a result of individual catfish having to occupy an environment 

for a sufficient amount of time to record an environmental shift in the otolith. Unlike telemetry 

studies describing catfish movements (Garrett and Rabeni, 2011; Tripp et al., 2011), we were 

unable to describe the exact timing and distance of individual catfish movements. Blue catfish 

exhibited higher movement probabilities between the MOR and MSR/TRB environments 

compared to channel catfish, which is consistent with other studies describing the high mobility 

of blue catfish (Pugh and Schramm, 1999; Garrett and Rabeni, 2011; Tripp et al., 2011). Within 

each species, differences in movement probabilities existed between year classes and differed 

among ages within year classes. These differences in movement probabilities may be related to 

environmental variables such as water temperature and discharge that provide cues for catfish 

movements into overwintering and spawning sites (Pflieger, 1997; Graham, 1999). However, 

due to collinearity with other variables in our data, we were unable to test the effect of discharge 

on movement. Since both species display similar movement probability patterns across year 

classes and age (Figure 6a, b), it is likely that environmental cues have a strong influence. A long 

term data set encompassing multiple fish collection years and representing multiple year classes 

may aid in the ability of future research to detect the effects of discharge and temperature on 

catfish movements using otolith microchemistry.   

 The utility of otolith microchemistry and stable isotopic compositions as natural 

indicators of fish environmental history is dependent on the persistence of geographically based 

differences in water chemistry over time. Our results indicate that previously reported 

differences in water Sr:Ca and δ18O among the middle Mississippi River and its tributaries 
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driven by differences in bedrock geology and hydrologic influences on water isotopic 

composition (Zeigler and Whitledge, 2010; Smith and Whitledge, 2011; Zeigler and Whitledge, 

2011; Myers et al., 2012; Phelps et al., 2012) persisted over the 8-year time period from 2006-

2014.  Although some overlap in ranges of water Sr:Ca and δ18O between the MMR and its 

tributaries occurred when data from 2006-2014 were combined, the distributions of water Sr:Ca 

and δ18O for each of these systems were sufficiently different to yield broad ranges of water 

Sr:Ca and δ18O values that were characteristic of a particular river (e.g., water Sr:Ca values > 2.6 

mmol/mol were observed only in the MMR and MOR and only the MOR had water Sr:Ca values 

> 3.1 mmol/mol).  Differences in water Sr:Ca and δ18O among rivers that represented potential 

natal environments for blue catfish and channel catfish collected from the MMR enabled 

development and application of a single classification model to identify natal river for individual 

fish from otolith core Sr:Ca and δ18O regardless of fish age. Moreover, we restricted the size of 

catfishes collected in this study to less than 545 mm total length (< age 8) (Pflieger, 1997) to 

include on those year classes for which water chemistry data were available throughout their 

lifetime. Because differences in water chemistry parameters have persisted for nearly a decade, 

our classification model will likely be applicable for identifying natal environments of older age 

classes of catfishes collected in the MMR in future years with continued monitoring of water 

Sr:Ca and δ18O. In addition, the water chemistry data and the approach we used to develop our 

classification model will be applicable to other species in the MMR for which identification of 

principal recruitment sources is desired. However, characterization of relationships that are not 

yet available between otolith and water chemical signatures will be required for future study 

species due to differing relationships among taxa (Zeigler and Whitledge, 2010; Norman and 

Whitledge, 2015).    

 Localized management strategies are more likely to benefit fish that recruit from local 

sources and exhibit limited movement compared to more nomadic species (Pugh and Schramm, 

1999). Blue catfish and channel catfish populations in the MMR recruit from multiple sources 

and receive a strong influence from the MOR and Mississippi River. As a result, management 

strategies aimed at protecting and maintaining these important recreational and commercial 

catfish populations should be implemented at a broad spatial scale. Stock assessments and 

population monitoring efforts for blue and channel catfish should include data from both the 

MMR and MOR, warranting a multijurisdictional management approach. Based on our finding 

of the minimal influence on recruitment from the smaller tributaries of the MMR, we should not 

expect these tributary systems to compensate for weak year classes produced in the MMR and 

MOR. Although these smaller tributaries seem to be less important in terms of recruitment, they 

may not necessarily be unimportant for use by other life history stages of catfishes. Several 

studies have indicated tributary use by older age classes in other systems that may correspond to 

increased feeding, growth, and survival (Garrett and Rabeni, 2011; Tripp et al., 2011). Small 

tributaries may provide prey subsidies to riverine fishes, and confluence areas could represent 

beneficial habitats even if small tributaries are not significant recruitment sources. Overall, 

efforts aimed at maintaining, protecting, or enhancing spawning and juvenile channel and blue 

catfish nursery habitats that support stocks of these species in the MMR, as well as recruitment 

and year class strength investigations, should be focused in the large rivers (MMR and MOR) 

themselves, with less emphasis on the smaller tributaries.     
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FIGURE CAPTION LIST: 

 

Figure 1. Map of Mississippi River drainage in Illinois and Missouri showing locations where 

catfishes (open diamonds) and water samples (filled diamonds) were collected.  

 

Figure 2. Boxplots displaying the ranges, medians, and inter-quartile ranges for (a) water Sr:Ca 

and (b) water δ18O from potential natal environments for blue and channel catfish in the middle 

Mississippi River; MMR = middle Mississippi River (Sr:Ca n = 20, δ18O n = 26), UMR = upper 

Mississippi River (Sr:Ca n = 23, δ18O n = 17), MOR = Missouri River (Sr:Ca n = 20, δ18O n = 

19), ILL = Illinois River (Sr:Ca n = 19, δ18O n = 17), CCK = Clear Creek (Sr:Ca n = 10, δ18O n = 

11), HDC = Headwater Diversion Channel (Sr:Ca n = 9, δ18O n = 8), ACK = Apple Creek (Sr:Ca 

n = 10, δ18O n = 8), BMR = Big Muddy River (Sr:Ca n = 10, δ18O n = 11), KAS = Kaskaskia 

River (Sr:Ca n = 10, δ18O n = 8), MER = Meramec River (Sr:Ca n = 9, δ18O n = 9), sampled 

June-October 2006-2014. 

 

Figure 3. Relationships between (a) otolith Sr:Ca and water Sr:Ca (r2 = 0.88, p < 0.0001) and (b) 

otolith δ18O and water δ18O (r2 = 0.74, p < 0.0001) for catfishes of known environmental origin.  

 

Figure 4. Predicted otolith values of the potential natal environments for MMR blue and channel 

catfish; MOR = Missouri River, MSR = Mississippi River, and TRB = Tributaries. Symbols 

represent overlap ranges among natal environments.  

 

Figure 5. Natal river for (a) blue catfish (n = 152) and (b) channel catfish (n = 175) collected 

from the MMR during 2013-2014 determined from otolith core Sr:Ca and δ18O for individual 

fish. Values represent percentages of individuals collected that originated from each river (MOR 

= Missouri River; MOR/MSR = Missouri River or Mississippi River origin; MSR = Mississippi 

River; MSR/TRB = Mississippi River or Tributary origin; MOR/MSR/TRB = Missouri River, 

Mississippi River, or Tributary origin; TRB = Tributary origin).  

 

Figure 6. Movement probability patterns between chemically distinct environments (MOR and 

MSR/TRB) for (a) blue catfish and (b) channel catfish based otolith Sr:Ca transect data. Symbols 

represent year classes within each species and movement probability patterns correspond to ages 

of each respective year class. 



18 

 

 

Figure 1. 

 

 

MISSOURI

ILLINOIS

Missouri River

Ill
in

oi
s 

R
iv
er

   Upper
Mississippi
    River

K
as

ka
sk

ia
 R

iv
er

B
ig

 M
u
d
d
y

  
 R

iv
e
r

    Middle
Mississippi
    River Ohio 

R
iv

e
r

Meramec
   River

N

Water sampling sites

Fish sampling sites

 



19 

 

Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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