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Abstract 

 
The Shortest Job First (SJF) algorithm gives the optimal 

average turnaround time for a set of processes, but it suffers 
from starvation for long processes. In this study, the authors 
developed an algorithm, referred to as Equitable SJF (EQ-
SJF), to reduce the average turnaround time of the long pro-
cesses without notably affecting the turnaround time of the 
short processes. Two parameters, the percentage of a pro-
cess’s burst time to completion and the time spent by a pro-
cess in the waiting queue, were used to provide the designer 
with more tradeoff alternatives in keeping the turnaround 
time of the long processes under control while maintaining 
the turnaround time of the short processes at low levels, as 
they are required for soft real-time tasks. Comparisons with 
previously proposed scheduling algorithms such as the 
Highest Response Ratio Next (HRRN), Railroad Strategy, 
Enhanced Shortest Job First (ESJF), and Alpha show that 
the proposed approach always offers better alternatives. 
 

Introduction 

 
The Shortest Job First (SJF) algorithm is a scheduling 

algorithm that offers the minimum average turnaround time. 
This algorithm can be implemented as either preemptive or 
non-preemptive. In a preemptive shortest job first algorithm, 
the process currently running is forced to give up the pro-
cessor for a new arrival process with a shorter burst time. 
The preemptive shortest job first algorithm is also known as 
the shortest remaining time (SRT) algorithm [1], [2]. In a 
non-preemptive shortest job first algorithm, the scheduler 
assigns the processor to the shortest process. Even if a short-
er process becomes available, the process currently running 
will continue to execute until it is done. The main problem 
with the shortest job first algorithm is starvation [1], [2]. If 
there is a steady supply of short process, the long process 
may never get the chance to be executed by the processor.  
 

Related Work  
 

There is a variety of scheduling algorithms proposed in 
the past to solve the issue of starvation of SJF. One of the 
best known improvements of SJF is Highest Response Ratio 

Next (HRRN) [3]. HRRN assigns a priority to each process 
based on its estimated run time and also on the amount of 
time it has spent waiting in the queue. The task priority is 
calculated according to the equation Priority = 1 + (WT/
BT), where BT and WT are the burst time and waiting time 
of the process, respectively. The process with the highest 
priority is scheduled to run next. The longer a process is 
waiting in the queue, the higher the priority it accrues, 
thereby preventing its starvation. 
 

In Enhanced Shortest Job First (ESJF) [4], processes are 
sorted in a queue in increasing order of burst time. The burst 
time of the first and the last processes in the queue are saved 
in variables ‘S’ and ‘L’, respectively. The next process is 
selected by comparing the values of the two variables. If ‘S’ 
is smaller than ‘L’ then the next shortest process is selected 
and its value is added to ‘S’; however, if ‘S’ is greater than 
‘L’ then the largest process in the rear of the queue is select-
ed to run next. The main disadvantage of ESJF is that if 
there are a lot of small and large processes entering the 
queue, the processes in the middle of the queue might not 
have a chance to get scheduled, causing them to starve.  
  

Das et al. [5] proposed the Railroad Strategy in which the 
priority of a process is based on the equation BTi+WTi+1 < 
BTi+1+WTi, where BTi and WTi indicate the burst time and 
waiting time of process i, respectively. The burst time of 
process i is added to the waiting time of process i+1 and the 
combination, which results in the smaller value, determines 
the process to be scheduled next. If both sides are equal then 
the process with the shorter burst time is given priority. 
Starvation is solved because, as the waiting time of a pro-
cess having a longer burst time increases, its chance of run-
ning next on the processor increases. 

 
Cherkasova [6] proposed the Alpha scheduling algorithm, 

which is adjustable between First Come First Served 
(FCFS) and non-preemptive SJF using the equation Priority 
= C + alpha* BTi, where C is the amount of time the proces-
sor has been servicing processes, alpha is a tuning parame-
ter from 0 to ∞, and BTi is the burst time process i. If alpha 
is set to zero, the algorithm behaves as FCFS. If alpha is a 
finite number, the algorithm behaves as the non-preemptive 
SJF. 

——————————————————————————————————————————————–———— 
Mario Jean Rene, Southern Illinois University at Carbondale; Dimitri Kagaris, Southern Illinois University at Carbondale  

EQUITABLE SHORTEST JOB FIRST: 

A PREEMPTIVE SCHEDULING ALGORITHM FOR 

SOFT REAL-TIME SYSTEMS 

——————————————————————————————————————————————–———— 

EQUITABLE SHORTEST JOB FIRST:  A PREEMPTIVE SCHEDULING ALGORITHM FOR SOFT REAL-TIME SYSTEMS                      15 



——————————————————————————————————————————————–———— 

——————————————————————————————————————————————–———— 

 16                           INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND INNOVATION | V6, N1, SPRING/SUMMER 2014 

Aims/Objectives 
 

In this current study, the authors considered that the pool 
of jobs to be scheduled was a mixture of computationally 
intensive jobs, which will be referred to here as “long’’ 
jobs. Low latency real-time jobs with soft deadlines [7-10] 
will be referred to as “short” jobs. The aim was to provide 
close-to-optimal average turnaround times within the soft 
deadline for short processes, while decreasing the average 
turnaround time for long processes. The SJF algorithm guar-
antees the minimum average turnaround time for the short 
process, but this may well be below the soft deadline, in 
which case the longer processes could receive a better treat-
ment and avoid unnecessarily long waiting times and, even-
tually, starvation. The proposed methodology addresses 
exactly this issue: a priority is assigned to a process based 
(i) on the percentage of its burst time to completion con-
trolled by parameter e, and (ii) on the time spent by the pro-
cess in the waiting queue controlled by parameter q. Param-
eter e protects a currently running process from being 
preempted when its remaining execution time reaches a 
percentage of its total burst time. Parameter q gives priority 
to a process when its waiting time exceeds a certain amount 
of its burst time. Two variants of the proposed scheduling 
methodology were developed and evaluated with respect to 
previously proposed approaches. 
 

In the following sections, the authors describe the main 
algorithm, referred to as Equitable Shortest Job First (ΕQ-
SJF); a variant of the algorithm, EQ-SJF with Round Robin 
protection (EQ-SJF-RR); experimental results comparing 
the proposed algorithm with previous approaches; and, fi-
nally, conclusions. 
 

EQ-SJF: Equitable Shortest Job First  
 

The proposed Equitable Shortest Job First (EQ-SJF) algo-
rithm is based on two parameters, e and q. Parameter e pro-
tects the currently running process from being preempted 
when its execution time reaches a percentage, e%, of its 
total burst time. Parameter q gives priority to a process 
when its waiting time exceeds q times its burst time.  

 
The pseudocode for algorithm EQ-SJF is given in Figure 

1. Here, C denotes the currently running process; DNP de-
notes the “do not preempt” flag; “Queue” denotes the wait-
ing queue; and BT(i), WT(i), and RT(i) denote the burst 
time, waiting time, and remaining time of process i, respec-
tively. At every cycle, algorithm EQ-SJF determines if there 
is a new event (i.e., an arrival or a completion). If the new 
event is an arrival, the algorithm examines if the queue is 
empty and if there is no process currently running. In that 

case, the new process will become the currently running 
process and the DNP flag is set to 0. Otherwise, the new 
arrival is inserted into the waiting queue. If the new event is 
a process completion, the DNP flag is set to 0. After these 
checks for a new event, the algorithm does the following: If 
the Queue is not empty but there is no process currently 
running (i.e., C is null), the algorithm picks a job, k, with 
the shortest remaining time, RT(k), from the waiting queue 
and runs it next. Otherwise, if the queue is not empty but 
there is a process currently running and the DNP flag is set 
to 0, the algorithm does the following in order to decide 
whether to preempt the process or not: If RT(C) is less than 
or equal to e * BT(C), the current process is not going to be 
preempted and the DNP flag is set to 1. Otherwise, the algo-
rithm examines whether there exists a process k resulting in 
the maximum positive value WT(k) - q * BT(k). If that is 
the case, the algorithm will preempt the currently running 
process and replace it with process k, setting the DNP flag 
to 1. Otherwise, the algorithm finds a process k with the 
minimum value RT(k). If it is less than the remaining time 
of the currently running process, RT(C), the currently run-
ning process is preempted and is replaced by k, with the 
DNP flag set to 0. An illustration of the algorithm is given 
in Table 1 using arrival times and burst times. 
 

Assuming that e = 0.5 and q = 0.5, the algorithm sched-
ules process p1 at t=0 (see Figure 2). At t=2, p2 arrives with 
a burst time of 2. Process p1 has 6 cycles left to finish its 
execution, which is more than 50% of its burst time and 
because p2 has a shorter time, the scheduler preempts p1 
and gives the processor to p2. Process p2 finishes execution 
at t=4 and p1 is scheduled next as it is the only one in the 
queue. After using the processor for 2 cycles, p3 arrives at 
t=6 with a burst time of 3. Process p1 still has 4 cycles to 
go, which is longer than p3, but p1 is protected from getting 
preempted as its remaining time is equal to or less than 50% 
of its burst time. Process p1 continues to run until it com-
pletes execution at t=10. Next, the scheduler selects be-
tween p3 with 3 cycles and p4 with 1 cycle. The scheduler 
selects p3, despite the fact that p4 has a shorter time, be-
cause the waiting time of p3 is equal to or greater than 
q=0.5 times its burst time. The scheduler runs p3 for 3 cy-
cles, and then p4 completes its execution at t=14.  

 
Table 1. Process Arrival and Burst Times 

PROCESS ARRIVAL TIME BURST TIME 

p1 0 8 

p2 2 2 

p3 6 3 

p4 9 1 



——————————————————————————————————————————————–———— 

 

Figure 1. The EQ-SJF Scheduling Algorithm 

 

 
Figure 2. Example of EQ-SJF with (e=0.5, q=0.5) 

The schedules for q = 0.5 and e = 0.75, and q = 0.5 and e = 
0 are given in Figures 3 and 4, respectively. 

Figure 3. Example of EQ-SJF with (e=0.75 and q=0.5) 

 

Figure 4. Example of EQ-SJF with (e=0, q=0.5) 
 

Figures 5-7 refer to the case where the algorithm is inde-
pendent of q–indicated by q =∞. At e=0, EQ-SJF behaves as 
the normal shortest job first with preemption and at e =1 it 
behaves as the normal shortest job first without preemption. 
The example schedules in this case for e = 0.5, e = 0.75, and 
e =0 are given in Figures 5-7, respectively.  

Figure 5. Example of EQ-SJF with (e=0.5, q=∞) 

Algorithm EQ-SJF 
 
1. Check for new event; 

 
2. if (event == “Arrival”){  
3.  if ( (Queue, C) == ( Empty, Null) )  
4.   {set C to the new arrival; set DNP = 0;} 
5.  else  
6.   add new arrival to Queue; 
7. } 
8. else if (event == “Completion”)  
9.   {set C to Null; set DNP = 0;} 

 
10. if ((Queue, C) == ( Non-Empty, Null) ) {  
11. find process k with the min value   

  rk =minj{RT(j)}; 
12.   set C to k; set DNP = 0; 

 
13.   }else if ((Queue, C) == ( Non-Empty, Non-Null)  

    and ( DNP == 0)) { 
  

14. if( RT(C) ≤ e * BT(C) ) set  DNP = 1;  
15.   else{ 
16.  find process k with max value 

wk = maxj{WT(j)- q * BT(j)} 
17. if (wk > 0){ 
18.    add C to Queue; 
19.     set C = k; set DNP = 1; 
20.  } else{  
21.     find process k with the min value   

 rk =minj{RT(j)}; 
22.   if (rk < RT(C)){ 
23.     add C to Queue; 
24.  set C = k; set DNP = 0; 
25.         } 
26.       } 
27.     }  
28.   }  
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Figure 6. Example of EQ-SJF with (e=0.75, q=∞) 

 

Figure 7. Example of EQ-SJF with (e=0, q=∞) 

 

EQ-SJF with Round Robin 

 
In the EQ-SJF algorithm, a “short” real-time process may 

be denied immediate service (line 13 in Figure 1 when DNP 
= 0) if the currently running process has reached its e 
threshold (line 14 in Figure 1, whereby DNP was set to 1). 
Also, a “short” real-time process may be preempted by an-
other process that has reached its q threshold (lines 16-19 in 
Figure 1). In either of these cases, the short process may 
have to wait a relatively long time interval with respect to 
its deadline in order to regain the processor. For this reason, 
a modification to the basic EQ-SJF algorithm is not to allow 
the process that has gained access to the processor, due to 
its e or q threshold, to hold the processor exclusively (by 
setting the DNP to 1). Rather, the processor can be shared in 
a round robin (RR) fashion among that process and a num-
ber r of the processes that have the shortest remaining time. 
Round robin sharing is done until the first process finishes 
its execution. This version is referred to as EQ-SJF-RR and 
is described next, using the example processes from Table 
1. 
 

The case for q=0.5, e=0.5, and r=1 is shown in Figure 8. 
The scheduling is the same as for the example of Figure 2, 
until time t=6. At t=6, process p3 arrives with a burst time 

of 3 cycles. Process p1 with a remaining time of 4 cycles, 
which is larger than p3, is protected from giving up the pro-
cessor completely as its remaining time is equal to or less 
than 50% of its burst time. At this point, the scheduler goes 
to round robin between p1 and the shortest process in the 
queue, which is p3. Process p4 arrives at t=9 with a burst 
time of 1 cycle, but the scheduler continues doing round 
robin between p1 and p3 because r=1. Process p3 finishes 
its execution at t=11. The scheduler continues performing 
round robin with p1 and the shortest process in the queue, 
which is now p4. Process p1 runs for 1 more cycle and gives 
up the processor at t=12. Process p4 finishes at t=13 and p1, 
being the only process left in the queue, takes over the pro-
cessor and finishes execution at t=14.  

Figure 8. Example of EQ-SJF-RR with (e=0.5, q=0.5, r=1) 
 
The schedules for (e = 0.75, q = 0.5, r=1) and (e = 0,  
q = 0.5, r=1) are given in Figures 9 and 10, respectively. 

Figure 9. Example of EQ-SJF-RR with (e=0.75, q=0.5, r=1) 

Figure 10. Example of EQ-SJF-RR with (e=0, q=0.5, r=1) 
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Experimental Evaluation 
 

The proposed scheduling algorithms EQ-SJF and EQ-SJF
-RR were implemented in C and their performance was 
evaluated against that of SJF, HRRN [3], ESJF [4], Railroad 
Strategy [5], and Alpha [6]. Two arrival traffic patterns 
were generated: random and peak random. For the random 
arrival pattern, the arrival times were randomly generated 
for all of the processes. For the peak random pattern (i.e., 
for every randomly selected time at which a long process 
arrives) a number (e.g., 10 or 20) of short processes were 
generated at the same arrival time. The burst times of the 
long processes were randomly generated from 40 to 50 and 
80 to 100 time units. The burst times of the short processes 
were randomly generated from 1 to 10 time units. In all cas-
es, the total average turnaround times for all processes 
(TATT), along with the average turnaround time for long 
processes (LATT) and average turnaround time for short 
processes (SATT), were computed.  
  

Rationale and Analysis 
 

Tables 2-9 show the TATT, LATT, and SATT for the 
different scheduling algorithms. It should be noted that the 
SJF offers the best TATT but not the best LATT. The ra-
tionale in comparing these algorithms was to see which one 
offered the next best SATT (after the one that SJF offers) in 
order to reduce the LATT. The amount of the LATT reduc-
tion is of secondary importance in these comparisons since 
the priority was not to significantly increase the SATT of 
the soft real-time processes and, thus, avoid violating their 
ultimate deadlines. 
 

The first column in each of the tables shows the algo-
rithms; the second column shows the TATT; the third col-
umn shows the LATT; and the last column shows the 
SATT. Row 3 shows the results for the Preemptive Shortest 
Job First algorithm (SJF), and rows 4-7 show the results for 
Railroad, HRRN, ESJF, and the Alpha scheduling algo-
rithms. The remaining rows contain the results for different 
configurations of the proposed algorithm.  
   

Tables 2-5 show the results for the random arrival traffic 
pattern. In all of these tables, the number of short processes 
was fixed to 500 and their burst times were randomly select-
ed from 1 to 10 time units. The number of the long process-
es was fixed at 50. The burst times of the long jobs were 
randomly selected from 40 to 50 time units in Tables 2 and 
3, and from 80 to 100 time units in Tables 4 and 5. The arri-
val range for a processes was from 0 to A=2500 (“sparse” 
arrivals) and A=1250 (“dense” arrivals) time units for Ta-
bles 2 and 3, respectively; and from 0 to A=5000 (“sparse” 
arrivals) and A=2500 (“dense” arrivals) time units for Ta-

bles 4 and 5, respectively. Tables 6-9 show the results for 
the peak random arrival traffic, under the exact same setups 
as those corresponding to Tables 2-5. The values of parame-
ter e used for the configurations of the proposed algorithms 
were e = 0, 0.25, 0.5, 0.75, and 1.0. An upper bound on the 
values that parameter q can take was determined by the ratio 
of the LATT offered by SJF to the average burst time of the 
long jobs. For example, in Table 2, that ratio is 2487/45 = 
55.27. Finally, the value of parameter r was kept to less than 
or equal to 3. 
 

Table 2. TATT, LATT, and SATT for Long Processes with 

Burst Times in [40:50] and Random Pattern Arrival Times 

[0:2500] 

In Table 2, ALPHA and EQ-SJF(e=0.5, q=∞) give the 
same results as the SJF algorithm and do not provide the 
benefit of decreasing the LATT. From the previously pro-
posed algorithms, HRRN presents the best alternative for 
the smallest increase on the SATT by increasing it to 187 
(from the 84 of SJF) with a decrease on the LATT from 
2487 to 2411. In contrast, EQ-SJF-RR(e=0.75, q=40, r=2) 
provides a better alternative (highlighted in green in the 
tables) for the SATT by increasing it to 129 (instead of 187 
by HRRN) with a decrease on the LATT from 2487 to 
2453.  

 
This decrease on the LATT is smaller than that offered by 

HRRN but, as mentioned above, the small increase on the 
SATT is a priority. EQ-SJF(e=0, q=45) gives the second 
best alternative with a SATT of 142 and a LATT of 2417. 

A=2500 Random  50:40-50  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 302 2487 84 

RAILROAD 832 1637 752 

HRRN 389 2411 187 

ESJF 820 1207 782 

ALPHA 303 2487 84 

EQ-SJF(e=0.5, q=∞) 302 2487 84 

EQ-SJF-RR(e=0.75, q=40, r=2)  340 2453 129 

EQ-SJF(e=0, q=45) 349 2417 142 

EQ-SJF(e=0.75, q=44 ) 361 2373 161 

EQ-SJF-RR(e=1, q=34, r=2)  374 2362 176 

EQ-SJF-RR(e=0, q=10, r=3 ) 651 1625 554 
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This LATT is very close to that offered by HRRN but the 
increase of the SATT is significantly smaller (142 versus 
187 of the HRRN). EQ-SJF(e=0.75, q=44) not only offers a 
better option than HRRN with a smaller increase on the 
SATT from 187 to 161, but also achieves a larger decrease 
on the LATT from 2411 to 2373. EQ-SJF-RR(e=1, q=34, 
r=2) provides the same benefits offering a SATT of 176 and 
a LATT of 2362. If one is willing to allow a still higher in-
crease on the SATT, RAILROAD offers the best alternative 
among the previously proposed algorithms with a SATT of 
752 and a LATT of 1637. However, from the algorithms 
proposed in this current study, EQ-SJF-RR(e=0, q=10,r=3) 
provides a better alternative by offering both a smaller 
SATT of 554 and a larger decrease on the LATT from 1637 
to 1625.  

 
Table 3. TATT, LATT, and SATT for Long Processes with 

Burst Times in [40:50] and Random Pattern Arrival Times 

[0:1250] 

 

The designer/system manager will ultimately decide what 
increase on the SATT is acceptable, based on the deadlines 
of the real-time processes which are treated here as the 
“short” processes. The benefit of the proposed approach is 
that it provides the designer with many more alternatives for 
increasing the SATT. In the aforementioned approaches, the 
designer would have no alternative except to choose HRRN, 
which offers a SATT of 187, but this may be too much giv-
en that the SATT that the SJF offers for the real time pro-
cess is 84. In contrast, the proposed approach provides a 
series of alternatives for increasing the SATT to 129, 142, 
161, and 176. Assuming, for instance, that twice the SATT 
that SJF offers is still acceptable for the deadlines of the real

-time processes, the first three of these alternatives would be 
acceptable but none of the previous approaches would be. 
 

Table 4. TATT, LATT, and SATT for Long Processes with 

Burst Times in [80:100] and Random Pattern Arrival Times 

[0:5000] 

   
Table 5. TATT, LATT, and SATT for Long Processes with 

Burst Times in [80:100] and Random Pattern Arrival Times 

[0:2500] 

A=1250 Random 50:40-50  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 660 2975 429 

RAILROAD 1145 2404 1019 

HRRN 743 2995 518 

ESJF 1249 1690 1205 

ALPHA 661 2975 429 

EQ-SJF(e=0.5,q=∞) 661 2975 429 

EQ-SJF(e=0.5, q=52) 692 2928 469 

EQ-SJF(e=0.25, q=50) 711 2876 495 

EQ-SJF-RR(e=1, q=40, r=1) 719 2860 504 

EQ-SJF(e=0, q=40) 884 2350 738 

EQ-SJF(e=0, q=26) 1149 1681 1096 

A=5000 Random 50:80-100  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 193 2040 9 

RAILROAD 930 1505 872 

HRRN 300 1990 130 

ESJF 319 2053 146 

ALPHA 223 1994 46 

EQ-SJF-RR(e=0.5, q=∞, r=1) 196 2034 12 

EQ-SJF(e=0.5, q=∞) 198 2024 15 

EQ-SJF-RR(e=1, q=6, r=1) 206 2026 24 

EQ-SJF(e=0.5, q=38) 218 2017 38 

EQ-SJF(e=1, q=40) 239 1987 64 

EQ-SJF(e=0, q=17) 764 1500 691 

A=2500 Random 50:80-100  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 433 3737 103 

RAILROAD 1333 2990 1168 

HRRN 517 3730 195 

ESJF 1134 3121 936 

ALPHA 434 3727 103 

EQ-SJF(e=0.5,q=∞) 433 3737 103 

EQ-SJF-RR(e=0.75, q=22, r=2) 504 3727 182 

EQ-SJF(e=0.25, q=28) 507 3713 187 

EQ-SJF(e=0.5, q=22) 1064 3117 860 

EQ-SJF-RR(e=0.75, q=1, r=1) 1146 2954 1168 



——————————————————————————————————————————————–———— 

 

Table 6. TATT, LATT, and SATT for Long Processes with 

Burst Times in [40:50] and Peak Random Pattern Arrival 

Times [0:2500] 

 

 

Table 7. TATT, LATT, and SATT for Long Processes with 

Burst Times in [40:50] and Peak Random Pattern Arrival 

Times [0:1250] 

Similar observations hold for the other tables. For in-
stance, in Table 8, SJF offers the best SATT with a value of 
43. The next best alternative among the previously proposed 
algorithms for an increase on the SATT in order to reduce 
the LATT is offered by ALPHA with a SATT of 77 and a 
decrease on the LATT from 1594 to 1550. However, the 
proposed approach provides a series of better alternatives—
EQ-SJF-RR(e=0.5 r=1), EQ-SJF(e=0.5, q=∞), EQ-SJF-RR
(e=0.75,q=59, r=1), EQ-SJF(e=0.75,q=56)—that increase 
the SATT to 46, 47, 59, and 63, respectively, and reduce the 
LATT to 1584, 1582, 1566, and 1559, respectively. 
 

Table 8. TATT, LATT, and SATT for Long Processes with 

Burst Times in [80:100] and Peak Random Pattern Arrival 

Times [0:5000] 

Overall, the proposed approach provides the designer 
with a lot of flexibility on what type of algorithm to select 
depending on the SATT for the soft real-time jobs. If the 
designer wants the short processes to execute faster, the 
designer can increase q; if the designer wants the long pro-
cesses to have a lower LATT, the designer can decrease q, 
thus giving the long processes higher priority and prevent-
ing starvation when they reach a certain amount of waiting 
time. Also, by using small values of e, the designer can ap-
proximate the behavior of SJF with preemption. Or, by us-
ing larger values of e (close to 1), the designer can approxi-
mate the behavior of SJF without preemption. The specific 
values of e and q and their effect on SATT are found by 
simulation.  
 

A=2500 Peak Random 50:40-50  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 413 2725 181 

RAILROAD 954 1901 859 

HRRN 495 2695 275 

ESJF 989 1327 955 

ALPHA 413 2725 181 

EQ-SJF(e=0.25, q=∞) 413 2725 181 

EQ-SJF(e=0.25, q=53)  447 2678 224 

EQ-SJF-RR(e=1, q=44, r=2)  457 2645 239 

EQ-SJF-RR(e=0, q=44, r=1)  466 2618 251 

EQ-SJF(e=0.25, q=51)  475 2582 264 

EQ-SJF(e=1, q=36)  752 1858 641 

EQ-SJF-RR(e=0,q=4, r=1)  977 1294 946 

A=1250 Peak Random 50:40-50  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 701 3191 452 

RAILROAD 1084 2624 929 

HRRN 797 3155 561 

ESJF 1367 1708 1331 

ALPHA 701 3191 452 

EQ-SJF(e=0.5, q=∞) 701 3191 452 

EQ-SJF(e=0, q=51, r=2)  737 3142 497 

EQ-SJF(e=0.25, q=58)  745 3115 508 

EQ-SJF-RR(e=0.5, q=47, r=2) 757 3089 523 

EQ-SJF(e=0.75, q=56)  773 3020 548 

EQ-SJF(e=0.75, q=46) 936 2539 776 

EQ-SJF(e=0.5, q=28)  1310 1689 1272 

A=5000 Peak Random 50:80-100  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 184 1594 43 

RAILROAD 616 1278 550 

HRRN 261 1569 130 

ESJF 408 1444 305 

ALPHA 211 1550 77 

EQ-SJF(e=0.5,q=∞, r=1) 186 1584 46 

EQ-SJF(e=0.5, q=∞) 187 1582 47 

EQ-SJF-RR(e=0.75, q=59, r=1) 196 1566 59 

EQ-SJF(e=0.75, q=56)  199 1559 63 

EQ-SJF(e=0.25, q=17) 387 1419 283 

EQ-SJF(e=75, q=14)  575 1237 508 

——————————————————————————————————————————————–———— 

EQUITABLE SHORTEST JOB FIRST:  A PREEMPTIVE SCHEDULING ALGORITHM FOR SOFT REAL-TIME SYSTEMS                      21 



——————————————————————————————————————————————–———— 

——————————————————————————————————————————————–———— 

 22                           INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH AND INNOVATION | V6, N1, SPRING/SUMMER 2014 

Table 9. TATT, LATT, and SATT for Long Processes with 

Burst Times in [80:100] and Peak Random Pattern Arrival 

Times [0:2500] 

Conclusion 
 

The proposed approach presents the designer with a varie-
ty of choices in selecting a scheduling algorithm that pro-
vides close-to-optimal average turnaround times of short 
processes, considered here to be soft real-time processes, 
while decreasing the turnaround time of the long processes 
that run in the same job mix with the short processes. The 
proposed algorithms address the drawback related to the 
long-process starvation in SJF by providing protection to a 
process through prioritization. The priority to a process is 
assigned based on a percentage of its burst time to comple-
tion (controlled by parameter e) or the time spent by the 
process in the waiting queue (controlled by parameter q). 
Experimental results showed that the proposed approach 
always offered the next best alternative (indicated in green 
in the Tables) to SJF in terms of offering the smallest in-
crease in SATT while reducing the LATT. The proposed 
approach can be incorporated into more complicated sched-
uling algorithms for ensuring quality of service in soft real-
time systems. 
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A=2500 Peak Random  50:80-100  500:1-10 

ALGORITHM TATT LATT SATT 

SJF 501 3613 189 

RAILROAD 1250 3081 1067 

HRRN 607 3615 306 

ESJF 1136 3084 941 

ALPHA 536 3562 234 

EQ-SJF(e=0.75, q=∞) 501 3613 189 

EQ-SJF-RR(e=1, q=68, r=3)  532 3567 229 

EQ-SJF-RR(e=1, q=77, r=1) 533 3566 230 

EQ-SJF(e=0.5, q=20) 1108 2915 920 
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