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Abstract  14 

In order to clarify how cadmium (Cd) chemical forms in planta relate to the genotype difference 15 

in Cd accumulation of spinach (Spinacia oleracea L.), two low-Cd and two high-Cd cultivars 16 

were compared under a hydroponic experiment with two concentrations of Cd (1 or 5 mg Cd L-1). 17 

The concentrations of phosphorus in the hydroponic system were also adjusted to two levels 18 

(half and full P in standard Hoaglund’s solutions) to investigate the influence of phosphorus on 19 

the forms and accumulation of Cd in the tested cultivars. Average Cd concentrations in shoots 20 

were 8.50-10.06 mg kg-1 for high-Cd cultivars and 6.11-6.64 mg kg-1 for low-Cd cultivars under 21 

lower Cd treatment, and were as high as 24.41-31.35 mg kg-1 and 19.65-25.76 mg kg-1, 22 

respectively, under higher treatment. Phosphorus significantly decreased Cd accumulation in the 23 

tested cultivars and the effect had superiority over the cultivar alternation under higher Cd stress. 24 

Cadmium in the NaCl-extractable fraction of the plant tissues showed the greatest relationship to 25 

genotype difference of Cd accumulation. The difference in the capacity to binding Cd into FHAc, 26 

FHCl or FResidue was another important mechanism involving in the genotype difference in Cd 27 

accumulation of spinach. Among them, average proportion of Cd in FHAc in low-Cd cultivars was 28 

higher than that in high-Cd cultivars in association with the effect of phosphorus.  29 

Key Words: spinach; cadmium (Cd); phosphorus; chemical form; genotype difference; food 30 

safety31 
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Introduction 32 

Contamination of agricultural soil by heavy metals such as Cu, Zn, Cd, and Pb is a 33 

substantial problem globally, especially in China (Murtaza et al. 2008; Nicholson et al. 2003).  34 

These heavy metals present a threat to human health when they enter the food chain (Satarug et 35 

al. 2003). The contamination is mainly caused by pollutant discharges from industrial and 36 

mining processes as well as a result of overuse or improper use of pesticides, insecticides and 37 

chemical fertilizers in agriculture. In China, millions of acres of agricultural lands and over 12 38 

million tons of grain are contaminated by heavy metals. Ten percent of rice in China contains 39 

excessive cadmium, a heavy metal known to cause cancer, osteoporosis, cardiovascular disease, 40 

and renal dysfunction (Nawrot et al. 2010; Wu and Zhu 2014). Various soil clean-up techniques 41 

have been proposed and proven effective (Mulligan et al. 2001). However, it is a challenge to 42 

employ these techniques in many developing countries because of their high costs (Ebbs et al. 43 

1997; Salt et al. 1995). Furthermore, in China, farmers cannot afford to leave agricultural soils 44 

long-term fallow for the remediation process due to the high demand for food products. 45 

One of the alternative strategies for reducing the entrance of Cd into the human food chain is 46 

to select cultivars that accumulate low levels of Cd in their edible parts (Grant et al. 2008; Huang 47 

et al. 2015; McLaughlin et al. 1994; Wang et al. 2009; Xin et al. 2013; Yu et al. 2006; Zhu et al. 48 

2007). This cultivar selection strategy is feasible because, for a number of agronomic plant 49 

species, significant differences exist among cultivars in Cd uptake and accumulation (Grant et al. 50 

2008).  A wide variation in Cd accumulation among current cultivars has been reported for some 51 

staple crops (Clarke et al. 2002; Dai et al. 2010; Liu et al. 2010; McLaughlin et al. 1994; Yu et al. 52 

2006) and leafy vegetables (Dai et al. 2012; Huang et al. 2014; Liu et al. 2010; Qiu et al. 2011a; 53 
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Wang et al. 2007; Wang et al. 2009; Xue et al. 2014; Zhang et al. 2013a; Zhang et al. 2013b; 54 

Zhou et al. 2013; Zhu et al. 2007).   55 

There has been considerable research seeking to understand the underlying genetic, 56 

molecular, biochemical, and physiological processes that contribute to the low Cd accumulation 57 

phenotype and to lower the risk of Cd entering the food chain  (Clarke, 1997; Grant et al. 2008; 58 

Huang et al. 2009; Ishikawa et al. 2012; Ishimaru et al. 2012; Li et al. 2007; Penner et al. 1995; 59 

Tanhuanpää et al. 2007). For example, Grant et al. (2008) has succeeded in breeding of a low-Cd 60 

durum wheat cultivar named AC Napoleon in Canada. Xin et al. (2010) has reported a new 61 

cultivar of water spinach (Ipomoea aquatica Forsk.) with high shoot biomass and low shoot Cd 62 

and Pb concentrations. 63 

Phosphorus (P) is a macronutrient that accounts for ~0.2% of plant dry weight and when 64 

limiting, can reduce plant growth and yield. This element is essential for the synthesis of nucleic 65 

acids, phospholipids, and ATP. It has also been reported that addition of P-based materials to 66 

soils can influence the bio-availability of heavy metals such as Pb, Cd and Zn. The amendment 67 

of P to soils reduced the accumulation of Cd in both low-Cd and high-Cd cultivars of Chinese 68 

flowering cabbage (Brassica parachinensis L.) (Qiu et al. 2011b).  69 

Spinach (Spinacia oleracea L.) is an important leafy vegetable that is cultivated and 70 

consumed all over the world, particularly in Southeast Asia during the majority of the year. 71 

Spinach has been described as a Cd accumulating species (Alexander et al. 2006; Chunilall et al. 72 

2004; Kuboi et al. 1986). A strong influence of cultivar on shoot Cu, Zn and Cd concentrations 73 

was observed in a previous study in Gemany with 11 spinach cultivars (Römer et al. 2002). 74 

However, a similar study carried out in England found no significant variations in Cd, Cu, Pb or 75 

Zn concentrations among five spinach cultivars grown on metal-spiked soil (Alexander et al. 76 
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2006). There is little available information about the mechanisms affecting the genotype 77 

differences of Cd uptake, translocation and accumulation in spinach. In our previous study, the 78 

maximum difference in shoot Cd concentration varied by 7.2-fold among 29 spinach cultivars 79 

(unpublished data). We identified two low-Cd accumulation cultivars (low-Cd group) and two 80 

high-Cd accumulation cultivars (high-Cd group) in the study. These four spinach cultivars allow 81 

for a further investigation of the mechanisms associated with the genotype differences. In the 82 

present study, the chemical forms of Cd in plant tissues between the low-Cd cultivars and the 83 

high-Cd cultivars were compared in order to provide insight into the relevant biochemical 84 

mechanisms.  Due to the previous researches reporting the effects of soil phosphorus on Cd 85 

accumulation of spinach  (Dheri et al. 2007; Keller et al. 2001; Römer et al. 2002;), phosphorus 86 

concentration was also altered to investigate how the interaction between Cd and P contributes to 87 

the genotype difference. We hypothesize that the genotype-dependent Cd accumulation of 88 

spinach is related to chemical forms of Cd, and phosphorus is a crucial factor that interacts with 89 

Cd to influence the chemical form of Cd within the plant tissues, and therefore the extent of Cd 90 

accumulation. 91 

 92 

Material and methods  93 

Spinach cultivars 94 

The four tested cultivars of spinach used in the present study were DMMNKS and CY (low 95 

Cd accumulating cultivars) and CJQNDH and CJQLDY (high Cd accumulating cultivars). Prior 96 

study (unpublished data) established the characteristics of these lines. Shoot Cd concentrations of 97 

DMMNKS, CY, CJQNDH and CJQLDY grown in Cd contaminated soil  (Cd concentration up 98 
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to 0.79 mg kg-1) were 0.49, 0.44, 1.72 and 1.40 mg kg-1. The high-Cd group had tissue 99 

concentrations generally 3.4-fold higher than  that of the low-Cd group.   100 

Preparation of plant samples and experimental treatments 101 

Seeds of the tested cultivars were sterilized by 2% (v/v) H2O2 for 10 min and then sown  102 

into a cuboid pot (60 × 40 × 8 cm) filled with vermiculite at a rate of 80 seeds pot-1. Hoagland’s 103 

nutrient solution solution was applied every day to maintain the moisture content of the culture 104 

media and provide the necessary nutrients. The Hoagland solution containing 5 mmol·L–1 105 

Ca(NO3)2·2H2O, 5 mmol·L–1 KNO3, 2 mmol·L–1 MgSO4·7H2O, 1 mmol·L–1 KH2PO4, 106 

0.1mmol·L–1 EDTA-Fe, 47 μmol·L–1 H3BO3, 1 μmol·L–1 MnCl2·4H2O, 1 μmol·L–1 107 

ZnSO4·7H2O, 0.01 μmol·L–1 H2MoO4, and 0.25 μmol·L–1 CuSO4·5H2O. The pots were placed in 108 

a greenhouse at the Guangdong University of Petrochemical Technology (Maoming City, China) 109 

with light intensity of 500-800 µmol m-2 s-1, relative humility of 40% - 45%, and day / night 110 

temperatures of 30°C / 25°C.  111 

A separate hydroponic experiment using 500 mL containers was conducted to test the genotype 112 

differences in Cd chemical forms in the plant tissues. Each container was filled with 400 mL 113 

Hoagland solution with different concentrations of Cd and P as treatments. Control (with no Cd 114 

added, designated as Cd0) and two Cd treatments (adding 1 mg L-1 and 5 mg L-1 of Cd in form of 115 

Cd(NO3)2 into the culture solution, designated respectively as Cd1 and Cd2) were conducted. 116 

The P treatments were established by reducing the concentration of KH2PO4 to half of the typical 117 

Hoagland solution concentation (P1) or left at the typical solution concentration (P2).  Overall, 118 

there were six Cd-P levels, which were assigned as Cd0P1, Cd0P2, Cd1P1, Cd1P2, Cd2P1 and 119 

Cd2P2.  Concentrations of free Cd2+ in the solutions calculated using Geochem-EZ program 120 
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(Shaff et al., 2010) for Cd1P1, Cd1P2, Cd2P1 and Cd2P2 were 1.1, 1.0, 23.0, and 21.5 μg L-1, 121 

respectively.  122 

On Jan. 4, 2012, the 20th day after the seeding of spinach, four seedlings with uniform size 123 

and with four leaves were identified.  The seedlings were transplanted to each 500 mL plastic 124 

container covered by a cap that allowed four plants to be established in each container. The 125 

seedlings were passed through a hole (15 mm diameter) in the cap and held in place with sterile 126 

cottons. The experiment used a completely randomized design with three replicates per treatment. 127 

Thus, there are a total of 72 containers (4 cultivars × 6 Cd-P levels × 3 replicates) in the 128 

hydroponic experiment.  129 

Sampling of both shoots and roots was carried out on Jan. 19, 2012 after a 15-day growth 130 

period. All shoot samples were thoroughly rinsed with deionized water and roots were with a 0.5 131 

mM CaCl2 solution for 30 min and then rinsed with deionized water. Each tissue sample was 132 

weighed, frozen in liquid nitrogen, and stored at -80°C  until use. 133 

Extraction of Cd in different chemical forms 134 

Cadmium associated with various chemical forms in the plant tissues was determined by 135 

successively extraction tissues with the following sequence of solutions (Wu et al. 2005):  136 

(1) 80% ethanol (FE), extracting inorganic Cd associated with nitrate, chloride, or 137 

aminophenol Cd; 138 

(2)  distilled water (FD), extracting water-soluble Cd associated with organic acids or as 139 

Cd(H2PO4)2; 140 

(3)   1 M NaCl (FNaCl),  extracting pectate- and protein-associated Cd; 141 

(4)   2% acetic acid (HAc, FHAc), extracting insoluble CdHPO4, Cd3(PO4)2, and other Cd-142 

phosphate complexes; 143 
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(5)   0.6M HCl (FHCl), extracting Cd in oxalate; 144 

(6)  Cd in residues (Fresidue). 145 

Frozen plant materials were cut into small pieces of 1–2 mm2, mixed with 37.5 mL of the 146 

appropriate extraction solution and incubated at 30°C for 18 h. The extraction solution was then 147 

separated and the residual material was re-extracted an additional volume of the same extraction 148 

solution (37.5 mL) under the same conditions for another 6 h. The two extracts were combined. 149 

This double extraction procedure was repeated a second time for the plant tissue. The residual 150 

plant material was extracted with the next extraction solution in the sequence, using the same 151 

procedure described above. All of the extracts (150 mL for each) were evaporated to constant 152 

mass and digested in a microwave digester (WX-8000, Shanghai Xinyi) with an oxidizing 153 

mixture of acids (HNO3–HClO4, 5:1, v/v). The digests were used for analysis of Cd 154 

concentration. 155 

Analysis for Cd  156 

Cadmium concentrations in the digests were determined by FAAS (Hitachi Z-5300, Japan). 157 

The precision of the analytical procedures for plant material was assessed using a Certified 158 

Reference Material (CRM) (GBW-07603) provided by the National Research Center for CRM, 159 

China. Total Cd concentrations in shoot and root samples were determined with the same method 160 

following acid digestion with HNO3–HClO4 (4:1, v/v). The Cd concentrations were based on the 161 

fresh weights of samples before separation or extraction. 162 

Data statistics 163 

Total Cd concentration of each tissue was obtained by summing Cd concentrations in the 6 164 

fractions for shoots or roots. The Brown and Forsythe test and Obrien’s test were applied to the 165 

data prior to further analysis to examine homogeneity in the data.  Homogenity was confirmed 166 
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for all data sets so a three-way ANOVA (full model and reduced models) was performed on the 167 

data followed by so the least significant difference (LSD) was performed.  Analysis were carried 168 

out in SAS 9.3 (Cary, NC). 169 

 170 

Results 171 

 172 

Total Cd concentration 173 

Total shoot and root Cd concentrations in the tested cultivars of spinach under different Cd-174 

P treatments are shown in Table 1. The control was undetectable, hence the data are not shown. 175 

Results from three-way ANOVA for the data of shoot Cd concentrations (Table 2) indicated that 176 

the effect of cultivar, Cd concentration, and P concentration were all significant (P<0.05). 177 

Significance was also observed in Cd×P interaction (P<0.05), but no significance was 178 

determined in cultivar×Cd, cultivar×P and cultivar×Cd×P interactions (P>0.05). 179 

Low-Cd cultivars (DMMNKS and CY) generally had significantly lower shoot Cd 180 

concentrations (p<0.05) than the high-Cd cultivars (CJQNDH and CJQLDY) except for the 181 

Cd1P2 treatment (Table 1). Average shoot Cd concentrations in the low-Cd cultivars were only 182 

66.0% (P1) and 71.0% (P2) of those in the high-Cd cultivars under Cd1, while under Cd2, the 183 

differences were higher at 82.1% (P1) and 80.52% (P2). This indicated that higher Cd exposure 184 

would lead to a decrease of genotype difference in shoot Cd accumulation.  Considering effects 185 

of both cultivar×P and cultivar×Cd×P interactions were not significant, level of phosphorus in 186 

cultivating solution might be less related to the genotype difference in shoot Cd accumulation in 187 

spinach, although higher level of phosphorus, compared to lower level, declined shoot Cd 188 

accumulation in both high-Cd and low-Cd cultivars. 189 
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The mean reduction in shoot Cd concentration  as a function of cultivars (-39.0 to -51.5%, 190 

(average shoot Cd concentration in low-Cd cultivars - average shoot Cd concentration in high-Cd 191 

cultivars) / average shoot Cd concentration in high-Cd cultivars × 100) were greater than those 192 

by P supplement (-8.7 to -18.4%), (average shoot Cd concentration under P2 treatments - average 193 

shoot Cd concentration under P1 treatments) / average shoot Cd concentration under P2 194 

treatments × 100) under Cd1. Under Cd2, however, those mean reductions from P treatment (-195 

28.4 to -31.1%) were greater than those from the different cultivar (-21.7 to -24.2%). These 196 

results illustrate why there was a significant variation in Cd×P interaction according to the three-197 

way ANOVA. 198 

For total root Cd concentrations, it was found that the effect of cultivar was not significant 199 

(P>0.05) according to three-way ANOVA (Table 2), although the concentrations of low-Cd 200 

cultivars were all lower than those of high-Cd cultivars. The effect of Cd and P concentrations 201 

were each significant (P<0.05). Similar to shoots, variation in root Cd concentrations derived 202 

from Cd×P interaction were significant (P<0.05), but insignificant for those from cultivar×Cd, 203 

cultivar×P and cultivar×Cd×P interactions (P>0.05).   204 

More intense differences in Cd concentration in roots in response to the P treatment were 205 

observed. The mean decreased in response to the P treatment (-66.3 to -71.5% under Cd1 and -206 

30.0 to -51.6% under Cd2) were generally greater than for the cultivar effect  (-12 to -51.6% 207 

under Cd1 and -13.8 to -32.8% under Cd2). Different from the shoot Cd concentrations, the 208 

decrease in root Cd concentration in response to the P treatment was smaller under the Cd2 209 

treatment than the Cd1 treatment. Consistent to that in shoot, level of phosphorus in cultivating 210 

solution seemed no significant influence on genotype difference in root Cd accumulation. 211 

 212 
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Cd concentrations in different chemical forms 213 

Shoot and root Cd concentrations in different chemical forms of the tested cultivars as well 214 

as results of two-way ANOVA are shown in Table 3 and 4. For the shoots, the most obvious 215 

genotype associated responses were observed in FNaCl, and the differences of shoot Cd in the 216 

fraction between low-Cd and high-Cd cultivars were significant under Cd1P1, Cd2P1 and Cd2P2 217 

(p<0.05). The Cd in FNaCl, FHAc and FHCl revealed a consistent change pattern that P2 treatment 218 

significantly decreased their concentrations unrelated to cultivar under Cd1P1, Cd2P1 and 219 

Cd2P2. For the roots, there was no any Cd fraction exhibited significant variation derived from 220 

cultivar under all of the Cd-P treatments. However, P2 treatment significantly increased Cd 221 

concentrations in FD under Cd2 treatment and significantly lowered Cd concentrations in FNaCl 222 

and FHCl under both Cd treatments (p<0.05). These results indicated that the P treatment affected 223 

Cd speciation in spinach more effectively than the cultivar alternation did, which is consistent 224 

with those observed in the total Cd accumulation.  225 

 226 

Proportions of Cd in different chemical forms 227 

Proportions of Cd in different chemical forms in shoots and roots are shown in Figure 1 and 228 

Figure 2. In both shoots and roots, the proportions exhibited a general trend of FNaCl > FHAc > 229 

FHCl > FD > FE > FResidue. This result indicated that Cd in FNaCl, which accounted for more than 230 

50% of total Cd in both shoots and roots, played the most important role in Cd accumulation and 231 

detoxification in spinach. Differences in the proportions of Cd in FNaCl between low-Cd and 232 

high-Cd groups were not obvious, and the proportions for the low-Cd group were generally 233 

lower than or similar to those of the high-Cd group in both shoots and roots. Cd-P treatments did 234 
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not consistently influenced the proportion of Cd in FNaCl in both shoots and roots, but Cd2 235 

treatments increased the proportion in roots when compared to Cd1 treatments.  236 

The sums of proportions of Cd in FHAc, FHCl and FResidue, which were presumed to be forms 237 

with lower mobility within the plant, were 24%-36% in shoots and 24-40% in roots, and were 238 

generally higher in low-Cd cultivars than in high-Cd cultivars especially for those under Cd2. 239 

The average proportions of Cd in FHAc in shoots were 19.88% (P1) and 16.81% (P2) for low-Cd 240 

cultivars, higher than those of high-Cd cultivars (17.94% under P1 and 15.09% under P2). The 241 

average proportions in roots were 17.40% (P1) and 23.64% (P2) for low-Cd cultivars and also 242 

higher than those of high-Cd cultivars (14.16% under P1 and 21.80% under P2). The average 243 

proportions displayed higher value under P2 than under P1 for both low-Cd and high-Cd groups, 244 

indicating that higher level of phosphorus can enhance formation of Cd-phosphates.  245 

Under Cd2, the total proportions of Cd in FHAc, FHCl and FResidue greatly decreased in both 246 

shoots and roots compared to those under Cd1, indicating that the capacity to chemically 247 

deactivate Cd in vivo were restrained when Cd stress increased from Cd1 to Cd2. The sums of 248 

the proportions generally decreased in shoots but increased in roots with the P concentration was 249 

increased from P1 to P2, implying different effects of P on Cd chemical forms between the 250 

shoots and roots. 251 

For the proportions of Cd in FE and FD, the fractions with higher activity, the sums were 252 

11%-20% in shoots and 6%-11% in roots, and were not consistently different between the low-253 

Cd and the high-Cd cultivars for either shoots or roots. This demonstrated that these two 254 

fractions did not differ as a function of cultivar. The sums under Cd2 were generally higher than 255 

those under Cd1 in shoots, but were reversed in roots, indicating perhaps that roots of spinach 256 

could more effectively deactivate Cd under higher Cd exposure than shoots. The sums of 257 
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proportions in both tissues of all the tested cultivars (except cv. CJQNDH) were higher under P2 258 

than under P1. 259 
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Discussion 260 

Genotype-dependent Cd accumulation in spinach 261 

In the present study, differences in total Cd concentrations in shoots and roots between low-262 

Cd and high-Cd cultivars of spinach under hydroponic condition were consistent with the results 263 

obtained under soil culture condition in our previous unpublished study. Hence, the specific 264 

genotype differences in Cd accumulation are stable, reproducible traits and not specifically 265 

dependent on the growth conditions. Similar results have been obtained in many crops such as 266 

rice (Oryza sativa L.) (Yu et al. 2006), asparagus bean (Vigna unguiculata subsp. Sesquipedalis 267 

L.) (Zhu et al. 2007), hot pepper (Capsicum annuum L.) (Xin et al. 2014), water spinach (Wang 268 

et al. 2009), Chinese flowering cabbage (Qiu et al. 2011a), small Chinese cabbage or pakchoi 269 

(Brassica chinensis L.) (Xue et al. 2014), Chinese leaf mustard (Brassica juncea L. Czern. et 270 

cross. var. juncea) (Dai et al. 2012), and amaranth (Amaranthus spp.) (Zhou et al. 2013). Some 271 

researchers have investigated the genetic mechanisms regulating Cd accumulation and 272 

detoxification, and special attention has been given to phytochelatins (PCs), a type of Cd-273 

induced metal-binding proteins (peptides) in plants. Phytochelatins are a class of glutathione-274 

derived peptides which can help to transport Cd into vacuole in the form of a Cd-PC complex 275 

(Clemens, 2006). RNAi-mediated silencing of OsPCS1 had been attempted and resulted in 276 

reduction of Cd accumulation in the RNAi rice seeds approximately by half (Li et al. 2007). It 277 

was found that Cd-sensitive barley genotype had less Cd integrated with proteins/pectates as 278 

compared with Cd-resistant genotypes (Wu et al. 2005). Beside Cd tolerance, Cd accumulation 279 

was also found to be associated with proteins/pectates-bound Cd in certain vegetable crops such 280 

as Chinese flowering cabbage (Qiu et al. 2011a) and amaranth (Zhou et al. 2013). These results 281 
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established the relationship between PC-Cd complexes and certain Cd chemical form i.e. the 282 

NaCl extractable fraction.  283 

Much high Cd accumulations were found in the tested cultivars of spinach in both the 284 

previous and the present study. According to our previous study, the maximum shoot Cd 285 

concentration among the 29 tested cultivars was 145.4 mg kg-1 (dry weight basis) in soil 286 

containing 14.1 mg kg-1 Cd (unpublished data). According to the water content in shoots (about 287 

90%) of spinach under soil culture conditions in the previous study, shoot Cd concentration of 288 

the high-Cd cultivars under Cd1 (1 mg L-1) in the present study would be >100 mg kg-1 (dry 289 

weight basis), exceeding the critical level for Cd hyperaccumulator (Baker et al. 1989), and it 290 

would be >300 mg kg-1 under Cd2 treatment (5 mg L-1).  Hence, spinach is a crop with high Cd 291 

pollution risk once cultivated under Cd contaminated soils and identification and popularization 292 

of low-Cd cultivars are crucial way for ensuring food safety in spinach production. Based on the 293 

genotype-dependent Cd accumulation of spinach verified in the present study, breeding of low-294 

Cd cultivars of the species should be considered.  295 

Chemical mechanisms related to genotype difference in Cd accumulation of spinach 296 

The profile of Cd chemical forms in shoots and roots of spinach was characterized by a high 297 

proportion of FNaCl. It was found that the greatest amount of Cd was extracted by 1 M NaCl and 298 

this accounted for >50% of the Cd in both shoots and roots. This result has been observed in 299 

several vegetable crops. Qiu et al. (2011b) found that proportions of Cd in FNaCl in shoots and 300 

roots of Chinese flowering cabbage grown under Cd contaminated soils were close to or 301 

exceeded 50%. Dai et al. (2012) reported that proportions of Cd in FNaCl in shoots of Chinese leaf 302 

mustard were  > 40%. For vegetable amaranth, proportions of Cd in FNaCl in stems and roots 303 
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were also predominated (40%-60%) when plants were grown in Cd contaminated soils (Zhou et 304 

al., 2013).  305 

Similar to studies mentioned above, the proportion of Cd in the FNaCl fraction of shoots from 306 

spinach were generally lower in low-Cd cultivars than in high-Cd cultivars. Under Cd1 treatment, 307 

significant genotype differences of shoot Cd were only appeared in the FNaCl according to 2-way 308 

ANOVA. This may be related to the higher capacity in the high-Cd cultivars to resist the toxic 309 

effects involving in phytochelatins (PCs). As has been mentioned above, the majority of Cd in 310 

FNaCl is integrated with proteins/pectates, including Cd bound to PCs (Wu et al. 2005). The PC-311 

Cd complex could pass through vacuole membrane and the Cd could precipitate within the 312 

vacuole as insoluble phosphates. This has been recognized as a major Cd detoxification 313 

mechanism of plants (Clemens, 2006). In roots of spinach, however, proportions of Cd in FNaCl 314 

were similar between low-Cd and high-Cd cultivars, which implied that  the Cd in FNaCl might be 315 

less related to the genotype difference in Cd detoxification and translocation of spinach.  316 

Total proportions of Cd in the insoluble fractions (FHAc, FHCl and FResidue) became generally 317 

higher in low-Cd cultivars than in high-Cd cultivars. This could be considered as one of the 318 

mechanisms involving in the genotype difference in shoot Cd accumulation of spinach. In some 319 

crops such as pakchoi (Xue et al. 2014) and watercress (Wang, 2013), the proportion of Cd in 320 

FHAc was the greatest for both shoots and roots  when the plants were grown under Cd stresses. 321 

As a mechanism associated with Cd accumulation and detoxification, it relies on the formation 322 

of insoluble CdHPO4, Cd3(PO4)2, and other Cd-phosphates within plant tissues (Clemens, 2006). 323 

For spinach, average proportions of Cd in FHAc were also higher in low-Cd than in high-Cd 324 

cultivars, indicating that the mechanism of Cd detoxification involving FHAc was relevant to the 325 

genotype difference in Cd accumulation of spinach.  326 
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Effect of phosphorus on Cd accumulation of spinach 327 

The change in the P concentration in the culture solution resulted generally in significant 328 

decrease of total Cd concentrations in both shoots and roots of spinach. Similar results were 329 

obtained by Keller et al. (2001), Römer et al. (2002) and Dheri et al. (2007). It was worth noting 330 

that the effect of P concentration on the reduction of shoot Cd accumulation was more significant 331 

than the cultivar effect under higher Cd stress. These results were consistent with those obtained 332 

by Qiu et al. (2011b) in Chinese flowering cabbage. The effect of phosphorus correspond to the 333 

variation in Cd in FHAc, which is mainly composed of CdHPO4, Cd3(PO4)2 and other Cd-334 

phosphate complexes. Qiu et al. (2011b) reported that the proportions of Cd in FHAc of the tested 335 

cultivars of Chinese flowering cabbage increased with soil P level, in consistency with an 336 

investigation by Jiang et al. (2007), who found that increased P in soil caused substantial 337 

precipitation of P-Cd complexes in cell wall and vacuoles in corn. A similar finding was reported 338 

in strawberry (Fragaia ananassa D.) by Nuzahath et al. (2013). In this study here, the results 339 

obtained for spinach were similar to the above-mentioned studies. Considering that increased P 340 

concentration decreased the proportions of Cd in FNaCl and FHCl in both shoots and roots, the 341 

lowered Cd accumulation under higher P might be attributed to the elevated Cd precipitation as 342 

insoluble Cd-P complexes.  343 

As to the decrease of proportion of Cd in FNaCl and FHCl in spinach caused by P supply, 344 

similar results was also reported in strawberry (Nuzahath et al. 2013). Since studies on the 345 

relationship between P behavior and Cd chemical forms are, thus far, insufficient, no reasonable 346 

explanation for the phenomenon could be currently given and further investigations are required. 347 

Conclusion 348 
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Verification of genotype-dependence in Cd accumulation of spinach is provided by 349 

comparing the results from our previous and the present study. Spinach has prominent ability to 350 

accumulate Cd, and shall thus receive more attention in identification and breeding of its low-Cd 351 

accumulating genotypes. The obvious differences in the concentrations of different chemical 352 

forms of Cd between low-Cd and high-Cd cultivars indicated that the hypothesis in the present 353 

study is partly acceptable. That is, there is a genotype-dependent effect on Cd accumulation, 354 

translocation, and detoxification that is likely related to distribution of Cd across the various 355 

chemical forms. An increased supply of phosphorus decreased significantly Cd accumulations in 356 

both high-Cd and low-Cd cultivars without significant difference between the high-Cd and low-357 

Cd cultivars. Therefore, the external concentration of phosphorus influenced Cd accumulation of 358 

spinach, but might not be a crucial factor that affects genotype difference in Cd accumulation of 359 

the species. 360 

 361 

Acknowledgments 362 

    This work were supported by National Natural Science Foundation of China (Grants No. 363 

20877104 and No. 21277178), Guangdong Natural Science Foundation (Grant No. 364 

s2011010004936) 365 

Ethical Statement 366 

The authors declare that they have no conflict of interest. 367 

368 



 

 19 

References  369 

Alexander PD, Alloway BJ, Dourado AM (2006) Genotypic variations in the accumulation of Cd, 370 

Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ Pollut 144:736–745 371 

Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic 372 

elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126 373 

Chunilall V, Kindness A, Jonnalagadda SB (2004) Heavy metal uptake by Spinach leaves grown 374 

on contaminated soils with lead, mercury, cadmium, and nickel. J Environ Sci Heal B 375 

39:473–481 376 

Clarke JM, Leisle D, Kopytko GL (1997) Inheritance of cadmium concentration in five durum 377 

wheat crosses. Crop Sci 37:1722–1726. 378 

Clarke JM, Norvell WA, Clarke FR, Buckley WT (2002) Concentration of cadmium and other 379 

elements in the grain of near-isogenic durum lines. Can J Plant Sci 82:27–33 380 

Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms oftolerance 381 

in plants.Biochimie 88:1707–1719 382 

Dai H, Yang Z, Xin J (2012) Genotype variation in Cd accumulation and chemical forms and 383 

histochemical distribution of Cd in low-and high-Cd cultivars of Chinese leaf mustard. 384 

Fresen. Environ Bull 21:2746–2757  385 

Dai Q, Huang B, Yang Z, Yuan J, Yang J (2010) Identification of cadmium-induced genes in 386 

maize seedlings by suppression subtractive hybridization. Front Environ Sci Eng in China 387 

4:449-458 388 

Dheri GS, Brar MS, Malhi SS (2007) Influence of phosphorus application on growth and 389 

cadmium uptake of spinach in two cadmium-contaminated soils. J Plant Nutr Soil Sci 390 

170:495–499 391 

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=3CVCME1SWPa9mnF8cMw&author_name=Chunilall,%20V&dais_id=10750779&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=3CVCME1SWPa9mnF8cMw&author_name=Kindness,%20A&dais_id=12176570&excludeEventConfig=ExcludeIfFromFullRecPage


 

 20 

Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of 392 

cadmium and zinc from a contaminated soil. J Environ Qual 26: 1424–1430. 393 

Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to 394 

minimize cadmium accumulation. Sci Total Environ 90:301–310 395 

Huang B, Xin J, Dai H, Liu A, Zhou W, Liao K (2014) Translocation analysis and safety 396 

assessment in two water spinach cultivars with distinctive shoot Cd and Pb concentrations. 397 

Environ Sci Pollut Res 21:11565–11571 398 

Huang B, Xin J, Dai H, Zhou W, Peng L (2015) Identification of low-Cd cultivars of sweet 399 

potato (Ipomoea batatas (L.) Lam.) after growing on Cd-contaminated soil: uptake and 400 

partitioning to the edible roots. Environ Sci Pollut Res DOI: 10.1007/s11356-015-4449-z 401 

Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y (2009) Suppression Subtractive Hybridization 402 

(SSH)-Based Method for Estimating Cd-Induced Differences in Gene Expression at Cultivar 403 

Level and Identification of Genes Induced by Cd in Two Water Spinach Cultivars. J Agric 404 

Food Chem 57:8950–8962 405 

Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, 406 

Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding 407 

in the development of low-cadmium rice. PNS 109:19166–19171 408 

Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa 409 

S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in 410 

Manganese, Iron and Cadmium Transport. Sci Rep-UK 2:286 411 

Jiang HM, Yang JC, Zhang JF (2007) Effects of external phosphorus on the cell ultrastructure 412 

and the chlorophyll content of maize under cadmium and zinc stress. Environ Pollut 413 

147:750–756 414 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ishikawa%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ishimaru%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Igura%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kuramata%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Abe%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Senoura%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hase%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Arao%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nishizawa%20NK%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakanishi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23132948
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ishimaru%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takahashi%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bashir%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shimo%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Senoura%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sugimoto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ono%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yano%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ishikawa%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ishikawa%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Arao%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakanishi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nishizawa%20NK%5BAuthor%5D&cauthor=true&cauthor_uid=22368778
http://www.ncbi.nlm.nih.gov/pubmed/22368778/##


 

 21 

Keller H, Römer W (2001) Cu, Zn, and Cd acquisition by two spinach cultivars depending on P 415 

nutrition and root exudation.  J Plant Nutrit Soil Sc 164:335–342 416 

Kuboi T, Noguchi A, Yazaki J (1986) family-dependent cadmium accumulation characteristics in 417 

higher plants. Plant and Soil  92:405–415 418 

Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin 419 

synthase gene reduce cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037 420 

Liu WT, Zhou QX, An J, Sun YB, Liu R (2010) Variations in cadmium accumulation among 421 

Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173: 737–743 422 

McLaughlin MJ, Williams CMJ, McKay A, Kirkham R, Gunton J, Jackson J, Thompson R, 423 

Dowling B, Partington D, Smart MK, Tiller KG (1994) Effect of cultivar on uptake of 424 

cadmium by potato tubers. Aust J Ag Res 45: 1483–1495 425 

Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metalcontaminated soils 426 

and groundwater: an evaluation. Eng Geol 60:193–207 427 

Murtaza G, Ghafoor A, Qadir M (2008) Accumulation and implications of cadmium, cobalt and 428 

manganese in soils and vegetables irrigated with city effluent. J Sci Food Agric  88:100–107. 429 

Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, 430 

Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to 431 

strategies of prevention. Biometals 23:769−782 432 

Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of 433 

heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–434 

219 435 

Nuzahath A, abdukadir A, Dilnur M (2013) Effect of Phosphorus on Chemical Forms and 436 

Physiological Properties of Cadmium in Fragaia ananassa D. Chinese Journal of Soil 437 

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=3CVCME1SWPa9mnF8cMw&author_name=Keller,%20H&dais_id=1462954&excludeEventConfig=ExcludeIfFromFullRecPage
http://www.baidu.com/link?url=sSUgp0qM86buIxpJjrcpdnhJOg6WV4W3qTo23AEy2xIEWmCmQXVvatK9Xs8f68t3kndfl5DYlbXPrl5c-1MHXDQxl364BKTclpn5-su6_7m&ie=utf-8&f=8&tn=baidu&wd=OURNAL%20OF%20PLANT%20NUTRITION%20AND%20SOIL%20SCIENCE&bs=JOURNAL%20OF%20PLANT%20Cu%2C%20Zn%2C%20and%20Cd%20acquisition%20by%20two%20spinach%20cultivars%20depending%20on%20P%20nutrition%20and%20root%20exudation


 

 22 

Science 44: 1460–1464 (in Chinese) 438 

Penner GA, Clarke J, Bezte LJ, Leisle D (1995) Identification of RAPD markers linked to a gene 439 

governing cadmium uptake in durum wheat. Genome 38:543–547. 440 

Qiu Q, Wang Y, Yang Z, Xin J, Yuan J, Wang J, Xin G (2011a) Responses of Different Chinese 441 

Flowering Cabbage (Brassica parachinensis L.) Cultivars to Cadmium and Lead Exposure: 442 

Screening for Cd +Pb Pollution-Safe Cultivars. Clean-Soil Air Water 39:925–932 443 

Qiu Q, Wang Y, Yang Z, Yuan J (2011b) Effects of phosphorus supplied in soil on subcellular 444 

distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica 445 

parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol 49:260–446 

2267 447 

Römer W, Keller H (2002) Variability of Cu, Zn and Cd content of spinach cultivars depending 448 

on P nutrition. Gartenbauwissenschaft 67:255–264 449 

Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) 450 

Phytoremediation: a novel strategy for the removal of toxic metals from the environment 451 

using plants. Nat Biotechnol 13:468–474 452 

Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR 453 

(2003) A global perspective on cadmium pollution and toxicity in non-occupationally 454 

exposed population. Toxicol Lett 137:65–83 455 

Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical 456 

speciation program with greater power and flexibility. Plant Soil 330:207–214 457 

Tanhuanpää P, Kalendar R, Schulman AH, Kiviharju E (2007) A major gene for grain cadmium 458 

accumulation in oat (Avena sativa L.). Genome 50:588–594 459 

Wang J, Fang W, Yang Z, Yuan J, Zhu Y, Yu H (2007) Inter- and intraspecific variations of 460 

http://www.researchgate.net/publication/260184514_Responses_of_Different_Chinese_Flowering_Cabbage_(Brassica_parachinensis_L.)_Cultivars_to_Cadmium_and_Lead_Exposure_Screening_for_Cd_Pb_Pollution-Safe_Cultivars?ev=auth_pub
http://www.researchgate.net/publication/260184514_Responses_of_Different_Chinese_Flowering_Cabbage_(Brassica_parachinensis_L.)_Cultivars_to_Cadmium_and_Lead_Exposure_Screening_for_Cd_Pb_Pollution-Safe_Cultivars?ev=auth_pub
http://www.researchgate.net/publication/260184514_Responses_of_Different_Chinese_Flowering_Cabbage_(Brassica_parachinensis_L.)_Cultivars_to_Cadmium_and_Lead_Exposure_Screening_for_Cd_Pb_Pollution-Safe_Cultivars?ev=auth_pub


 

 23 

cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. J Agric 461 

Food Chem 55:9118–9123 462 

Wang J, Yuan J, Yang Z, Huang B, Zhou Y, Xin J, Gong Y, Yu H (2009) Variation in cadmium 463 

accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars 464 

of water spinach (Ipomoea aquatica Forsk.). J Agric Food Chem 57:8942–8949 465 

Wu F, Dong J, Qian QQ, Zhang GP (2005.) Subcellular distribution and chemical form of Cd and 466 

Cd−Zn interaction in different barley genotypes. Chemosphere 60:1437−1446 467 

Wu L, Zhu D (2014)  Food safety in China, a comprehensive review. Apple Academic Press Inc, 468 

55–183 469 

Xin J, Huang B, Dai H, Liu A, Zhou W, Liao K (2014) Characterization of cadmium uptake, 470 

translocation and distribution in young seedlings of two hot pepper cultivars that differ in 471 

fruit cadmium concentration. Environ Sci Pollut Res 21:7449–7456 472 

Xin J, Huang B, Liu A, Zhou W, Liao K (2013) Identification of hot pepper cultivars containing 473 

low Cd levels after growing on contaminated soil: uptake and redistribution to the edible 474 

plant parts. Plant Soil 373:415–425 475 

Xin J, Huang B, Yang Z, Yuan J, Dai H, Qiu Q (2010) Responses of different water spinach 476 

cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J  Hazard Mater 175:468–476 477 

Xue M,  Zhou Y, Yang Z, Lin B, Yuan J,  Wu S (2014) Comparisons in subcellular and 478 

biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of 479 

pakchoi (Brassica chinensis L.). Front Environ Sci Eng 8:226–238 480 

Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars 481 

and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309 482 

Zhang K, Wang J, Yang Z, Xin G., Yuan J, Xin J, Huang C (2013b) Genotype variations in 483 

https://www.google.com/search?hl=en&gbv=2&tbm=bks&q=inauthor:%22Linhai+Wu%22&sa=X&ei=I3M8VNvCH8jygwTM0IIw&ved=0CDwQ9AgwBg
https://www.google.com/search?hl=en&gbv=2&tbm=bks&q=inauthor:%22Dian+Zhu%22&sa=X&ei=I3M8VNvCH8jygwTM0IIw&ved=0CD0Q9AgwBg
http://www.researchgate.net/researcher/38465863_Junliang_Xin
http://www.researchgate.net/researcher/39993499_Baifei_Huang
http://www.researchgate.net/researcher/2034490444_Meng_Xue
http://www.researchgate.net/researcher/16032650_Yihui_Zhou
http://www.researchgate.net/researcher/84525580_Biyun_Lin
http://www.researchgate.net/researcher/40089130_Jiangang_Yuan
http://www.researchgate.net/researcher/84532829_Shanshan_Wu
http://www.researchgate.net/researcher/2040009105_Kun_Zhang
http://www.researchgate.net/researcher/2034545188_Jianbing_Wang
http://www.researchgate.net/publication/257759525_Genotype_variations_in_accumulation_of_cadmium_and_lead_in_celery_(Apium_graveolens_L.)_and_screening_for_low_Cd_and_Pb_accumulative_cultivars?ev=auth_pub


 

 24 

accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd 484 

and Pb accumulative cultivars. Front Environ Sci Eng 7:85–96 485 

Zhang K, Yuan J, Kong W, Yang Z (2013a) Genotype variations in cadmium and lead 486 

accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars 487 

for food safety. Environ Sci: Processes Impacts 15:1245–1255. 488 

Zhou Y, Xue M, Yang Z, Gong Y, Yuan J, Zhou C (2013) High cadmium pollution risk on 489 

vegetable amaranth and a selection for pollution-safe cultivars to lower the risk. Front 490 

Environ Sci Eng 7:219−230 491 

Zhu Y, Yu H, Wang J, Yang Z (2007) Heavy metal accumulations of 24 asparagus bean cultivars 492 

grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb and Zn). J Agric 493 

Food Chem 55:1045–1052 494 

http://www.researchgate.net/publication/257759525_Genotype_variations_in_accumulation_of_cadmium_and_lead_in_celery_(Apium_graveolens_L.)_and_screening_for_low_Cd_and_Pb_accumulative_cultivars?ev=auth_pub
http://www.researchgate.net/publication/257759525_Genotype_variations_in_accumulation_of_cadmium_and_lead_in_celery_(Apium_graveolens_L.)_and_screening_for_low_Cd_and_Pb_accumulative_cultivars?ev=auth_pub
http://www.researchgate.net/researcher/2040009105_Kun_Zhang
http://www.researchgate.net/researcher/40089130_Jiangang_Yuan
http://www.researchgate.net/publication/236691762_Genotype_variations_in_cadmium_and_lead_accumulations_of_leafy_lettuce_%28Lactuca_sativa_L.%29_and_screening_for_pollution-safe_cultivars_for_food_safety?ev=auth_pub
http://www.researchgate.net/publication/236691762_Genotype_variations_in_cadmium_and_lead_accumulations_of_leafy_lettuce_%28Lactuca_sativa_L.%29_and_screening_for_pollution-safe_cultivars_for_food_safety?ev=auth_pub
http://www.researchgate.net/publication/236691762_Genotype_variations_in_cadmium_and_lead_accumulations_of_leafy_lettuce_%28Lactuca_sativa_L.%29_and_screening_for_pollution-safe_cultivars_for_food_safety?ev=auth_pub
http://www.researchgate.net/researcher/16032650_Yihui_Zhou
http://www.researchgate.net/researcher/2034490444_Meng_Xue
http://www.researchgate.net/publication/257759592_High_cadmium_pollution_risk_on_vegetable_amaranth_and_a_selection_for_pollution-safe_cultivars_to_lower_the_risk?ev=auth_pub
http://www.researchgate.net/publication/257759592_High_cadmium_pollution_risk_on_vegetable_amaranth_and_a_selection_for_pollution-safe_cultivars_to_lower_the_risk?ev=auth_pub

	Southern Illinois University Carbondale
	OpenSIUC
	11-20-2015

	Effects of phosphorus on chemical forms of Cd in plants of four spinach (Spinacia oleracea L.) cultivars differing in Cd accumulation
	Aiguo Yin
	Zhongyi Yang
	Stephen Ebbs
	Jiangang Yuan
	Jianbin Wang
	See next page for additional authors
	Recommended Citation
	Authors


	tmp.1456428880.pdf.zZfHy

