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Abstract 25 

Cerium oxide nanoparticles (CeO2 NP) are a common component of many 26 

commercial products. Due to the general concerns over the potential toxicity of 27 

engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO2 28 

NPs have been broadly investigated. However, most previous studies were conducted in 29 

hydroponic systems and with grain crops. For a few studies performed with soil grown 30 

plants, the impact of soil properties on the fate and transport of CeO2 NPs was generally 31 

ignored even though numerous previous studies indicate that soil properties play a critical 32 

role in the fate and transport of environmental pollutants. The objectives of this study 33 

were to evaluate the soil fractionation and bioavailability of CeO2 NPs to Raphanus 34 

sativus L (radish) in two soil types. Our results showed that the silty loam contained 35 

slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, 36 

but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO2 NPs 37 

concentration increased. CeO2 NPs associated with silicate minerals or the residue 38 

fraction (F4) dominated in both soils. The cerium concentration in radish storage root 39 

showed linear correlation with the sum of the first three fractions (r2 = 0.98 and 0.78 for 40 

loamy sand and silty loam respectively). However, the cerium content in radish shoots 41 

only exhibited strong correlations with F1 (r2 = 0.97 and 0.89 for loamy sand and silty 42 

loam respectively). Overall, the results demonstrated that soil properties are important 43 

factors governing the distribution of CeO2NPs in soil and subsequent bioavailability to 44 

plants.  45 

 46 

Keywords: cerium oxide nanoparticles, radish, bioavailability, soil fractionation 47 
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Introduction 48 

As the world’s most abundant rare earth element, cerium is widely used in 49 

industries both in free metal and oxide form (Naumov, 2008; Masui et al., 2002). Thanks 50 

to the large specific surface area and rich redox chemistry, cerium oxide nanoparticles 51 

(CeO2 NPs) have been used as catalysts, electrolyte materials and fuel additives (Zhang et 52 

al., 2002). The increasing popularity of CeO2 NPs in industry has caused concern over 53 

their potential toxicity in the environment. There have been many reports that indicate 54 

potential toxicity of CeO2 NPs to bacteria, fish, and mammalian cells (Pelletier et al., 55 

2010; Rosenkranz et al., 2012). The potential risks of CeO2 NPs to plants, a critical food 56 

source for humans, have also been investigated. However, previous studies were mainly 57 

focused on the uptake and accumulation of CeO2 NPs by grain crops and aboveground 58 

vegetables in hydroponic systems. For instance, López-Moreno et al. (López-Moreno et 59 

al., 2010) showed that intact CeO2 NPs were taken up by soybean roots in hydroponic 60 

systems without subsequent biotransformation. Zhang et al. (Zhang et al., 2011) also 61 

reported that cucumber (Cucumis sativus L.) root could take up CeO2 NPs and transport 62 

them to the shoots. However, later investigations suggested that CeO2 NPs may release 63 

Ce3+ on root surface and uptake of Ce3+ rather than CeO2 NPs might be the primary 64 

pathwyay for plant upktae of CeO2 NPs (Rui et al., 2015; Ma et al., 2015; Schwabe et al., 65 

2015). Although hydroponic studies provide valuable information on the potential 66 

mechanisms of plant uptake and accumulation of CeO2 NPs, increasing efforts are 67 

dedicated to elucidating the fate and impact of CeO2 NPs in soil to obtain a more realistic 68 

understanding of the fate and impact of CeO2 NPs.   69 

For example, after tomato plants were irrigated with 0.1 to 10 mg/L of CeO2 NPs 70 
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solutions, Wang et al. (Wang et al., 2012) reported that Ce was accumulated in tomato 71 

(Solanum lycopersicum L.) roots and shoots, including the edible tissues, with the root 72 

being the primary tissue of accumulation. Zhao et al. (Zhao et al., 2015) also reported low 73 

translocation of CeO2 NPs from root to shoot in corn plants (Zea mays L.) and noticed 74 

that 800 mg/kg CeO2 NPs did not affect plant photosynthesis throughout the exposure but 75 

significantly reduced the corn yield. Another recent study demonstrated that CeO2 NPs 76 

did not affect the growth of lettuce (Lactuca sativa L.) at low concentrations (50 mg/kg 77 

and 100 mg/kg) in potting soil, but significantly inhibited biomass production and 78 

disrupted plant stress responses at 1000 mg/kg (Gui et al., 2015). While these soil-based 79 

studies provide significant new information on the fate and impact of CeO2 NPs in the 80 

ecosystem, none of the previous studies has closely examined the impact of soil 81 

properties on the toxicity and bioavailability of CeO2 NPs to terrestrial plants. Plant 82 

uptake of metals in soil depends on both the soluble fraction of total metal and the 83 

capability of soil to release the metals and both factors are considerably affected by the 84 

soil properties (Backes et al., 1995). Previous research has shown that metal mobility in 85 

soil is governed by many factors including the soil characteristics (e.g. soil texture, pH, 86 

and organic matter content); the nature of the contaminants (e.g. the chemical forms of 87 

pollutants and the binding state); and the environmental conditions (e.g. acidification, 88 

redox processes, temperature, and water regime) (Sahuquillo et al., 2003).  89 

In recent decades, several extraction methods have been developed to evaluate the 90 

mobility of metals in soil. Sequential selective extraction is defined as the use of a series 91 

of selective reagents to solubilize the solid material successively into specific fractions 92 

(Gleyzes et al., 2002). A three-step sequential extraction procedure for soil and sediment 93 
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analysis known as the BCR (Bureau Commune de Reference of the European 94 

Commission) method, proposed in 1993 (Ure et al., 1993) and later modified by Rauret et 95 

al in 1999 (Rauret et al., 1999) is widely used for the determination of extractable trace 96 

metals in soils and sediments. This three-step sequential extraction method separates the 97 

metal of interest into four fractions: the exchangeable, water/acid soluble metal (F1); the 98 

metal bound to Fe-Mn oxides (F2); the metal bound to organic matter (F3) and the metal 99 

bound to silicate minerals in the residual fraction (F4) (Rao et al., 2010; Sahuquillo et al., 100 

2003; Li et al., 2010). According to the research of Li et al. (Li et al., 2010), F1 101 

represents the most active, mobile and bioavailable phase of the metal. These authors 102 

used the BCR method to study the bioavailability of Zn, Cu, Pb Cd, Hg, and As in topsoil 103 

and found that soil physicochemical properties (e.g. pH, organic matter, and clay content) 104 

affected metal fractionation in soil and their bioavailability to plants. Zhong et al. (Zhong 105 

et al., 2011) suggested that the first three fractions of the metals in soil were the 106 

potentially bioavailable and hazardous fractions to plants. The successful application of 107 

the BCR method to estimate the bioavailability of heavy metals in soil to plants provides 108 

a potentially useful method to evaluate the availability of engineered metallic 109 

nanoparticles under similar exposure scenarios.  110 

Radish (Raphanus sativus L.) is a popular vegetable with high global 111 

consumption and can mature in three to four weeks under favorable growth conditions. 112 

Radish is also an underground vegetable, with its edible tissues directly exposed to CeO2 113 

NPs in soil. Therefore, radish may accumulate high concentrations of ENPs in their 114 

edible tissues. A previous study indeed demonstrated that the radish tubes grown in a 115 

loamy sand soil with 250 and 500 mg/kg of CeO2 NPs accumulated high concentrations 116 
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of Ce, posing potential risks for human exposure (Corral-Diaz et al., 2014). However, 117 

detailed distribution of Ce in the tubes and the role of soil properties were not reported in 118 

that study. The objectives of this investigation were to (1) use the BCR sequential 119 

extraction method to evaluate the fractionation of CeO2 NPs in two types of soil, (2) 120 

assess the bioavailability of CeO2 NPs to radish roots and (3) determine the impact of soil 121 

type on the root to shoot translocation of CeO2 NPs and their distribution in plant tissues.  122 

 123 

Materials and Methods 124 

Chemicals 125 

 A dispersion of bare CeO2 NPs (10 wt. % in H2O, <25 nm particle size) was 126 

purchased from Sigma-Aldrich (St. Louis, MO). The shape, size and size distribution 127 

were determined by a Tecnai G2 F20 transmission electron microscope (TEM) (FEI, 128 

Hillsboro, Oregon) and are shown in Figure 1. Most of the nanoparticles had quadrilateral 129 

or polygonal shapes and fell in the size range of 10-25 nm in diameter with an average 130 

nanoparticle size of 19.1 nm. The size distribution was obtained by measuring 112 131 

individual nanoparticles on the TEM image with ImageJ. The hydrodynamic diameter 132 

and zeta potential of CeO2 NPs at 500 mg/L in water were 107.3 nm and 45±0.41 mV 133 

respectively, as measured by a dynamic light scattering instrument (Malvern Zetasizer 134 

Nano-ZS90, Westborough, MA). The surface speciation of CeO2 NPs was investigated 135 

with an X-ray photoelectron spectroscopy (XPS) (Omicron multiprobe MXPS system, 136 

Scienta Omicron, Germany). The XPS spectra of the surface of CeO2 NPs was shown in 137 

Figure 1c. The results indicated that 12.4% of Ce on the surface was in the form of Ce3+, 138 

as calculated through the XPS peak fitting software XPSPEAK 4.1. 139 
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Quarter and half strength Hoagland solution were prepared by dissolving an 140 

appropriate amount of the modified Hoagland’s basal salt mixture purchased from 141 

Phytotechnology Laboratories (Lenexa, KS) in deionized (DI) water.   142 

Soil characterization 143 

Two types of soil were used in this study: (1) commercially-purchased topsoil 144 

(Timberline Top Soil, Oldcastle Inc., Atlanta, GA); (2) an agricultural soil collected from 145 

a farmland associated with Southern Illinois University (Carbondale, IL).  Due to the 146 

different weight percentages of sand, silt and clay in these two soils, the topsoil was 147 

classified as loamy sand and the local soil was classified as silty loam according to the 148 

USDA soil texture classification. The weight percentages of sand, silt, and clay were 149 

determined through wet sieve analysis and hydrometer test (Bouyoucos, 1962). The 150 

results for both soils are shown in Supplementary Table 1. 151 

The Deutsches Institut für Normung (DIN) 19684-1 method was adopted for the 152 

measurement of soil pH. One hundred mL deionized water was mixed with 40 g of air-153 

dried soil at the speed of 250 rpm (solid-liquid mass ratio 1:2.5). The mixture was shaken 154 

for five minutes and allowed to settle for two hr. The pH was then measured with a pH 155 

meter (Thermo Scientific Orion ROSS Ultra pH/ATC Triode, Orion Star A325). The pH 156 

of loamy sand was 6.87 and the pH of silty loam was 6.58.  157 

 The ASTM D 2974 method (Standard Test Methods for Moisture, Ash, and 158 

Organic Matter of Peat and Organic Soils) was used to determine the content of organic 159 

matter in soil. The soil was first dried in an oven at 105 °C for 24 h. The dry soil was 160 

weighed and then combusted at 440 °C for 24 h. The loss in mass was assumed to be due 161 

entirely to oxidation of organic matter. Three replicates were prepared for each type of 162 
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soil. The average organic matter contents were 11.87% ± 0.56% for loamy sand and 163 

2.21% ± 0.04% (average ± standard error, n=3) for silty loam.   164 

Experimental Setup 165 

Soil preparation 166 

The growing pots were established by adding 150 g of dry soil to a plastic 167 

container (~266 mL total volume). CeO2 NPs dispersion and deionized water were added 168 

to the container in different proportions so that the soil was saturated to 100% of field 169 

capacity and at the same time reached the targeted concentration of CeO2 NPs 170 

homogeneously. Four concentrations of CeO2 NPs were prepared for each type of soil: 171 

control (no treatment), 100, 500 and 1000 mg Ce /kg dry soil. The concentrations were 172 

chosen based on the most frequently used concentrations in the literature for the fate and 173 

phytotoxicity study of metal oxide nanoparticles to terrestrial plants (Holden et al., 2014). 174 

Each treatment had six replicates. Altogether, 24 such containers were prepared for each 175 

soil. The soil were incubated for one day before radish seeds were sowed.  176 

Seed germination and growth conditions 177 

 Radish seeds [Cherriette (F1)] were purchased from Johnny’s Selected Seeds 178 

(Winslow, ME). Three seeds were placed approximately 15 mm beneath the soil surface 179 

in each container with soils containing different concentrations of CeO2 NPs. After 180 

germination, each container was thinned to one seedling.  181 

 Plants were irrigated with quarter strength Hoagland’s solution to a constant mass 182 

(230 g after irrigation) daily from Day 6 to Day 15 after sowing. The soil was then 183 

irrigated to the same constant mass with half strength Hoagland’s solution until harvest 184 

(Day 31). Plants were incubated on a growth cart with a 16 h photoperiod at 28 °C and 185 
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ambient humidity. The growth cart was equipped with four T5 fluorescent bulbs, 186 

providing a light intensity of approximately 104 umol m-2 s-1 at the height of plant shoots. 187 

Relative chlorophyll content was measured with a SPAD 502 Plus Chlorophyll Meter at 188 

Day 26 and was expressed as a percentage of the control plants.  189 

Cerium fractionation in soil 190 

At harvest, plants were gently removed from the soil for further analysis (details 191 

described below). The soil was homogenized and then three samples were randomly 192 

collected from three containers in each treatment and extracted with the modified BCR 193 

method to determine the fractionation of CeO2 NPs in soil.  The sample was first 194 

extracted with 20 mL of 0.11 M acetic acid solution by shaking at 250 rpm for 16 hours 195 

at 22±5 °C and centrifuged at 3,000 g for 20 minutes to obtain the exchangeable fraction 196 

(F1). The residue was then resuspended and extracted by 20 mL of 0.5 M hydroxylamine 197 

hydrochloride solution at pH 1.5 and shaken at 250 rpm for 16 hours at 22±5 °C. The 198 

mixture was centrifuged similarly as described above to obtain the reducible fraction 199 

(F2). The residue was then resuspended and mixed with 30% H2O2 and shaken at 250 200 

rpm for 1 hour at room temperature, followed by another hour of shaking at 250 rpm at 201 

85±2 °C with a closed cap. The volume of the mixture was reduced to less than 1.5 mL 202 

by further heating at the same temperature without cap. Following the volume reduction, 203 

an aliquot of 5 mL of 30% w/v H2O2 was added and the heating process was repeated 204 

until the volume was reduced to about 0.5 mL. Afterwards, 25 mL of 1 M ammonium 205 

acetate solution at pH 2 was mixed with the residue for 16 hours at 22±5 °C and the 206 

mixture was centrifuged at 3,000 g for 20 minutes to extract the oxidizable fraction (F3). 207 

The residue fraction (F4) was extracted by aqua regia following the ISO 11466 protocol; 208 
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4.5 mL of HCl (12.0 M) and 1.5 mL of HNO3 (15.8 M) was added drop-wise to 0.5 g of 209 

residue from the third fraction. The mixture was left at room temperature for 16 hours 210 

and then was transferred to a 50 mL reaction vessel connected to a reflux condenser. The 211 

reaction vessel was heated until reflux conditions were reached and was continuously 212 

heated for 2 hours (the condensation zone is lower than 1/3 of the height of the 213 

condenser). The condenser was further rinsed with 10 mL HNO3 (0.5 M) and the rinsing 214 

solution and additional HNO3 (0.5 M) were collected and added to the reaction vessel 215 

until they reached the 50 mL scale line. The supernatant solution of each fraction was 216 

analyzed for Ce by an Agilent 7500ce Inductively Coupled Plasma Mass Spectrometry 217 

(ICP-MS, Santa Clara, CA).  218 

Scanning electron microscope characterization of cerium in soil 219 

 To determine the physicochemical characteristics of CeO2 NPs in soil, air dried 220 

control and 1000 mg/kg treated loamy sand and silty loam soils were fixed on a double-221 

sided adhesive tape, which was adhered to the specimen holder, and were analyzed using 222 

FEI Quanta FEG450 scanning electron microscope (SEM) equipped with an Energy 223 

Dispersive X-ray Spectroscopy (EDS). The SEM imaging of soil samples was performed 224 

by applying accelerating voltages of 10 kV. The concentration of 1000 mg/kg CeO2 NPs, 225 

the highest concentration used in this study, was selected to ensure the detectability of 226 

CeO2 NPs by SEM. 227 

Plant uptake and accumulation of cerium  228 

After plants were carefully removed from the soil, they were separated into 229 

shoots, storage root (the edible radish bulb) and fine roots. The separated tissues were 230 

rinsed with DI water to remove all adhering soil particles and dried in an oven at 105 °C 231 
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for 30 minutes, then at 75 °C for seven days prior to dry weight determination. After 232 

drying in the oven, three replicates in each treatment were randomly chosen. The dried 233 

shoot, storage root, and fine root tissues were ground into fine powders and digested in 4 234 

mL of 70% (v/v) nitric acid. The nitric acid digest was heated at 95 °C for 20 minutes and 235 

then at 45 °C for 4 minutes. The cycle was repeated until all the dry tissues was 236 

dissolved. Afterwards, 2 mL of H2O2 was added to the mixture. The mixture was heated 237 

using the same temperature cycle until the solution was clear. The digest solutions of 238 

storage roots and shoots were then analyzed by ICP-MS. The digest solution of fine roots 239 

was analyzed by a Thermal Scientific iCAP 6500 Inductively Coupled Plasma Optical 240 

Emission Spectrometry (ICP-OES) due to the high cerium concentration in the fine root 241 

tissue.  242 

Distribution of cerium in radish shoots and storage roots 243 

 Three replicates from the control and 500 mg/kg treatment group grown in both 244 

soils were used as representatives to illustrate the cerium localization in the radish storage 245 

roots and shoots. The whole storage root was divided into three layers with a precision 246 

knife: the periderm (Peri), the intermediate layer (L1), and the inner layer (L2). The 247 

thicknesses of the periderm and the intermediate layer were approximately 1 mm and 5 248 

mm respectively (Figure 2). Each shoot was divided into two sections: the edges (S1) and 249 

the main leaf area (S2). The width of the edges was about 5- 7 mm (Figure 2). The 250 

subsections of the storage roots and shoots were oven dried and digested as described 251 

above for the whole tissues. The digest solutions were analyzed by ICP-MS.  252 

Data analysis 253 

The statistical analysis of experimental data was performed by means of one-way 254 
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and two-way ANOVA using IBM SPSS Statistics 20.0. The Duncan test was conducted 255 

for post hoc comparisons. A student t test was conducted to determine the significance of 256 

soil impact at the same concentration. Statistical significance was accepted when p<0.05.  257 

Results 258 

Plant physiological status 259 

The dry biomass of storage roots and shoots are shown in Supplementary Figure 260 

1. For both soils, treatment with 100 and 500 mg/kg CeO2 NPs did not cause any 261 

significant differences between the treated plants and their controls. Exposure to 1000 mg 262 

/kg CeO2 NPs resulted in significantly greater dry biomass of the storage root than all 263 

other treated and control plants in loamy sand. The same treatment, however, led to 264 

significantly lower dry biomass of storage roots than that of 500 mg/kg treated radishes in 265 

silty loam. When the biomass of radishes grown in two soils at the same concentration 266 

was compared, the storage roots of control, 100 mg/kg, and 500 mg/kg CeO2 NPs treated 267 

radishes were significantly greater in silty loam than in loamy sand. At the highest 268 

concentration, the difference of the storage root biomass between the two soils was not 269 

significant.  270 

In contrast to the storage root biomass, the shoot biomass was not affected by 271 

CeO2 NPs exposure for either soil. However, significant differences were noticed 272 

between the soil types at control and 100 mg/kg treatment. Radishes grown in silty loam 273 

soil from the two concentration groups had significantly higher shoot biomass than the 274 

plants grown in loamy sand. The relative chlorophyll contents, expressed as percentages 275 

of controls, are shown in Supplementary Table 2. No significant differences were 276 

observed across the treatments.  277 
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Cerium fractionation in soil 278 

The percentage of each fraction in the two soils is illustrated in stacked columns 279 

in Figure 3. F4 was the dominant fraction of CeO2 NPs in both soils, and the percentage 280 

was invariably higher in silty loam (60.8-78.2%) than in loamy sand (58.6-70.5%) at the 281 

same concentration. F1 was the smallest fraction and accounted for less than 0.11% in 282 

loamy sand and 0.22% in silty loam. While the relative percentage of F2 was comparable 283 

between the two soils, the loamy sand always contained higher oxidizable fraction (F3) 284 

than silty loam at the same concentration (15.8-17.8% for loamy sand vs. 9.07-11.8% for 285 

silty loam). The distribution of CeO2 NPs among these four fractions changed with 286 

concentration. In general, with the increase of concentration, the percentage of F1 and F2 287 

decreased while the percentage of F4 increased in both soils.  The percentage of F3 was 288 

relatively stable across the concentration ranges employed in this study.  289 

 The actual concentrations of each individual fraction are presented in 290 

Supplementary Figure 2. As the most abundant rare earth element on the earth’s crust, 291 

both soils contained high background concentration of cerium. The total background 292 

cerium was 52.5 + 1.87 mg/kg dry soil in the loamy sand and 77.2 + 5.25 mg/kg dry soil 293 

in the silty loam. Due to the high background concentrations of cerium, the fractionation 294 

of dosed CeO2 was calculated by subtracting the cerium concentration in each individual 295 

fraction of the control soil from the concentrations in the corresponding fractions of the 296 

treated soil.  The results are presented in Figure 4. Both the dosing concentration and soil 297 

characteristics were significant factors affecting the fractionation of CeO2 NPs in soil 298 

according to the two-way ANOVA analysis. In general, the silty loam contained higher 299 

F1 than the loamy sand and the difference was significant for 500 mg/kg treatment 300 
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(Figure 4a). The silty loam contained significantly lower F2 and F3 than the loamy sand 301 

in 500 and 1000 mg/kg treatment. The silty loam had significantly higher F4 than the 302 

loamy sand in 100 mg/kg but the differences in F4 were not significant in higher 303 

concentrations (Figure 4d). It has been reported that CeO2 NPs cannot be fully dissolved 304 

in aqua regia (Antisari et al., 2011). Therefore, it is likely that some cerium residues 305 

remained in the soil and was not included in the four fractions reported here.  306 

 To further probe the differences of CeO2 NPs behaviors in the two soils, SEM 307 

analysis was conducted. The SEM images shown in Figure 5 were acquired with samples 308 

from control and 1000 mg/kg treatment. EDS analysis was conducted in the selected area 309 

(red frames in the images) to detect the component elements. The main components of 310 

the two soils were silica and oxygen. In control samples from both soil types, no cerium 311 

was detected by the EDS even though ICP-MS analysis showed that both soils contained 312 

high background cerium. However, in 1000 mg/kg treatment, the cerium weight 313 

percentages were 7.23% and 8.05% in loamy sand and silty loam, respectively. The 314 

cerium signals in both soil indicate that the CeO2 NPs were mainly attached to the edge 315 

of soil particles. Individual particle aggregates could be seen in the treated loamy sand, 316 

but not in the silty loam soil.  317 

Cerium uptake and accumulation 318 

Cerium was detected in all plant tissues even though the total accumulation of 319 

cerium in plant biomass was relatively small compared with the total cerium added to the 320 

system. The concentrations and the total mass of cerium in different plant tissues are 321 

presented in Supplementary Figure 3. Due to the high background cerium concentration 322 

in control plants, the accumulation of the dosed cerium in different plant tissues was 323 
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calculated by subtracting the cerium concentration in different plant tissues of the control 324 

plants from the corresponding tissues of treated ones and the results are presented in 325 

Figure 6.  Even though the accumulation of cerium in all tissues increased with 326 

increasing concentration in general, a dose response relationship was not apparent, 327 

especially for the shoot tissues.  328 

 The comparison of cerium accumulation by plants grown in two soil types 329 

indicated that the radish fine roots and storage root from the loamy sand usually 330 

possessed higher cerium concentration than the same tissues collected from the silty 331 

loam. Interestingly, the cerium concentration in the shoot showed opposite trend between 332 

these two soils.  However, none of these differences were significant except for the 333 

cerium in the fine roots from 100 mg/kg treatment.  334 

Cerium localization in radish storage roots and shoots 335 

 The cerium concentrations in different sections of radish storage roots and shoots 336 

are shown in Table 1. The average cerium concentration in the periderm (Peri) of radish 337 

storage roots from 500 mg/kg was more than ten times higher than that of control in both 338 

soils. However, large variations were observed between replicates from the same 339 

treatment group. Cerium concentrations in the intermediate layer (L1) and the inner layer 340 

were comparable to the control plants in both soils. In radish leaves, the cerium 341 

concentrations in the edge section (S1) of treated and control plants were similar for both 342 

soils. However, the average cerium concentration in the main leaf area (S2) was 343 

significantly higher (almost three times) from 500 mg/kg treated radish than from control 344 

plants in the silty loam. No difference was observed for the main leaf area in control 345 

plants and 500 mg/kg treated plants in loamy sand.  346 
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 347 

Discussion  348 

 Although plant uptake of CeO2 NPs from soil has been observed previously (Rico 349 

et al., 2013; López-Moreno et al., 2010; Wang et al., 2012; Wang et al., 2013; Zhang et 350 

al., 2011), the influence of soil properties on CeO2 NPs bioavailability has not been 351 

examined. However, once cerium enters soil through wastewater irrigation or biosolid 352 

amendment, particle bioavailability may depend heavily on the physical and chemical 353 

properties of soil, as noted for other elements (Ernst, 1996). The results of this study 354 

confirmed that the accumulation and translocation of CeO2 NPs in plant tissues depend 355 

heavily on soil type due to the impact of soil on CeO2 NPs fractionation.  356 

Even though CeO2 NPs are generally perceived as stable in the environment, 357 

dissolution does occur and Cornelis et al. (Cornelis et al., 2011) reported that about 358 

0.25% of total CeO2 NPs in soil was released as ions at pH 7 and 9 in soil. The presence 359 

of chelating agents in the soil may further enhance the dissolution by forming complexes 360 

with Ce3+ on the surface of CeO2 NPs (Schwabe et al., 2014). F1 was considered to 361 

include both the dissolved ions and dissolved nanoparticles.  Due to the low solubility of 362 

CeO2 NPs and possibly the rapid adsorption of dissolved ions to the solid phase,  F1 363 

represented a negligible fraction in both soils in this study even though the concentration 364 

of F1 increased with concentrations (<0.16% for the dosed CeO2 NPs). Water soluble 365 

cerium at low concentration is generally not considered as toxic and is sometimes used as 366 

fertilizer (Hu et al., 2002). The F1 in silty loam was invariably higher than that in loamy 367 

sand at the same concentration. Therefore, the differences of F1 may partially explain the 368 

generally higher dry biomass of radish storage roots and shoots in silty loam than in 369 
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loamy sand (Supplementary Figure 1).  370 

Fe-Mn oxides, considered as secondary minerals, exist primarily in the clay 371 

(Allen and Hajek, 1989; Fieldes and Swindale, 1954; Post, 1999). Therefore, the higher 372 

reducible CeO2 (F2) in silty loam with higher clay content may be expected. 373 

Interestingly, the expectation was only consistent with the observations at lower 374 

concentrations (<100 mg/kg). At higher concentrations (500 and 1000 mg/kg), the 375 

opposite trend was observed. Two processes may have contributed to the seemingly 376 

inconsistent observations of CeO2 NPs fractionation in these two soils.  Firstly, the CeO2 377 

NPs used in this study were positively charged, as indicated by their surface zeta 378 

potential. At neutral pH, the surface charges of quartz and feldspars, which are the main 379 

components of sand and silt, are negative (Jada et al., 2006; Yin and Drelich, 2008). 380 

Previous research showed that electrons can accumulate at the edges of clay particles 381 

(Bolland et al., 1976). Therefore, CeO2 NPs can be electrostatically attracted to the 382 

electrons on clay edges and precipitate (Cornelis et al., 2011). The strong affinity 383 

between CeO2 NPs and some soil particles is supported by the SEM images (Figure 5). 384 

The electrostatic forces present may therefore restrain the direct contact of CeO2 NPs 385 

with Fe-Mn oxides in the clay. Secondly, the extractant (hydroxylamine hydrochloride) 386 

used to recover F2 may lead to higher cerium concentration in loamy sand due to its high 387 

reducing capacity. It has been reported that hydroxylamine hydrochloride can reduce 388 

Ce4+ in CeO2 to Ce3+ ions (2CeO2 + NH2OH + NH3OH+ + 2H2O → 2Ce(OH)3 + NO2
− + 389 

NH4
+ + H+. Eo = 0.232V) (Tamilmani et al., 2003). The reaction might be stronger 390 

between the extractant and the more mobile CeO2 NPs in the loamy sand, leading to high 391 

measurement of F2 in the loamy sand than in silty loam. This hypothesis needs further 392 
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evaluation. Different hydrodynamic sizes of CeO2 NPs at different concentrations might 393 

also affect their precipitation and association with different fractions of soil particles. 394 

Future studies should aim to characterize ENPs in the actual environment in addition to 395 

the characterization of primary particles.  396 

The oxidizable fraction (F3) of CeO2 is believed to be associated with organic 397 

matter in soil. The higher organic matter content in loamy sand soil is consistent with the 398 

generally higher F3 in this soil than in the silty loam. Natural organic matter can enhance 399 

the mobility of NPs in porous media by increasing charge and steric stabilization (Lin et 400 

al., 2010). Zhao et al. (Zhao et al., 2012) studied the uptake of CeO2 NPs by corn grown 401 

in soils and concluded that organic matter improved the mobility and bioavailability of 402 

CeO2 NPs to corn, resulting in higher accumulation of Ce in corn roots. The consistently 403 

higher cerium concentration in the fine roots and storage roots of radish grown in loamy 404 

sand was consistent with the relative organic matter contents in these two soils. These 405 

findings support the theory that natural organic matter plays an important role in 406 

regulating the mobility and bioavailability of engineered nanoparticles to plants (Antisari 407 

et al., 2011). 408 

One intriguing observation of this study was the disparity of roots and shoots with 409 

regard to CeO2 NPs accumulation from different soils. As described above, the radish 410 

storage roots and fine roots generally contained higher cerium concentration in loamy 411 

sand. However, the concentrations of cerium in shoot tissues followed the opposite trend 412 

between the soils. It is postulated that the low translocation of cerium in the loamy sand 413 

is associated with the low F1 in that soil. Previous research suggested that engineered 414 

nanoparticles in plant roots are translocated up through the xylem tissues along with 415 
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water (Allen and Hajek, 1989), which makes the water soluble fraction more readily 416 

transferred to the shoot tissues. A recent study also demonstrated that negatively charged 417 

humus colloids in soil could chelate with positively charged CeO2 NPs and reduce their 418 

mobility and bioavailability in soil (Majumdar et al., 2015). Consequently, the upward 419 

transport of CeO2 NPs from root to shoot will be limited in soil grown plants and the 420 

extent of transport may depend significantly on the amount of water soluble fraction. Our 421 

results agreed with the observation of the low root to shoot translocation of CeO2 NPs in 422 

organic matter enriched soil, but contradicted a previous study which indicated that 423 

organic matter enriched soil facilitated the uptake and translocation of CeO2 NPs by corn 424 

(Zhao et al., 2012). The discrepancies may derive from the use of different CeO2 NPs and 425 

different plant species and require further investigation.   426 

Following the uptake of cerium, we further evaluated whether the different soil 427 

fractionation would affect the distribution of cerium in different plant tissues. Consistent 428 

with our previous investigation (Zhang et al., 2015), cerium was predominantly 429 

accumulated in the pigmented periderm of radish storage roots for both soils (Table 1). 430 

Another recent study on the interactions between CeO2 NPs and carrot (Daucus carota 431 

L.) also reported that the accumulation of cerium element principally in the taproot peel 432 

and the shoots, with significantly lower cerium concentration in the edible flesh (Ebbs et 433 

al., 2015). Notably, even though the average concentration in the periderm was ten times 434 

higher in the 500 mg/kg treated radish than the control radish in this study, high 435 

variability between the replicates of treated radish was noticed (51.7-217 mg/kg dry 436 

tissue for loamy sand and 45.5-236 mg/kg dry tissue for silty loam). It is likely that the 437 

high variability was due to the unequal adsorption of CeO2 NPs on the skin surface of the 438 
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storage root and the rinsing process during harvest. The similar cerium concentration in 439 

the intermediate and inner layers of the treated and control plants suggested that cerium 440 

accumulation in the flesh is limited. Altogether, the results indicate that a primary 441 

pathway for cerium accumulation in radish storage roots was physical adsorption on the 442 

surface and radial diffusion toward the center which is minimal in this study. 443 

Interestingly, the cerium concentration in S2 section of the shoot tissue grown in silty 444 

loam was three times higher than their corresponding controls, but such difference was 445 

not observed in the sandy loam. Our finding is consistent with the higher shoot 446 

concentration in CeO2 NPs treated radish in silty loam and substantiates our earlier 447 

contention that F1 was more readily translocated from radish roots to shoots. A previous 448 

study indicated that the cerium taken up from roots is transported to leaves through leaf 449 

vein vasculature with the transpiration stream (Zhao et al., 2013) and our results appeared 450 

to support that conclusion. It is yet to know, however, whether the translocated cerium 451 

was in the CeO2 NPs form or other chemical forms.  452 

In summary, soil characteristics were shown to be an important factor affecting 453 

the soil fractionation and subsequent bioavailability of CeO2 NPs to plants. The 454 

accumulation of cerium in radish belowground tissues correlated well with the sum of the 455 

first three fractions, suggesting that these fractions were bioavailable to plant roots. 456 

However, only the exchangeable fraction correlated well with the element amounts 457 

shown to transport from roots to shoots. In addition to their bioavailability, the 458 

distribution of cerium in different plant tissues was also affected by the physicochemical 459 

properties soils, indicating that the specific soil properties must be an important 460 

consideration in the assessment of the fate and transport of engineered nanoparticles in 461 
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the environment.  462 
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 675 

Figure 1: Characterization of CeO2 NPs. (a) TEM image of CeO2 NPs; (b) The size 676 
distribution of the NPs; and (c) The XPS spectra of cerium on the surface of CeO2 NPs. 677 
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 703 
 704 

Figure 2: Schematic illustration of the cutting method of the radish storage root and 705 
shoot used for cerium uptake distribution. 706 
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 723 
 724 

Figure 3: Percentage of cerium fractionation in (a). loamy sand and (b). silty loam 725 
determined by the modified BCR sequential extraction procedure. The results shown on 726 
the table beneath the figures represent the average and standard error of three replicates. 727 
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 739 
 740 
Figure 4: Adjusted cerium concentrations in different soil fractions. The error bars 741 
represent standard error (n=3). Different letters in lower case and upper case represent 742 
significant differences between the treatments in loamy sand and silty loam respectively 743 
(p<0.05). Asterisks indicate significant differences between two soils at the same CeO2 744 
dosing concentration (p<0.05). 745 
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 746 

 747 
 748 

Figure 5: SEM images of soil samples of. (a): loamy sand control; (b): loamy sand 1000 749 
mg/kg; (c): silty loam control; (d): silty loam 1000 mg/kg. Table below images shows the 750 
weight percentage of detected elements in selected area (red frames in images) 751 

 752 
 753 

 754 
 755 
 756 



31 
 

 757 
 758 

Figure 6: Modified cerium concentrations in different radish tissues after the background 759 
cerium concentrations in the control plants were subtracted from the corresponding 760 
tissues of treated plants. The error bars represent standard error (n=3). Samples without 761 
error bars indicate that the error bars are too small to see on the figures. Different letters 762 
in lower case and upper case represent significant differences between the treatments in 763 
loamy sand and silty loam respectively (p<0.05). Asterisks indicate significant 764 
differences between two kinds of soil at same CeO2 NPs dosing concentration (p<0.05). 765 
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Table 1: The cerium concentration in different parts of radish, data represented the mean 776 
and standard error (n=3). Different letters represent significant differences between the 777 
treatments 778 

 779 
Soil Type Treatment Peri (mg/kg) L1 (mg/kg) L2 (mg/kg) S1 (mg/kg) S2 (mg/kg) 

Loamy sand 
Control 11.4±3.06 7.45±1.38 11.09±1.83 18.83±1.67 8.85±0.42ab 

500 mg/kg 112.9±52.35 10.88±1.61 9.4±1.67 23.12±0.49 9.81±1.57ab 

Silty loam 
Control 8.91±0.76 10.43±2.09 8.07±2.97 22.9±4.23 7.00±0.52b 

500 mg/ kg 127.06±56.25 11.49±1.18 8.61±0.32 18.26±3.14 20.58±7.29a 
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