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[1] Projections of mid and late 21st century precipitation for 963 stations across the
contiguous United States are derived using probabilistic downscaling of 10 coupled
atmosphere‐ocean general circulation models (AOGCMs). The projections are constructed
by downscaling the statistical parameters describing precipitation occurrence and intensity,
using a first‐order Markov chain and two‐parameter gamma distribution, respectively.
Future downscaled values of the parameters are used to derive projections of wet day
probability, wet day precipitation intensity and its distribution, and total seasonal
precipitation for the cold season (November through March) and the warm season (May
through September). Downscaled results for the 10 AOGCMs indicate several robust
features of possible changes in the U.S. regional precipitation climatology. Cold season
projections are characterized by increases in precipitation in the northwest and northeast
regions, decreases in precipitation in the southwest region, and smaller or inconsistent
changes in other regions. With the exception of the northeast region, warm season
projections reflect drier conditions overall resulting primarily from fewer wet days. In both
the cold and warm seasons, changes in both the occurrence and intensity processes
contribute to changes in total precipitation. Changes in total precipitation, and the relative
roles of the occurrence and intensity processes, are found to be sensitive to the change in
the distribution of wet day precipitation intensities. Regions with increasing seasonal
precipitation totals are characterized by disproportionate increases in large precipitation
events, while those with decreasing seasonal precipitation totals are characterized by the
largest fractional decreases in small precipitation events.

Citation: Schoof, J. T., S. C. Pryor, and J. Surprenant (2010), Development of daily precipitation projections for the United
States based on probabilistic downscaling, J. Geophys. Res., 115, D13106, doi:10.1029/2009JD013030.

1. Introduction

[2] At the global scale annual total precipitation over
land does not exhibit a significant trend over the last
century [Mitchell and Jones, 2005; Peterson and Vose,
1997; Trenberth et al., 2007]. At the regional scale, how-
ever, significant changes in both annual and seasonal pre-
cipitation and their characteristics have been documented. In
the contiguous USA, there has been a 10% increase in
annual precipitation increase since 1910 [Karl and Knight,
1998], with increases of 7–15% in all seasons except win-
ter [Groisman et al., 2001]. Increases in the annual fre-
quency of wet days and heavy precipitation days and in the
mean daily and annual precipitation in the USA during the
last half‐century have also been documented though with
regional variability [Higgins et al., 2007], and robust trends
in extreme precipitation metrics have also been reported

[Groisman et al., 2005; Pryor et al., 2009]. Furthermore,
over many land regions, even those where annual precipi-
tation has decreased, extreme precipitation has increased
[Trenberth et al., 2007]. Attribution of precipitation changes
to anthropogenic forcing [Zhang et al., 2007] and interest in
mitigating and adapting to changes in extreme precipitation
[Allen and Soden, 2008; Hennessy et al., 1997; Karl et al.,
2009; Kharin et al., 2007] has spurred interest in further
development of regional precipitation projections for climate
change scenarios.
[3] The primary tools for investigating evolution of the

climate system under different forcing scenarios are coupled
atmospheric‐oceanic general circulationmodels, orAOGCMs.
However, the relatively coarse resolution of AOGCMs and
the parameterizations employed limits the realism of the daily
precipitation time series produced by AOGCMS [Liang et al.,
2006]. AOGCMs have a tendency to simulate too many wet
days [Schoof et al., 2009], and one study of 18 coupled
AOGCMs found that spatial patterns of precipitation fre-
quency and intensities were not well simulated, with most
models overestimating the frequency of small events and
underestimating the precipitation intensities for large events
[Sun et al., 2006]. Similarly precipitation in AOGCM simu-
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lations for western North America exhibits a positive bias
[Christensen et al., 2007]. The result of these shortcomings is
that although total seasonal or annual precipitation may be
reproduced in the model simulations, the characteristics of
daily precipitation are not. The surface hydrologic response to
precipitation depends critically on the nature (both occurrence
and intensity) of daily precipitation, as well as the total
amount [Trenberth et al., 2003]. Assessment of potential cli-
mate change impacts, such as those in agriculture [Rosenzweig
et al., 2002], also require realistic daily precipitation char-
acteristics and totals. These studies and others draw attention
to the need to better understand the interaction between
precipitation occurrence and precipitation intensity and how
changes in either metric are likely to impact overall pre-
cipitation receipt under global warming scenarios.
[4] The need for realistic climate change information at

small spatial scales has led to the development of down-
scaling techniques. Differences between precipitation esti-
mates from AOGCMs may be due to differences in their
precipitation parameterizations rather than differences in the
large scale conditions that partially govern precipitation
[Hewitson and Crane, 2006]. This notion is also supported by
the work of Wilby and Wigley [2000], who found that
observed and AOGCM‐simulated relationships between
large‐scale circulation and precipitation were inconsistent,
suggesting that model precipitation processes are inherently
flawed. In this context, downscaling serves as the link
between the well‐simulated large‐scale climate and poorly
simulated precipitation series. For reasons already articu-
lated, precipitation downscaling methods must be able to
address both occurrence and intensity to be considered
useful to the climate change impacts community. Stochastic
modeling provides a framework for addressing the evolution
of multiple precipitation characteristics (occurrence and inten-
sity) under enhanced greenhouse gas forcing assuming that
the model parameters can be adjusted in a manner consistent
with the climate change signal produced by the AOGCM.
[5] Downscaling with stochastic models was originally

proposed byWilks [1992] and this approach has consistently
performed well relative to other methods [Wetterhall et al.,

2006]. Approaches to downscaling with stochastic weather
generators vary primarily in the way that the parameters are
perturbed to reflect the changed climate. Most commonly,
weather typing approaches or airflow descriptors have been
employed to condition the weather generator [Stehlik and
Bardossy, 2002; Vrac and Naveau, 2007; Wilby et al.,
2002]. Less commonly, statistical parameters have been
derived from large scale fields via regression methods or
other statistical means [Cannon, 2008; Schoof et al.,
2007, 2009] or simply scaled according to their AOGCM
counterparts.
[6] In this study, we present a new approach to down-

scaling daily precipitation and use it to downscale 10 of the
CMIP3 AOGCMs [Meehl et al., 2007]. The downscaling
approach is based on extension of the probabilistic down-
scalingmethod introduced by Pryor et al. [2005] to stochastic
weather generator parameters. Using our new approach we
investigate the evolution of daily precipitation occurrence
and intensity parameters, providing a framework for inves-
tigating regional changes in precipitation climates. Given the
framework, our study addresses the question of whether
changes in total precipitation are likely to occur under
enhanced greenhouse gas forcing and whether such changes
will result from changes in precipitation occurrence (i.e., the
number of wet days), intensity (i.e., the amount of precipi-
tation on those days), or a combination of both. To our
knowledge, this is the first study to apply probabilistic
downscaling to stochastic weather generator parameters and
develop precipitation projections for sites across the USA
based on multiple AOGCMs. In section 2, we describe the
data sets used in the analysis. In section 3, a description of
the methods is presented. The results are described in
section 4 and concluding remarks follow in section 5.

2. Data and Models

[7] Historical daily precipitation data are drawn from the
data set developed by Kunkel et al. [1998, 2005] and the
National Weather Service Cooperative Observing Program
(COOP) archive, and are used to investigate recent changes
in the precipitation occurrence and intensity processes, train
and validate the downscaling models, and provide a context
for model simulated changes. While some station records
extend to 1888, we limit our analysis to the period from
1961 to 2000, in which a large number of stations have
records that are nearly complete and matching AOGCM
simulations are also available. Although the data have
undergone a quality control procedure, we additionally
discard any station with fewer than 360 valid observations
within any calendar year in the period 1961–2000. This re-
sults in a total of 963 stations used in the analysis (Figure 1).
To synthesize the downscaling analyses, the results are pre-
sented in seven regions similar to those used in previous
regional climate change assessments and in a previous study
focused on changes in precipitation seasonality [Pryor and
Schoof, 2008] (Figure 1).
[8] To investigate the relationship between daily precipi-

tation and large scale (upper level) predictors we employ a
suite of variables on a 2.5° × 2.5° grid extracted from the
European Center for Medium Range Weather Forecasting
(ECMWF) ERA‐40 reanalysis product [Uppala et al.,
2005]. The precipitation projections are derived based

Figure 1. Map of the surface observing stations used in this
study. Also shown are the seven regions for which results
are summarized: Northwest (NW), Southwest (SW), North-
ern Plains (NP), Southern Plains (SP), Midwest (MW),
Southeast (SE), and Northeast (NE).
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on daily output from ten AOGCMs from the CMIP3
model archive: BCCR BCM2.0, CCCMa CGCM3.1,
CNRM CM3, CSIRO Mk3.0, GFDL CM2.0, GISS Model E
Russell, IPSL CM4, MIUB ECHO G, MPI ECHAM5, and
MRI CGCM2.3.2a (see Meehl et al. [2007] and http://www‐
pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_
documentation.php). These models span a range of spatial
resolutions (from approximately 4° × 5° to approximately
1.9° × 1.9°) and model formulations (e.g., spectral versus
grid‐cell). All of themodel output is interpolated to a standard
2.5° × 2.5° grid corresponding to the ECMWF reanalysis
data. AOGCM output is available for three periods: 1961–
2000, 2046–2065, and 2081–2100. The 20th century period is
used to evaluate the ability of the models to reproduce
observed precipitation occurrence and intensity statistics
when used directly and when downscaled. The 21st century
model data are from simulations conducted under the SRES
A2 emissions scenario [Nakicenovic and Swart, 2000]. This
scenario equates to a moderate to high cumulative carbon
emission resulting in global carbon dioxide emissions in
2100 that are around four times the 1990 value.

3. Methodology

3.1. Daily Precipitation Model and Derived Quantities

3.1.1. Daily Precipitation Occurrence
[9] Daily precipitation occurrence is a binary variable; a

day is either wet (1) or dry (0). Although several statistical
models for daily precipitation occurrence have been pro-
posed, the first‐order Markov chain has been the most
widely applied. A recent assessment of model order, found
that for most U.S. stations and months, the 1st order model
successfully reproduces the observed precipitation occur-
rence climatology, including the distributions of dry and wet
spells [Schoof and Pryor, 2008]. For the first‐order Markov
model, the precipitation occurrence process is fully defined
by two transition probabilities: p01 (the probability of a wet
day following a dry day) and p11 (the probability of a wet
day following a wet day). Maximum likelihood estimates of
p01 and p11 can be readily computed from observed data
[Wilks, 2006]. The resulting wet day probability is given by
p = p01/(1 + p01 − p11). A precipitation occurrence series is
generated by producing a uniform [0,1] random number. If
the number is less than the appropriate transition probability
(p01 if the previously generated day was dry or p11 if the
previously generated day was wet), a wet day is generated.
Otherwise, a dry day is generated.
3.1.2. Daily Precipitation Intensity
[10] Although several statistical distributions have been

proposed for wet day precipitation intensities [Wilks, 1999],
the gamma distribution has been the most widely applied.
The gamma probability distribution function is given by:

f xð Þ ¼
x

�

� ���1

e
�x
�½ �

�G �ð Þ ; x; �; � > 0 ð1Þ

where x is the daily precipitation intensity, a and b are the
gamma shape and scale parameters, respectively, and G(a)
is the gamma function evaluated at a. The mean and vari-
ance of wet day precipitation intensities are given by ab and

ab2, respectively. Stochastic generation of daily precipita-
tion time series can be accomplished by randomly drawing a
precipitation intensity value from the gamma distributions
on each simulated wet day.

3.2. Downscaling Approach

[11] Application of the daily precipitation model described
above to AOGCM output requires that the four parameters
(p01, p11, a, and b) be downscaled with dependence on the
large scale climate. Once downscaled, the four parameters
can be used to derive the overall wet day probability (p), the
mean wet day intensity (ab) and the total precipitation for
any time period of interest (npab), where n is the number of
days in the time period.

3.3. Model Construction and Validation

[12] Regression models were constructed separately for
p01, p11, a, and b and for each of the 963 stations shown in
Figure 1. AOGCM skill varies considerable among vari-
ables, AOGCMs and temporal and spatial scales [Benestad
et al., 2008], and there is some evidence that AOGCM
results diverge at the smallest spatial scales [Grotch and
MacCracken, 1991]. We therefore adopt a conservative
approach that uses model output at the scale of several grid
boxes. For each station, the large‐scale predictor data are
averaged over the grid box in which the station resides and
two grid boxes in each cardinal direction. This results in a
12.5° × 12.5° regional average for each predictor. Addi-
tionally, because the AOGCMs may exhibit bias relative to
reanalysis data, all of the downscaling equations are con-
structed using anomalies. When applied to future periods, the
AOGCM anomalies are computed using the 1961–2000 as
the reference period.
[13] Considerable efforts have been made to identify opti-

mal predictors for precipitation in the context of downscaling
[Cavazos and Hewitson, 2005; Wilby and Wigley, 2000].
Predictors must not only contribute to precipitation variability
in the current climate, but also reflect likely changes in
precipitation under enhanced greenhouse gas conditions. For
example, analysis using the continuity equation for atmo-
spheric moisture has been used to demonstrate that sea level
pressure only partially contributes to precipitation variability
[Benestad et al., 2008]. Cavazos and Hewitson [2005]
identified mid‐tropospheric heights and humidity as the
best predictors of daily precipitation, but also cautioned that
the optimal predictors may be regionally specific.Wetterhall
et al. [2006] additionally identified humidity as a contributor
to improved modeling of interannual variability of precipi-
tation. Future changes in precipitation in midlatitude regions
are likely to depend strongly on increased water vapor
transport to regions of moisture convergence [Meehl et al.,
2005] and changes in surface pressure associated with a
poleward shift in storm tracks [Yin, 2005].
[14] Based on these studies, a large number of predictors

were considered for inclusion in the models including zonal
and meridional wind speed, specific humidity, air tempera-
ture (all at three levels: 500 mbar, 700 mbar, and 850 mbar),
as well as sea level pressure. For each of the regions (Figure 1),
regionally consistent variables were chosen that minimized
the regionally averaged mean absolute relative error (MARE;
%) using a model cross‐validation procedure. In this cross‐
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validation data from 1961 to 1986 were used for the model
training, while data from 1987 to 2000 were used for vali-
dation. The predictors that resulted in the lowestMAREwhen
applied to the ECMWF reanalysis data and evaluated using
independent data were chosen for inclusion in the final
models (Table 1 and Figure 2).
[15] The MARE values for the validation exercise are

presented in Figure 2 and are smaller in magnitude than the
inter‐annual variability (measured simply as the coefficient
of variation of the seasonal values) in all cases, demon-
strating skill in the downscaling procedure for the validation
period. Although warm season (May through September)
precipitation is traditionally predicted with lower skill than
cold season precipitation, the validation exercise (Figure 2)
suggests that the downscaled seasonal totals exhibit con-
siderably higher skill during the warm season in the Northern
and Southern Plain regions. However, the large MARE
values in the NP and SP regions during the cold season and
in the SW region during the warm season are associated
with small absolute errors since these regions are relatively
dry during these seasons resulting in smaller values of the
model parameters (p01, p11, a and b). Extension of the
downscaled parameters to derived variables (e.g., 90th per-
centile of wet day precipitation, mean dry/wet spell length)
provides additional confidence in the model for climate
projection. Consistent with previous precipitation down-
scaling studies [Haylock et al., 2006], precipitation occur-

rence is generally downscaled with greater skill than
precipitation intensity (Figure 2).

4. Results

[16] The optimal downscaling model parameters derived
from the validation procedure described in section 3.3 were

Figure 2. Mean absolute relative error (MARE, %) for seasonal mean daily precipitation characteristics:
(a) transition probability p01, (b) transition probability p11, (c) wet day probability, (d) mean dry spell
length, (e) mean wet spell length, (f) the gamma shape parameter (a), (g) the gamma scale parameter
(b), (h) wet day precipitation intensity (Pint), (i) the 90th percentile of wet‐day precipitation (P90), and
(j) total seasonal precipitation (Ptot). The black bar corresponds to the cold season (November through
March), and the white bar corresponds to warm season (May through September). The validation period
is 1987 to 2000.

Table 1. Downscaling Predictors for Region and Predictand for
Cold Season and Warm Seasona

P01 P11 Gamma a Gamma b

Cold Season (November Through March)
Northwest (NW) Q700, T700 SLP, U500 T700, U700 Q500, U500

Southwest (SW) Q700, T700 Q700, T500 T700, V700 Q700, V700

Northern Plains (NP) Q700, T700 U700, V500 SLP, T500 SLP, U700

Southern Plains (SP) Q700, T700 U700, V500 T500, U700 SLP, V700

Midwest (MW) T700, V700 Q700, T500 Q500, T500 SLP, Q700

Southeast (SE) Q700, V700 Q700, V500 Q500, T500 SLP, V700

Northeast (NE) T700, V700 Q700, T500 T500, U500 Q500, U700

Warm Season (May Through September)
Northwest (NW) Q700, T700 SLP, U500 SLP, V700 SLP, V500

Southwest (W) Q700, T700 Q700, T500 SLP, U700 U700, V700

Northern Plains (NP) Q700, U500 T700, V500 SLP, Q500 SLP, V500

Southern Plains (SP) T700, U500 Q700, U500 SLP, T500 Q700, U500

Midwest (MW) U500, V500 SLP, V500 SLP, Q700 T500, U500

Southeast (SE) Q500, T700 Q700, V500 Q700, U700 SLP, V700

Northeast (NE) Q700, V700 Q700, U700 SLP, Q500 Q700, U700

aThe same predictor variables were used for all individual stations within
a region.
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applied to the three periods for which AOGCM output is
available to assess possible future evolution of daily pre-
cipitation occurrence and intensity, and their contributions
to total seasonal precipitation. Regression equations were
thus developed and applied to each of the 963 stations for
each of the 10 AOGCMs to derive seasonal values of the
transition probabilities (p01, p11), the gamma shape and scale
parameters (a and b) and the derived values (wet day
probability, wet day precipitation intensity, and total sea-
sonal precipitation). The average change (difference) in each
of these parameters for the future time periods relative to the
historical control (1961–2000) was calculated for each
AOGCM and station combination. For reporting purposes,
the station‐level results were synthesized in each of the re-
gions depicted in Figure 1. For all variables, changes are
reported for the cold season (November through March) and
the warm season (May through September) and expressed as
percentages of the 1961–2000 observed values. The detailed
results are presented in Table 2, which shows the change in
wet‐day occurrence, mean wet‐day precipitation intensity,
10th, 50th, and 90th percentiles of wet‐day precipitation
intensity, and total seasonal precipitation. A brief interpre-
tation of these results is given in the following subsections.

4.1. Precipitation Occurrence

[17] It has been reported that a general response to
greenhouse gas forcing manifest in AOGCMs is a reduction

in the frequency of precipitation over most land areas
[Semenov and Bengtsson, 2002]. However, our regional
projections indicate the presence of both regions character-
ized by coherent increases and regions where declines
dominate (Table 2 and Figure 3).
4.1.1. Cold Season
[18] Downscaling results for the cold season (NDJFM)

indicate that the Southwest region is characterized by a
decline in the frequency of wet days of −20% in 2046–2065
and more than 30% in 2081–2100. This signal is consistent
among over 86% of stations within the region, and all
downscaled AOGCMs except IPSL CM4 in the latter period
(2081–2100). Closer inspection reveals that the regional sea
level pressure projections from IPSL CM4 are the lowest
among the models used here. The downscaled AOGCM
projections also reflect consistent, but smaller magnitude,
decreases in wet day probability (around −5% and −8% for
2046–2065 and 2081–2100, respectively) for the Midwest
region (Table 2 and Figure 3). Conversely, downscaled
precipitation occurrence for the future periods is character-
ized by increases in the Southern Plains, Southeast and
Northeast regions, with the exception of downscaling from
the CSIRO Mk3.0 model, although the consistency at the
station‐level varies considerably among the downscaled
AOGCMs. The CSIRO Mk3.0 AOGCM exhibits very low
mid‐tropospheric specific humidity relative to the multi-

Table 2. Changes in Cold Season and Warm Season Precipitation Occurrence, Amount, and Seasonal Total Expressed as Percentage
Differences Computed From (Future – Current)/Current (1961–2000) Valuesa

Region Period Pr(wet) Mean Pint P10 P50 P90 Ptot

Cold Season (November Through March)
NW 1 0.4 9.7 (85.6) 3.9 (62.7) 8.3 (80.0) 10.5 (87.6) 10.2 (81.6)

2 1.2 20.4 (83.6) 6.5 (57.8) 16.7 (77.5) 22.4 (86.7) 20.0 (82.6)
SW 1 −19.8 (86.3) 5.2 (64.3) 6.2 (56.4) 4.9 (62.5) 5.1 (65.5) −15.1 (73.2)

2 −31.0 (87.5) 14.2 (66.1) 23.4 (57.3) 14.1 (62.3) 13.5 (66.4) −21.1 (76.1)
NP 1 −6.0 (65.9) 0.1 −1.1 −1.0 0.6 −7.0

2 −5.2 −1.34 8.8 (55.2) −2.1 −1.6 −11.1 (65.7)
SP 1 −0.7 −3.2 −6.4 (62.0) −5.2 (60.5) −2.3 −4.7

2 6.3 (59.1) −8.0 (62.5) 0.4 −10.8 (62.9) −7.5 (62.0) −6.1
MW 1 −4.5 (64.5) 10.8 (71.3) 8.0 (55.1) 9.1 (65.1) 11.6 (74.7) 4.9 (64.1)

2 −8.5 (64.5) 19.8 (69.2) 21.4 (62.7) 15.6 (61.3) 21.1 (74.4) 4.9
SE 1 7.0 (85.5) −4.4 (62.9) −11.8 (65.8) −7.1 (64.5) −3.5 (62.2) 2.1 (54.6)

2 18.4 (85.3) −10.8 (66.9) −14.2 (52.9) −15.4 (67.0) −9.6 (67.0) 4.6
NE 1 3.7 (62.3) 12.1 (88.4) 8.9 (62.6) 11.1 (80.5) 12.5 (91.6) 16.0 (88.9)

2 8.7 (64.4) 26.8 (90.9) 24.4 (65.0) 24.7 (80.9) 27.6 (93.8) 36.6 (92.3)

Warm Season (May Through September)
NW 1 −24.6 (93.1) 0.7 −0.8 0.3 0.9 −24.3 (92.0)

2 −37.4 (90.7) 1.4 −1.3 0.6 1.8 −36.7 (90.0)
SW 1 −10.9 (77.1) −0.4 −0.3 −0.5 −0.3 −11.0 (75.3)

2 −13.0 (70.0) −0.7 0.2 −0.9 −0.7 −13.
NP 1 −3.4 (64.4) −1.0 (51.1) 2.1 −1.4 (51.6) −1.1 (50.3) −5.1 (68.7)

2 −6.2 (64.1) −1.5 (51.4) 16.1 (50.3) −1.3 −2.5 (51.3) −10.3 (71.3)
SP 1 −20.7 (94.2) −2.3 (54.7) 18.0 (53.1) −1.2 (53.8) −3.2 (55.6) −23.8 (87.1)

2 −36.4 (93.8) −3.0 (58.0) 49.3 (53.5) 0.0 −5.6 (60.0) −40.8 (89.9)
MW 1 −2.6 7.1 (64.6) 3.2 (50.6) 5.4 (61.0) 7.7 (65.9) 4.4 (60.0)

2 −5.8 (83.8) 9.7 (60.1) 6.6 (56.1) 5.8 (54.6) 11.1 (62.4) 3.7
SE 1 −22.4 (95.2) −3.1 (59.6) −4.7 (57.1) −4.1 (58.7) −2.8 (60.1) −25.7 (98.5)

2 −37.0 (92.9) −6.6 (61.8) −2.7 −8.1 (60.5) −6.3 (62.4) −44.1 (98.1)
NE 1 8.0 (80.5) 3.9 (64.9) −7.0 (52.3) 0.3 5.4 (70.2) 11.6 (82.3)

2 20.1 (86.6) 6.7 (62.1) −7.9 (57.7) −1.2 9.6 (66.1) 24.8 (82.3)

aPeriod 1 and Period 2 refer to 2046–2065 and 2081–2100, respectively. Bold entries indicate cases in which all 10 downscaled AOGCMs agree on the
sign of change. Italicized entries indicate cases in which 9 of the 10 downscaled AOGCMs agree. For regions and descriptors that exhibit consistency
among downscaled AOGCMs, the number in parentheses indicates the percentage of regional stations that agree on the sign of the projected change.
Pr(wet), precipitation occurrence; precipitation amount: Pint, mean; P10, 10th percentile; P50, 50th percentile; and P90, 90th percentile; and Ptot,
seasonal total.
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model ensemble, resulting in large negative changes in
precipitation occurrence in several regions (Figure 3). In the
Southern Plains, the ensemble average projected changes in
precipitation occurrence are close to zero for the mid‐century
period, but approximately +6% for the late 21st century.
For the Southeast region, projected changes in wet day
probability for 2046–2065 and 2081–2100 are around +7%
and +18%, respectively. For the Northeast region, the
corresponding changes are +4% and +9%. Downscaled
projections for the Northwest and Northern Plains regions
generally exhibit small changes in precipitation occurrence
with inconsistent sign among the AOGCMs used.
4.1.2. Warm Season
[19] Changes in warm season precipitation occurrence

changes are more consistent among the regions, the stations
within the regions, and the downscaled AOGCMs and, with
the exception of the Northeast region indicate an overall
decrease in precipitation occurrence under the A2 SRES
(Table 2 and Figure 3). This result suggests that projections
of annual decreases in precipitation occurrence previously
reported [Sun et al., 2007] are being driven primarily by
changes in the warm season. Based on the downscaling pre-
sented herein, the largest decreases in warm season precipi-
tation occurrence are projected to occur in the Northwest,
Southern Plains, and Southeast regions (Table 2 and Figure 3)
with changes of over −20% and −35% for 2046–2065 and
2081–2100, respectively. These changes are also consistent
among the AOGCMs downscaled and stations with the
regions, with all downscaled AOGCMs indicating declines
in the regional mean precipitation frequency, and at least
75% of the stations in these regions indicating decreases for
all of the downscaled AOGCMs. Decreases in precipitation
occurrence are also projected for the Southwest, Northern

Plains, and Midwest, but the level of consistency among
AOGCMs and stations, as well as the magnitude of the pro-
jected changes is lower than that reported for the Northwest,
Southern Plains, and Southeast. The Northeast region is an
exception to the otherwise consistent decrease in wet day
occurrence during the warm season. In this region, the
downscaled AOGCMs indicate an increase in wet day
occurrence during the warm season of approximately +8%
by 2046–2065 and +20% by 2081–2100 with a high level of
consistency among the stations within the region (>80%).

4.2. Precipitation Intensity

[20] Recent studies [Pryor et al., 2009] have identified
disproportionate increases in precipitation extremes using a
variety of metrics. Therefore, in addition to mean wet day
precipitation intensity (Pint) computed as the product of the
gamma shape (a) and scale (b) parameters, we also consider
changes in the shape of the distribution of wet day precip-
itation intensities for each downscaled AOGCM and station
using the derived gamma distribution parameters. As dis-
cussed below, for both the cold season (NDJFM) and
warm season (MJJAS), projections of the various metrics
of precipitation intensity derived from downscaling of the
10 AOGCMs are consistent within several U.S. regions
(Figures 4–6 and Table 2).
4.2.1. Cold Season
[21] The most notable characteristics of the cold season

precipitation intensity projections is a consistent (among
AOGCMs) increase for the Northwest, Southwest, Midwest,
and Northeast regions. For these regions, at least 9 of 10
downscaled AOGCMs (CSIRO Mk3.0 is an outlier as in the
precipitation occurrence analysis) agree on the sign of
change for both projection periods (Table 2 (cold season)

Figure 3. Projections of wet day probability change for (a, c) cold season (November through March)
and (b, d) warm season (May through September) and for 2046–2065 (Figures 3a and 3b) and 2081–2100
(Figures 3c and 3d) relative to 1961–2000. Changes are shown as percentages of the 1961–2000 values
averaged over all the stations in each region.
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and Figures 4 and 5). Projections for the Northwest and
Northeast regions additionally exhibit strong regional
coherence as manifest in the large number of stations within
these regions that exhibit increased mean daily accumulated
precipitation. For the Southwest and Midwest regions,
approximately 70% of the stations exhibit agreement with
respect to the sign of the projected change, which is positive
in both cases. In all four of these regions, precipitation
intensity projections are characterized by larger changes in
the upper tail of the probability distribution as manifest in
the larger fractional changes in P90 than mean Pint (Table 2)
and large changes in the upper percentiles (Figure 5), in
accord with historical studies that have identified robust
changes in extreme precipitation over the 20th century
[Groisman et al., 2005; Pryor et al., 2009].
[22] The downscaled and regionally averaged AOGCM

projections indicate declines in mean Pint in both the
Southern Plains and Southeast regions, although the level of
agreement among stations within these regions is lower than
that for the other regions. For the Southeast region, these
changes exhibit a high level of consistency among all 10
downscaled AOGCMs (Figure 4). Inspection of the changes
across the distribution of wet day precipitation intensities
in these regions (SP and SE) indicate that although the
largest precipitation intensities are projected to exhibit
smaller fractional declines than moderate and small precipi-
tation intensities (i.e., P50 and P10) (Table 2), some of the
downscaled AOGCMs do exhibit considerable declines in
upper‐tail precipitation intensities (Figure 5).
4.2.2. Warm Season
[23] The downscaled mean wet day precipitation intensity

during the warm season generally exhibit smaller changes
than their cold season counterparts (Figure 4) with less
consistency among the AOGCMs and among stations within

each region. The Northern Plains and Southern Plains
regions are characterized by small regionally averaged
projected changes of up to −3%, but with consistent sign
among the AOGCMs for the mean wet day precipitation
intensity. For both regions, the changes are characterized by
an increase in the 10th percentile and a decrease in the 90th
percentile, indicating a reduction in the variance of wet day
precipitation intensities (Figure 6). Projected changes for the
Southeast region are also negative, but small and inconsis-
tent among AOGCMs for all metrics of the probability
distribution.
[24] Projected changes in the Midwest region are consis-

tently positive with the largest magnitude increases in the
extremes (P90). For both projection periods, all 10 down-
scaled AOGCMs indicate increases, which range from a
10‐model mean of 3.2% for the 10th percentile daily pre-
cipitation accumulation, to 7.7% for the 90th percentile for
2046–2065 to 6.6% for the 10th percentile to 11.1% for the
90th percentile for 2081–2100 (Table 2). The consistency of
these changes, coupled with the amplification in the upper
tail of the distribution (Figure 6) reflect a positive shift in the
central tendency and widening of the probability distribution
for wet day precipitation intensities. The Northeast region
also exhibits an overall increase in the mean wet day pre-
cipitation intensity, but it is characterized by negative ten-
dency for small precipitation intensities, as characterized by
the 10th percentile, inconsistent changes in the median wet
day precipitation amount, and consistent positive changes of
nearly 25% (approximately 5 mm) by 2081–2100 in the
90th percentile (Table 2 and Figure 6).

4.3. Total Seasonal Precipitation

[25] The preceding sections described changes in the
precipitation occurrence and precipitation intensity derived

Figure 4. Projections of mean wet day precipitation intensity change for (a, c) cold season (November
through March) and (b, d) warm season (May through September) and for 2046–2065 (Figures 4a and 4b)
and 2081–2100 (Figures 4c and 4d) relative to 1961–2000. Changes are shown as percentages of the
1961–2000 values averaged over all the stations in each region.
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Figure 5. Projections of the change in the cumulative probability distribution of cold season (November
through March) wet‐day precipitation amounts for (a) 2046–2065 and (b) 2081–2100 by region. Note that
the y axis is absolute change in precipitation (mm) and that Figures 5a and 5b have different y axis ranges.
Values are shown for the 5th to 95th percentiles.
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Figure 6. Projections of the change in the cumulative probability distribution of warm season (May
through September) wet‐day precipitation amounts for (a) 2046–2065 and (b) 2081–2100 by region. Note
that the y axis is absolute change in precipitation (mm) and that Figures 6a and 6b have different y axis
ranges. Values are shown for the 5th to 95th percentiles.
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from application of statistical downscaling of 10 AOGCMs.
Here we extend the analysis to total accumulated seasonal
precipitation amounts and discuss the findings in terms of
the projected changes in precipitation occurrence and pre-
cipitation intensity.
4.3.1. Cold Season
[26] Cold season projections for seasonal total precipita-

tion in the Northwest and Northeast regions are character-
ized by large increases due to an increase in both the
occurrence of precipitation and the amount of precipitation
on wet days (Table 2 and Figure 7). Projected regionally
averaged changes in cold season total precipitation are
approximately +10% and +20% for the Northwest for 2046–
2065 and 2081–2100, respectively. In this region, most of
the AOGCM simulations exhibit an increase in mid‐tropo-
spheric zonal wind consistent with the poleward shift of
cyclones [Yin, 2005]. However, the precipitation occurrence
and intensity results suggest that precipitation changes in
this region are primarily due to changes in intensity with an
inconsistent signal for precipitation occurrence and may
therefore be due to an increase in the occurrence of strong
cyclones [Christensen et al., 2007]. For the Northeast region,
changes of approximately +15% and +35% are projected for
2046–2065 and 2081–2100 (Table 2). These changes are
consistent with the westward shift in the East Coast trough
[Hayhoe et al., 2007].
[27] For the other five regions, projections of precipitation

occurrence and intensity do not agree in sign. Changes in
total seasonal precipitation therefore depend on the magni-
tude of these competing effects and vary from region to
region. For example in the Southwest region, total cold
season precipitation is projected to decrease by approxi-
mately 15% by 2046–2065 and 20% by 2081–2100 (Table 2
and Figure 7). This decrease in cold season precipitation,

which is characterized by fewer, but larger events (Table 2),
coupled with warmer temperatures, is consistent with
changes in winter snowpack and increases in runoff as
described in previous studies [Kim, 2005; Leung et al.,
2004]. Several of the AOGCM simulations are character-
ized by an increase in sea level pressure in the region in
response to a broadening and northward displacement of the
Pacific subtropical high [Christensen et al., 2007]. In con-
trast, projections for the Southern Plains and Southeast re-
gions are characterized by more wet days, but with smaller
intensities on those days, and the projections are inconsistent
between the AOGCMs in terms of the overall change in
seasonal total precipitation (Table 2 and Figure 7). In the
Midwest region, small decreases in precipitation occurrence
are balanced by changes in precipitation intensity (especially
the upper percentiles) resulting in small average changes in
total cold season precipitation, though again this finding is
variable with AOGCM (Table 2 and Figure 7).
4.3.2. Warm Season
[28] The downscaled AOGCM projections indicate con-

sistent decreases in warm season precipitation throughout
much of the United States, driven primarily by the decrease
in precipitation occurrence (Table 2 and Figure 7). In the
Northwest region, total warm season precipitation is pro-
jected to decrease by approximately 25% by 2046–2065 and
35% by 2081–2100 with a high degree of consistency
among the stations within the regions and relatively little
change in the distribution of wet day precipitation intensi-
ties. Changes in warm season total precipitation in the
Southwest region are of smaller magnitude but also indicate
declines (of over 10%) mainly due to changes in precipita-
tion frequency. The large fractional declines in total sea-
sonal precipitation (of over 40% by 2081–2100) in the
Southern Plains and Southeast regions (Figure 7) derive

Figure 7. Projections of total seasonal precipitation change for (a, c) cold season (November through
March) and (b, d) warm season (May through September) and for 2046–2065 (Figures 7a and 7b) and
2081–2100 (Figures 7c and 7d) relative to 1961–2000. Changes are shown as percentages of the
1961–2000 values averaged over all the stations in each region.
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from decreases in both precipitation occurrence and precipi-
tation intensity (Table 2 and Figure 6). Smaller decreases in
warm season total accumulated precipitation in the Northern
Plains are attributable to a small decline in precipitation
occurrence.
[29] Despite a decrease in the number of wet days, total

warm season precipitation in the Midwest region is pro-
jected to increase in most of the downscaled AOGCM si-
mulations (Figure 7). This is partially attributable to the
large increase in intense precipitation events in this region
(Pryor et al. [2009] and Table 2). As with the cold season
projections, the Northeast region is projected to experience
the largest increase in total warm season precipitation, with
contributions from both an increase in precipitation fre-
quency and intensity. This finding is in contrast to prior
work by Hayhoe et al. [2007] which projected drier summers
for this region. This discrepancy may result from differences
in the SRES or downscaling technique. The regional warm
season results presented here for this and other regions
are broadly consistent with the multimodel ensemble of
Christensen et al. [2007].

5. Concluding Remarks

[30] In this study, we have presented a new technique for
downscaling precipitation climates and developed precipita-
tion projections for 963 surface stations across the contiguous
USA using output from 10 AOGCMs. The projections were
constructed by downscaling of the statistical parameters
describing precipitation occurrence and intensity, using a
first‐order Markov chain and two‐parameter gamma distri-
bution, respectively. The downscaled model parameters were
then used to derive several precipitation descriptors, includ-
ing the wet day probability, the distribution of wet day pre-
cipitation intensities, and the total seasonal precipitation,
which were summarized at the regional scale. Models were
constructed separately for the cold season (November
through March) and the warm season (May through Sep-
tember) with consistent predictor variables for each region
studied.
[31] The precipitation projections developed in this study

are characterized by several results that are robust across
AOGCMs. Our results can be summarized as follows:
[32] 1. The largest total precipitation increases during the

cold season occur in the Northwest and Northeast regions
and are likely associated with intensification of midlatitude
cyclones [Christensen et al., 2007] and northward displace-
ment of the polar jet stream and midlatitude cyclone activity
[Yin, 2005]. The changes are characterized primarily by in-
creases in precipitation intensity although the Northeast
region is also projected to experience moderate increase in
cold season precipitation occurrence. Large decreases in
cold season precipitation, due to a large decrease in pre-
cipitation occurrence and despite moderate increases in wet‐
day precipitation intensity, occur in the Southwest region
and are likely associated with expansion of the subtropical
Pacific anticyclone [Christensen et al., 2007]. Cold season
projections for the Northern Plains region are also charac-
terized by moderate precipitation decreases due to lower
precipitation occurrence.
[33] 2. During the warm season, only the Northeast and

Midwest regions are projected to experience increases in

total precipitation, and in the Midwest this appears to be
moderate and largely due to an increase in the magnitude of
intense events. In the Northeast region, increases in large
precipitation events are coupled with increases in precipita-
tion occurrence. In each of the other regions, drier warm
season conditions are projected. This decrease in warm sea-
son precipitation is principally due to a decline in precipita-
tion frequency which is quite large for some regions (greater
than 30% for the Northwest, Southern Plains and Southeast).
[34] 3. The response of total precipitation is sensitive to

changes in both precipitation occurrence and precipitation
intensity, underscoring the need to consider both in projec-
tions of daily precipitation evolution under climate change
scenarios. The relative roles of the occurrence and intensity
processes varied between regions resulting in substantive
regional variations in total precipitation projections. The
largest changes occur when frequency and intensity decrease
or increase simultaneously, in accord with the results of Sun
et al. [2007]. An example of the simultaneous decrease in
occurrence and intensity is projected for the Southeast
region during the warm season. A simultaneous increase in
occurrence and intensity is projected for the Northeast
region during both the cold and warm seasons.
[35] 4. The relative contributions of the precipitation

occurrence and precipitation intensity processes to overall
precipitation changes are sensitive to the nature of changes
in wet day precipitation intensity. In cases where precipi-
tation occurrence becomes less frequent, total precipitation
can still increase if changes in the large precipitation events
remain positive. An example of this type of projection occurs
in the Midwest region during the warm season.
[36] 5. In general, increases in seasonal total precipitation

are characterized by large positive changes in large precip-
itation intensities. Conversely, negative changes in precipi-
tation receipt are characterized predominantly by large
changes in small precipitation intensities with relatively little
change in large events. This suggests that intense precipi-
tation events are likely to either maintain their current fre-
quency or increase in frequency regardless of the sign of
changes in total precipitation. This result is consistent with
the observational study of Groisman et al. [1999] and the
results of the gamma distribution downscaling exercise of
Wilby et al. [2002].
[37] This study, and the results presented in this paper are

subject to several caveats. First, we employ a single green-
house gas emissions scenario (A2). According to Trenberth
et al. [2003], atmospheric moisture content increases at a
rate of approximately 7% per K. Use of specific humidity as
a predictor for many of the downscaling equations makes
our analyses particularly sensitive to greenhouse gas con-
centrations. As an example, the warm season precipitation
occurrence increases in the Southeast described in section 4.1
occur despite a general decrease in 700 mbar meridional
wind, suggesting that elevated moisture availability, as
manifest in the specific humidity predictor, is driving the
changes. Similarly, differences between our warm season
results and those of Hayhoe et al. [2007] for the Northeast
region may be evidence of the need for additional compar-
isons of emissions scenarios and downscaling approaches.
Second, our analysis has focused on the cold season
(November through March) and the warm season (May
through September). Although many impacts are directly
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related to these seasonal distinctions, the climate system may
also exhibit important changes in the transition seasons. For
example, there is some evidence that eastern USA increases
in precipitation are occurring primarily during the fall [Small
et al., 2006]. Third, with respect to precipitation occurrence,
we have focused only on changes in the probability of
precipitation occurrence. For many impacts, including those
in agriculture, long spells of dry or wet days are also of
importance. However, Schoof and Pryor [2008] demon-
strated that the first‐order Markov chain model used here
reproduces wet and dry spells for most stations and months.
Stochastic time series generation using the downscaled
parameters would further facilitate analysis of variability and
impact assessment and provides an avenue for further
investigation. For example, changes in wet and dry spells
and precipitation totals and extremes for multiday periods
will be the subject of additional research. Last, changes in
precipitation descriptions in some regions might be attrib-
utable to inter‐decadal variations. Such variations are only
considered here to the extent that they influence the large
scale predictors listed in Table 1. For example, precipitation
variations in the western and southern USA are partially due
to variations in the Pacific Decadal Oscillation (PDO)
[Higgins et al., 2007]. The short (20‐year) future periods
used here might provide only a glimpse of a longer cycle
associated with such decadal variations. Additionally, soil
moisture – precipitation feedbacks may be an important
regional driver of future precipitation changes, particularly
in the central USA [Koster et al., 2004; Pan et al., 2004].
Although more work is needed to quantify the role of such
feedbacks in the results presented here, it is possible that
differences among the AOGCMs in terms of characteriza-
tion of such feedbacks might explain some of the differences
in downscaled AOGCM precipitation projections.
[38] Despite these caveats, the consistency among the

downscaled AOGCMs with respect to regional precipitation
evolution for several different regions and precipitation
descriptors lends credence to the scenarios presented. The
methodology and the results presented herein represent an
advancement in the notoriously difficult problem of down-
scaling daily precipitation. Furthermore, the methodology
described in this paper provides an avenue for further
investigation of changes in the nature of fine scale precipi-
tation under enhanced greenhouse gas forcing. An expanded
application of these techniques using additional AOGCMs
and forcing scenarios would further elucidate the differences
among models and regions and enhance the overall confi-
dence attached to precipitation projections.
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