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HIGHLY DEGENERATE QUADRATIC FORMS

OVER FINITE FIELDS OF CHARACTERISTIC 2

Robert W. Fitzgerald

Southern Illinois University

Abstract. Let K/F be an extension of finite fields of characteristic two. We consider
quadratic forms written as the trace of xR(x), where R(x) is a linearized polynomial. We
show all quadratic forms can be so written, in an essentially unique way. We classify those
R, with coefficients 0 or 1, where the form has a codimension 2 radical. This is applied to
maximal Artin-Schreier curves and factorizations of linearized polynomials.

Let q be a 2-power, q = 2t. Set F = GF (q) and let K = GF (qk) be an extension. Let

R(x) =
h∑

j=0

εjx
qj

,

with each εj ∈ K. We consider the quadratic forms QK
R : K → F given by QK

R (x) =
trK/F (xR(x)).

These trace forms have appeared in a variety of contexts. They have been used to
compute weight enumerators of certain binary codes [1,2] , to construct curves with many
rational points and the associated trace codes [8], as part of an authentication scheme [3],
and to construct certain binary sequences in [5] and [4].

In each of these applications one wants the number of solutions (in K) to QK
R (x) = 0,

denoted by N(QK
R ). This is easily worked out (see [7, 6.26,6.32]) in terms of the standard

classification of quadratic forms:

N(QK
R ) = 1

q (qk + Λ(QK
R )(q − 1)

√
qk+w).

where w is the dimension of the radical, v = (k − w)/2 and

Λ(QK
R ) =





0, if QK
R ' z2 +

∑v
i=1 xiyi

1, if QK
R ' ∑v

i=1 xiyi

−1, if QK
R ' x2

1 + sy2
1 +

∑v
i=1 xiyi.

Here s is any element of F with trF/GF (2)(s) = 1.

Key words and phrases. quadratic form, trace, linearized polynomial.
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2 ROBERT W. FITZGERALD

However, there is no simple way to determine the dimension of the radical or the in-
variant Λ. The one general result is due to Klapper [6] which only covers the case when
R consists of a single term. In roughly half the applications ([1,2,8]) one wants highly
degenerate forms, which give large N(QK

R ) when Λ = 1. We restrict to those R with all
coefficients εi ∈ GF (2) as is the case in each of the cited papers except [8]. Our main
result is to determine all such R, and all extensions K, such that the radical of QK

R has
codimension (namely 2v) at most 2. We compute the invariant Λ in each case.

We first show that every quadratic form Q : K → F can be written as QK
R in an

essentially unique way. Thus our result is more general than it appears. We apply our
main result to obtain a classification of those R such that the number of points on the
Artin-Schreier curve yq + y = xR(x) equals the Hasse-Weil bound. We also obtain results
on the factors of self-reciprocal linearized polynomials.

1. Quadratic forms.
A quadratic form Q : K → F is a map such that

(1) Q(ax) = a2Q(x) for all a ∈ F and x ∈ K, and
(2) B(x, y) :≡ Q(x + y) + Q(x) + Q(y) is a bilinear map K ×K → F .

The radical of Q is

radQ = {x ∈ K : B(x, y) = 0 for all y ∈ K}.

The codimension of the radical, k − dim radQ is always even.
To simplify notation, we write simply tr for trK/F . We will write TrK for the absolute

trace trK/GF (2).

Proposition 1.1. Let Q : K → F be a quadratic form. Let m = bk/2c. Let h =
1
2codim radQ.

(1) There exist c, a1, b1, . . . , ah, bh ∈ K, independent over F , such that

Q(x) =





tr(cx)2 +
∑h

i=1 tr(aix)tr(bix), if Λ(Q) = 0
∑h

i=1 tr(aix)tr(bix), if Λ(Q) = 1

tr(a1x)2 + tr(b1x)2 +
∑h

i=1 tr(aix)tr(bix), if Λ(Q) = −1.

(2) There exist ε0, ε1, . . . , εm ∈ K such that

Q(x) = tr

(
x ·

m∑

i=0

εix
qi

)
.

Proof. (1) Suppose Λ(Q) = 1. Pick a basis of K over F and let M be the matrix of Q

with respect to this basis. We apply the classification of quadratic forms. Let H =
(

0 1

0 0

)

and let N be the k× k matrix with h copies of H on the diagonal and the rest zero. Then
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there exists an invertible k × k matrix P over F such that

M = P tNP

Q(X) = XtP tNPX

Q(X) =
h∑

i=1

(r2i−1X)(r2iX),

where rj is the jth row of P . As map from K → F , rather than from F k → F , each rjX
is linear and so equal to tr(djx) for some dj ∈ K. The rows of P are independent over F
so the dj are also. This gives the desired representation of Q.

The cases when Λ(Q) = 0 or −1 are similar except the first copy of H in N is replaced
by 


1 0 0
0 0 1
0 0 0


 or

(
1 1
0 1

)
,

respectively.
(2)This proof is taken from [9,3.2, 5.1]. Our only change is to correct a slight error in

the i = 1 term and to include the cases of Λ(Q) = 0,−1.

tr(ax)tr(bx) = tr(tr(ax)bx)

= tr
(k−1∑

i=0

(ax)qi

(bx)
)

.

Now
tr(aqi

b) = tr(abqk−i

)

so that

tr(ax)tr(bx) =

{
tr(abx2 +

∑m
i=1(a

qi

b + abqi

)xqi

), if k = 2m + 1 is odd

tr(abx2 +
∑m

i=1(a
qi

b + abqi

)xqi

+ aqm

bxqm

), if k = 2m is even.

In either case,

tr(ax)tr(bx) = tr
(

x ·
m∑

j=0

ε′jx
qi+1

)
,

for some ε′j ∈ K. Lastly,

tr(cx)2 = tr((cx)2) = tr(x · c2x).

Thus (1) implies (2). ¤
The first representation of (1.1) is not unique. For instance,

tr(ax)2 + tr(ax)tr(bx) + tr(bx)2 = tr(ax)2 + tr(ax)tr((a + b)x) + tr((a + b)x)2.

However, for the second representation we have:
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Theorem 1.2. Let Q : K → F be a quadratic form and let m = bk/2c. Then there exist
unique εi ∈ K, 0 ≤ i ≤ m, such that

Q(x) = tr

(
x ·

m∑

i=0

εix
qi

)
,

except when k is even in which case εm is only unique modulo GF (qm).

Proof. We count. If we fix a basis of K over F then each quadratic form is represented
uniquely by an upper triangular matrix. Hence there are qk(k+1)/2 many quadratic forms.

Suppose k = 2m + 1. The number of R(x) =
∑m

i=0 εmxqi

is (qk)m+1 = qk(k+1)/2. Since
this is the number of quadratic forms, (1.1) implies the representation Q(x) = tr(xR(x))
is unique.

Suppose k = 2m. Note that

(xqm+1)qm−1 = xqk−1 ∈ GF (2m)

for all x ∈ K. Thus if ε ∈ GF (qm) then tr(x · εxqm

) = 0 for all x ∈ K. The number of
R(x) =

∑m
i=0 εix

qi

, with ε0, . . . , εm−1 ∈ K and εm ∈ K/GF (qm) is

(qk)m · (qm) = q2m2+m = qk(k+1)/2.

As before, this shows the representation of Q(x) as tr(xR(x)) is unique (taking εm modulo
GF (qm)). ¤

Throughout the remainder of the paper we assume

R(x) =
h∑

j=0

εjx
qj

with εj ∈ GF (2),

where h = b(k − 1)/2c. Here we have dropped the εm term when k = 2m as εm = 0 or 1,
both of which are in GF (2m).

Corollary 1.3. Let R =
∑h

i=0 εix
qi

, where each εi ∈ GF (2) and h = b(k − 1)/2c. Then
QK

R has radical of codimension 2 iff there exist independent a, b, c ∈ K such that

(Ei) aqi

b + abqi

= εi for 1 ≤ i ≤ h

and

(E0) ε0 =





c2 + ab, if Λ(QK
R ) = 0

ab, if Λ(QK
R ) = 1

a2 + ab + sb2, if Λ(QK
R ) = −1,

plus, if k = 2m,

(Em) aqm

b ∈ GF (qm).
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Again here s ∈ F is an element with TrF (s) = 1.

Proof. We have by (1.1)(1) that the quadratic forms with radical of codimension 2 are

tr(cx)2 + tr(ax)tr(bx) tr(ax)tr(bx) tr(ax)2 + tr(ax)tr(bx) + str(bx)2,

where the invariants are 0, 1,−1 respectively (see [9, 3.1]). The computation of tr(ax)tr(bx)
in (1.1)(2) gives the equations (Ei) for 1 ≤ i ≤ h. (Em) follows as

tr(aqm

bxqm+1) = 0 iff aqm

b ∈ GF (qm),

by (1.2). And tr(cx)2 = tr((cx)2) = tr(c2x · x) yields the three forms of (E0). ¤

2. The Main Theorem.
We begin with three lemmas needed to solve the equations (Ei).

Lemma 2.1. Suppose y2 = y + z. Then

y2i

= y + z + z2 + z4 + · · ·+ z2i−1
.

Proof. Induction. ¤
The following identity is well-known and may be derived in many ways. For instance,

one may take Waring’s identity, expressing the sum of two nth powers in terms of a Dickson
polynomial, modulo 2. We use instead a simple induction argument.

Lemma 2.2. Let u = x + y and v = xy. Then

x2n+1 + y2n+1 = u2n+1 +
n−1∑

i=0

u2n+1−2i−1
v2i

.

Proof. By induction,

x2n+1+1 + y2n+1+1 = (x2n

+ y2n

)(x2n+1 + y2n+1) + x2n

y2n+1 + x2n+1y2n

= u2n

(u2n+1 +
n−1∑

i=0

u2n+1−2i−1
v2i

) + uv2n

= u2n+1+1 +
n∑

i=0

u2n+1+1−2i−1
v2i

,

as desired. ¤
The following highly technical lemma is need to compute the invariant Λ in one case.
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Lemma 2.3. Let v = 23r

and let

gv(x) = xv+1(1 + x−2 + x−4 + · · ·+ x−v) + 1.

Let δ be a root of gv(x) in some extension of F . Then

(1) δ ∈ GF (v3) \GF (v)
(2) δ2v + δv+1 + δ2 = 1
(3) δv2+1 + δ2v = 1
(4) δ2 + δv2+v = 1.

Proof. We have
1 + δ−2 + δ−4 + · · ·+ δ−v = δ−(v+1).

Add this to its square to get

δ−2 + δ−2v = δ−(v+1) + δ−2(v+1).

Multiply by δ2(v+1) to get (2).
Re-write (2) by dividing by δ2

(5) δ2(v−1) + δv−1 + (1 + δ−2) = 0.

This has the form y2 + y + z = 0 with y = δv−1 and z = 1 + δ−2. By (1.4)

δ(v−1)v = δv−1 + z + z2 + · · ·+ zv/2.

As v is an odd power of 2 there are an odd number of zi terms. So

δ(v−1)v = δv−1 + 1 + δ−2 + δ−4 + · · ·+ δ−v

= δv−1 + δ−(v+1),

by the original equation. Then

δv2+1 + δ2v = δv+1(δv2−v + δv−1) = δ2vδ−2v = 1,

giving (3).
Now multiply (5) by δv−1 to get

δ3(v−1) = δ2(v−1) + δv−1 + δv−3

= 1 + δ−2 + δv−3,

using (5). Multiply by δv+3 to get δ4v = δv+3 + δv+1 + δ2v. Apply (2), divide by δ2 and
apply (2) again:

δ4v + δv+3 = δ2 + 1

δ4v−2 + δv+1 = 1 + δ−2

δ4v−2 + δ−2 = δ2v + δ2.(6)
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Next divide (3) by δ

(7) δv2
+ δ2v−1 = δ−1.

Square (7) and apply (6)

δ2v2
+ δ4v−2 = δ−2

δ2v2
= δ2v + δ2.(8)

Now raise (7) to the vth power

δv3
= δ2v2−v + δ−v

= δ−v(δ2v2
+ 1)

= δ−v(δ2v + δ2 + 1) by (8)

= δ−vδv+1 = δ,

using (2). Hence δ ∈ GF (v3), giving (1). If δ ∈ GF (v) then δv2+1 = δ2 and δ2v = δ2 also
which contradicts (3). Thus δ /∈ GF (v).

Lastly, re-write (3)

1 = δv2+1 + δ2v = δv3+v2
+ δ2v = (δv2+v + δ2)v.

Hence δv2+v + δ2 = 1, giving (4). ¤
Set

Ad(x) =
h∑

j=1
d-j

xqj

Theorem 2.4. Let R =
∑h

i=0 εix
qi

, where each εi ∈ GF (2) and h = b(k − 1)/2c. Then
QK

R has radical of codimension 2 iff

(1) 3|k and R = A3 or x + A3, or
(2) 4|k and R = A2 or x + A2.

The classification in these cases (assuming the restriction on k) is

Λ(QK
A2) = −1

Λ(QK
x+A2) =

{
1, if t is odd

−1, if t is even

Λ(QK
A3) = 0

λ(QK
x+A3) =

{
1, if t is even

−1, if t is odd.
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Recall that q = 2t.

Proof. In the first half of the proof we find all extensions K, all independent a, b, c ∈ K,
and all εi, i ≥ 1, that satisfy the equations (Ei), for i ≥ 1, and (Em). We will see that R
must be A2, x + A2, A3 or x + A3 with the desired restrictions on k.

Set u = aq−1 + bq−1 and v = ab. Then (E1) is uv = ε1. If ε1 = 0 then either a = 0,
b = 0 or aq−1 = bq−1 (and so a = λb for some λ ∈ F ), contradicting the independence of
a, b over F . Thus ε1 = 1 and u = 1/v.

Now (E2) is

ab((aq−1)q+1 + (bq−1)q+1) = ε2

v

[
uq+1 +

t−1∑

i=0

uq+1−2i+1
(vq−1)2

i

]
= ε2,

using (2.2). Replacing u by 1/v and multiplying by vq yields

(2.5)
t−1∑

i=0

v2i(q+1) = ε2v
q.

We first treat the case of ε2 = 0. Set w = vq+1. Then, by (2.5), wq/2 + · · ·+ w + 1 = 0.
Hence wq = w, w ∈ F and TrF (w) = 1.

Now the (q + 1)st roots of w ∈ F lie in L = GF (q2) since if z generates GF (q2)∗ then
zq+1 generates GF (q)∗. Thus v = ab ∈ L. As ε2 = 0 we have (a/b)q2−1 = 1 and so a/b ∈ L
also. Thus a, b ∈ L. Now if a, b ∈ F then they are dependent over F . Hence at least one
of a, b is in L \ F . Say a ∈ L \ F . So if a ∈ K then 2|k.

By construction, ε1 = 1 and ε2 = 0. As a ∈ L we have

aqi

=
{

a, if i is even
aq, if i is odd,

and similarly for b. Hence for i ≥ 3

εi = aqi

b + abqi

=
{

ε1, if i is odd
ε2, if i is even.

Thus R = A2 or x + A2.
Lastly, we know k = 2m is even so we check (Em). If m is odd then

aqm

b = aqb = aq−1v = aq−1/u ∈ L \ F,

so that aqm

b /∈ GF (qm). And if m is even then aqm

b = ab ∈ GF (q2) ⊂ GF (qm). Thus to
have a solution in K we require that m be even, that is, that 4|k.

We now treat the case of ε2 = 1. From (2.5) we have:

v(q+1)q/2 + v(q+1)q/4 + · · · vq+1 + 1 = vq.
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Squaring this gives

v(q+1)q = v(q+1)q/2 + · · ·+ v(q+1)2 + 1 + v2q

= vq+1 + vq + v2q,(2.6)

by (2.5). Divide this by vq and then raise to the qth power:

vq2
= 1 + v + vq(2.7)

vq3
= 1 + vq + vq2

= v.

Thus v ∈ E ≡ GF (q3) and trE/F (v) = 1.
Now vaq−1 = aqb and vbq−1 = abq sum to 1 and their product is aq+1bq+1 = vq+1. Thus

vaq−1 and vbq−1 are roots of y2 + y + vq+1 ∈ E[y]. Now

TrE(vq+1) =
t−1∑

i=0

v2i(q+1) +
t−1∑

i=0

v2i(q+1)q +
t−1∑

i=0

v2i(q+1)q2

= (1 + vq) + (1 + vq)q + (1 + vq)q2
by (2.5)

= 1 + vq + vq2
+ vq3

= 0,

by (2.7). Thus y2 + y + vq+1 has its roots in E, by [7, 3.79]. So aq−1 and bq−1 are in E.
Next, by (2.1)

yq = y + vq+1 + v2(q+1) + · · ·+ v(q+1)q/2

yq = y + 1 + vq by (2.5)

yq2
= y + vq + vq2

yq2+q = y2 + +y(1 + vq2
) + vq + vq2

+ v2q + vq2+q

= yvq2
+ vq2

by (2.7)

yq2+q+1 = yvq2
+ vq2+q+1 + yvq2

= vq2+q+1.

Hence, dividing by vq2+q+1 yields aq3−1 = 1 = bq3−1. Thus a, b ∈ E. In particular,

ε3 = aq3
b + abq3

= ab + ab = 0.

By construction ε1 = 1 = ε2. And

aqi

=





a, if i ≡ 0 (mod 3)
aq, if i ≡ 1 (mod 3)

aq2
, if i ≡ 2 (mod 3).

Thus for i ≥ 3, εi = εj where j ∈ {1, 2, 3} and i ≡ j (mod 3). Hence R = A3 or x + A3.
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Again, if a, b ∈ F then they are dependent over F . Hence at least one of a,b is in E \F .
Say a ∈ E \ F . So if a ∈ K then 3|k. Finally, if k = 2m is even we must check (Em). But
aqm

b ∈ E = GF (q3) ⊂ GF (qm), as 3|k, so (Em) is satisfied. This completes the first half
of the proof.

In the second half of the proof we show that each of R = A2, x + A2, A3 and x + A3
does give a quadratic form with radical of codimension 2 (assuming the restrictions on k)
and compute their invariants. We do this by finding explicit solutions to the equations
(Ei). There are six cases.

First consider QK
A2 when 4|k. Fix an s ∈ F with TrF (s) = 1. Then y2 + y + s ∈ F [y] is

irreducible. Let α ∈ GF (q2) ⊂ K be a root. Let β be a primitive element of GF (q2). Set
b = βq−1 and a = αb. These are independent over F as α /∈ F . We compute

a2 + ab + sb2 = b2((a/b)2 + (a/b) + s) = 0(E0)

aqb + abq = (αq + α)bq+1 = TrF (s)δq2−1 = 1(E1)

aq2
b + abq2

= ab + ab = 0.(E2)

Also ab ∈ GF (q2) implies εi+2 = εi for i ≥ 1. If k = 2m then aqm

b ∈ GF (q2) ⊂ GF (qm)
as m is even, so that (Em) is satisfied. Hence

tr(ax)2 + tr(ax)tr(bx) + str(bx)2 = QK
A2(x).

By (1.3) QK
A2 has radical with codimension 2 and invariant −1.

Next consider QK
x+A2 when 4|k and q = 2t with t odd. Let β ∈ GF (q2) ⊂ K be

primitive. As t is odd, 3|(q + 1). Set

a = β(q−2)(q+1)β(q+1)/3 b = β2(q+1)/3.

Note that a and b are independent over F as (b/a)q−1 = β(q2−1)/3 6= 1 so that b/a /∈ F .
We compute

ab = β(q−2)(q+1)βq+1 = βq2−1 = 1(E0)

aqb + abq = aq−1 + bq−1 = β(q2−1)/3 + β2(q2−1)/3 = 1(E1)

aq2
b + abq2

= ab + ab = 0.(E2)

As in the previous case εi+2 = εi for i ≥ 1 and (Em) is satisfied. Hence tr(ax)tr(bx) =
QK

x+A2(x) is, by (1.3), a form of codimension 2 radical and invariant 1.
Next consider QK

x+A2 when 4|k and t even. Fix s ∈ F with TrF (s) = 1. Then TrF (s +
1) = TrF (s) = 1 as t is even. Thus x2+x+s+1 is irreducible over F . Let α ∈ GF (q2) ⊂ K
be a root. Set a = α and b = 1; they are independent over F as α /∈ F . Then

a2 + ab + sb2 = α2 + α + s = 1(E0)

aqb + abq = αq + α = TrF (s + 1) = 1(E1)

aq2
b + abq2

= ab + ab = 0.(E2)
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Again εi+2 = εi for i ≥ 1 and (Em) is satisfied. Hence tr(ax)2 + tr(ax)tr(bx) + str(bx)2 =
QK

x+A2(x) is, by (1.3), a form of codimension 2 radical and invariant −1.
We now consider QK

A3 when 3|k. Let 3r be the highest power of 3 dividing t so that
t = 3rt0 with (3, t0) = 1. Set v = 23r

so that q = vt0 . Let δ be a root of the polynomial gv

of (2.3). Then δ ∈ GF (v3) ⊂ GF (q3) ⊂ K by (2.3)(1). Set a = δv, b = δ and c = δv +δ+1.
We first check that a, b, c are independent over F = GF (q). If not then 1 is in the F -span
of a and b. Hence a = gb + h for some g, h ∈ F and so δv = gδ + h. We plug into (2.3)(2):

δ2v + δv+1 + δ2 = 1

h2 + hδ + (1 + g + g2)δ2 = 1.(2.8)

Now δ /∈ GF (v), by (2.3)(1), and so has degree 3 over GF (v). As (3, t0) = 1, δ has degree
3 over F = GF (vt0) as well. Thus 1, δ, δ2 are independent over F . Then (2.8) gives h2 = 1
and h = 0, a contradiction. Thus a, b, c are independent over F .

We compute (E0)

c2 + ab = 1 + δ2 + δ2v + δv+1 = 0 by (2.3)(2).

For the other equations, first suppose t0 ≡ 1 (mod 3). Then δq = δvt0 = δv as δv3
= δ.

Similarly, δq2
= δv2t0 = δv2

. Then

aqb + abq = δv2+1 + δ2v = 1 by (2.3)(3)(E1)

aq2
b + abq2

= δv3+1 + δv2+v = δ2 + δv2+v = 1 by (2.3)(4)(E2)

aq3
b + abq3

= ab + ab = 0.(E3)

When t0 = 2 (mod 3) then δq = δv2
and δq2

= δv. Then

aqb + abq = δv3+1 + δv2+v = 1(E1)

aq2
b + abq2

= δv2+1 + δ2v = 1(E2)

aq3
b + abq3

= ab + ab = 0.(E3)

Also εi+3 = εi for i ≥ 1 and if k = 2m then aqm

b ∈ GF (q3) ⊂ GF (qm) so that (Em) holds.
Hence QK

A3 has radical of codimension 2 and invariant 0.
Next consider QK

x+A3 when 3|k and t is odd. Since t is odd we can pick s = 1 as our
element of F with absolute trace 1. Let v, δ, a and b be as in the previous case. We know
a, b are independent over F and ε1 = 1 = ε2, ε3 = 0, εi+3 = εi for i ≥ 1 and that (Em)
holds.We need only check (E0):

a2 + ab + b2 = δ2v + δv+1 + δ2 = 1

by (2.3)(2). Hence QK
x+A3 has radical of codimension 2 and invariant −1.
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Lastly, we consider Qx+A3 when 3|k and t is even. Then GF (q3) ⊂ K; let γ be a
primitive element of GF (q3). As t is even, 3 divides q2 + q +1. Set ϕ = γ(q2+q+1)/3. Then
ϕ has order 3(q − 1) so that ϕ2(q−1) + ϕq−1 + 1 = 0. Set a = ϕ−2 and b = ϕ2. They are
independent over F as (b/a)q−1 = ϕ4(q−1) = ϕq−1 6= 1 so that b/a /∈ F . We compute

ab = 1(E0)

aqb + abq = aq−1 + bq−1 = ϕq−1 + ϕ2(q−1) = 1(E1)

aq2
b + abq2

= (ϕq−1)q+1 + (ϕq−1)q+1 = ϕq−1 + ϕ2(q−1) = 1(E2)

aq3
b + abq3

= ab + ab = 0.(E3)

Also εi+3 = εi for i ≥ 1 and if k = 2m then aqm

b ∈ GF (q3) ⊂ GF (qm) so that (Em) holds.
Hence QK

x+A3 has radical of codimension 2 and invariant 1. ¤

3. Artin-Schreier curves with many rational points.
We again consider polynomials

R(x) =
h∑

i=0

εix
qi

,

with each εi ∈ GF (2) = F and h = bk − 1/2c. The Artin-Schreier curve is

CR : yq + y = xR(x).

This has genus g = 1
2 (q − 1) deg R(x) by [8, VI.4.1]. We consider both the curve and the

quadratic form over K. The number of points in K-projective space on CR is

#CR(K) = qN(QK
R ) + 1 = qk + Λ(QK

R )(q − 1)
√

qk+w + 1,

where w = dim rad(QK
R ). We will compare this to the Hasse-Weil bound

#CR(K) ≤ qk + 1 + 2g
√

qk = qk + 1 + (q − 1)q`
√

qk,

where ` = deg R(x). Clearly equality will hold in the Hasse-Weil bound only if k is even.

Theorem 3.1. Suppose k = 2m and the top coefficient εm−1 = 1. Then the number of
points on CR equals the Hasse-Weil bound iff one of the following holds

(1) t is odd, R = x + A2 and 4|k,
(2) t is even, R = x + A3 and 6|k.
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Proof. Note that deg R(x) = ` = m−1. The number of points on CR equals the Hasse-Weil
bound iff

Λ(QK
R )(q − 1)

√
qk+w = (q − 1)qm−1

√
qk

Λ(QK
R )
√

qw = qm−1

w = 2(m− 1) = k − 2 and Λ(QK
R ) = 1.

This holds, by (1.7), iff either (1) or (2) hold. ¤

The restriction that εm−1 = 1 is necessary.

Example. Let k = 12 so that ` = 5. Set R = x + x4 + x16. Then ε4 = 1 and ε5 = 0. In
particular, the genus of CR is g = 24−1 = 8. Also dim rad(QK

R ) = 8 and Λ(QK
R ) = 1. This

may be checked as follows:
Let δ satisfy δ6 = δ + 1. Set

a1 = δ28 b1 = δ56 a2 = δ7 b2 = δ35.

Then a1b1 + a2b2 = 1. Set

εi = a2i

1 b1 + a1b
2i

1 + a2i

2 b2 + a2b
2i

2 .

Then we may compute that ε1 = 0, ε2 = 1, ε3 = 0, ε4 = 1, ε5 = 0, ε6 = 0 and εi+6 = εi for
i ≥ 1. Thus

R = tr(a1x)tr(b1x) + tr(a2x)tr(b2x)

QK
R ' x1x2 + x3x4,

giving the stated dimension of the radical and the invariant Λ.
Now

N(QK
R ) = 1

2 (212 +
√

212+8) = 1
2 (212 + 210)

#CR(K) = 1 + 212 + 210.

The Hasse-Weil bound is 1 + 212 + 2 · 8
√

212 = 1 + 212 + 210. Hence there are other
Artin-Schreier curves meeting the Hasse-Weil bound besides those of (3.1).
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4. Factoring linearized polynomials.
Here we will restrict to the case q = 2. For R =

∑h
j=0 εjx

2j

define

R∗(x) =
h∑

j=1

εj(x2h+j

+ x2h−j

).

Then by [4,Lemma 8]
radQK

R = {a ∈ K : R∗(a) = 0}.
Notice that R∗ is a self-reciprocal, linearized polynomial and that any self-reciprocal,
linearized polynomial of degree 22h arises in this way. If S is a self-reciprocal, linearized
polynomial we will say T is the associated form if T is linearized and T ∗ = S.

Proposition 4.1. Suppose k is even and 2h = k−2. Let S be a self-reciprocal, linearized
polynomial of degree 2h with associated form T . The following are equivalent:

(1) S divides x2k

+ x.
(2) All irreducible factors of S have degree d, where d divides k.
(3) Either 6|k and T = A3; or 4|k and T = A2.

Proof. (1) ↔ (2) is clear. (1) implies every root of S lies in K = GF (2k). Since QK
T has a

radical consisting of the roots of S in K, we have dim radQK
T = k−2 and so of codimension

2. This gives (3). Conversely, (3) gives QK
T has codimension 2 radical and so every root of

S lies in K. ¤

Proposition 4.2. Let k be odd and 2h = k − 1. Let S be a self-reciprocal, linearized
polynomial of degree 2h with associated form T . The following are equivalent:

(1) S divides (x2k

+ x)(x2k

+ x + 1).
(2) Every irreducible factor of S either has degree d (where d|k), or has the form

p(x2 + x + 1), where p is irreducible of degree d (where again d|k).
(3) 3|k and T = A3.

Proof. (1) → (2). Let q(x) be an irreducible factor of S. Then q divides qk or qk + 1,
where qk = x2k

+ x. In the first case, we have deg q = d, where d|k. So suppose we are in
the second case.

Now the roots of S not in K look like a + β, where a ∈ K is a root and β2 = β + 1.
Namely, say S(α) = 0 and α /∈ K. Then qk(α) = 1. Now

β2j

=
{

β, if j is even
β2, if j is odd.

In particular, qk(β) = 1. Since either both h ± i are even or both are odd, we have
βh+i + βh−i = 0 and so S(β) = 0. S and qk are linearized so that their roots are additive.
Hence S(α + β) = 0 and qk(α + β) = 0. Thus a = α + β is a root of S in K.
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Pick a root of q(x), say a + β, where a ∈ K is also a root of S. Now a2 + a is also a
root of S. Let p(x) be the irreducible polynomial of a2 + a. Set d = deg p; note that d|k.
Set q0(x) = p(x2 + x + 1). Now

q0(a + β) = p(a2 + a + β2 + β + 1) = p(a2 + a) = 0.

Thus q(x) divides q0(x). We will be done if we show deg q = 2d, the same as deg q0.
Now deg q = [F (a + β) : F ]. We have

(a + β)2 + (a + β) + 1 = a2 + a.

Hence
F ⊂ F (a2 + a) ⊂ F (a + β).

Moreover, if a + β ∈ F (a2 + a) then β ∈ F (a). But a ∈ K and [K : F ] is odd, so this is
impossible. Hence

[F (a + β) : F ] ≥ 2[F (a2 + a) : F ] = 2 deg p = 2d.

Thus q(x) = q0(x) = p(x2 + x + 1).
(2)→ (1). Let π1 be the product of irreducible factors of S that are of degree d, with d|k.

Then π1|qk. Let π2 be the product of the irreducible factors of S of type p(x2 +x+1), with
p irreducible of degree d, d|k. Let π3 be the product of the p’s. Then π2(x) = π3(x2+x+1)
and π3|qk. Hence π2 divides

qk(x2 + x + 1) = x2k+1
+ x2k

+ x2 + x = q2
k + qk = qk(qk + 1).

Moreover, no root of π2 is in K (as each irreducible factor has even degree). Thus π2

divides qk + 1. And so S = π1π2 divides qk(qk + 1).
(1) → (3). Let A denote the roots of S that are also roots of qk and let B be the roots

of S that are also roots of qk + 1. As before, S(β) = 0 and β /∈ K. The map A → B by
a 7→ a + β is bijective. Hence |A| = 2k−2. Now radQK

T = A and so has codimension 2.
Apply the main theorem (2.4) to get (3).

(3) → (1). We have that the codimension of radQK
T is 2 so that 2k−2 roots of S lie in

K. The other roots of S are a + β, for a ∈ K a root of S. Now each root a ∈ K is a root
of qk. And for each a + β we have

(a + β)2
k

+ (a + β) + 1 = (a2k

+ a) + (β2k

+ β + 1) = 0,

as k is odd. So S divides qk(qk + 1). ¤
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