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Network Polarization 

Abstract 

 This study develops an index of network polarization. This index seeks to overcome 

systematic problems with the extant measures of polarization in political science, sociology, 

and economics. The Network Polarization Index (NPI) encompasses the structure of rela-

tions among nodes in the network, endogenizes the grouping of nodes into any of the types 

of groups used in network analysis (cliques, blocks, clusters, communities), and incorporates 

information about each of these groups (their cohesion and sizes), as well as relations be-

tween pairs of groups. NPI satisfies all of axioms of polarization posited by Duclos, Esteban, 

and Ray (2004), as well as two additional axioms I specify here. The Duclos et al. (2004) 

measure of polarization does not generally satisfy the bipolarization axiom. A Monte Carlo 

simulation examines the properties of NPI. This is followed by an empirical analysis of the 

relationship between alliance, trade polarization and international conflict. Alliance and trade 

NPI have robust and significant effects on the magnitude, severity, and duration of interna-

tional conflict over the 1870-2001 period. 

Keywords: Polarization, Networks, Groups, International Conflict, International Trade. 
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1. Introduction 

 Network analytic measures have been used to identify various properties of entire networks 

(e.g., density, transitivity, group centralization), of sub-networks, of groups of actors (e.g., compo-

nents, cliques, blocks, communities), of dyads (e.g., structural and role equivalence), and of individual 

nodes (e.g., centrality). Yet, existing network indices do not describe an important property of net-

works: polarization. Conceptually, polarization is a structural feature of a system that tells us how 

nodes and groups are positioned vis-à-vis each other. Polarization is an important focus of research 

in the social sciences. Economists, sociologists, and political scientists, are all interested in different 

dimensions of polarization.  

 The concept of polarization is used in a wide range of contexts and is measured in different 

ways. Many of the existing measures of polarization describe a given population on some attribute 

(e.g., income, military capabilities). Other measures focus on the grouping of a set of units (states, 

parties, social groups, individuals). Very few measures, however, combine the two dimensions of po-

larization: the relations among units and their attributes. This paper develops a general index of 

network polarization that can fit a wide range of theoretical and empirical interests, all of which can 

be captured by network analysis. The next section discusses some of the existing measures of polari-

zation. The third section reviews one of the most significant measures of polarization created by 

Duclos, Esteban, and Ray (2004). Section 4 specifies the basic Network Polarization Index (NPI). 

Section 5 extends this index by incorporating additional information about the attributes of the 

groups and nodes. Section 6 examines the mathematical properties of NPI and compares them to 

the Duclos et al. (2004) index. Section 7 explores the properties of this measure and its relations to 

other measures of network structure via a Monte Carlo simulation. Section 8 examines the effects of 

polarization of international alliance and trade networks on the level of international conflict.  

2. Measures of Polarization in the Social Sciences 

A cursory search of the social and humanities citation indexes over the 1975-2009 period re-

vealed 1,927 articles in which the word polarization appeared either in the title or in the abstract of 

the article. The term ―social polarization‖ appeared in 650 of these, ―political polarization‖ in 410, 

and ―economic polarization‖ in additional 395. The term ―polarity‖ appeared in 998 titles and/or 

abstracts. It is hard to say whether these numbers suggest a frequent use of these terms, but they do 

suggest that this concept and its variations capture a fair amount of interest across the social 

sciences. 
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 Some examples demonstrate the range of conceptions of polarization in the literature. Woo 

(2003: 403) measures social polarization as the Gini index of income inequality. Keefer and Knack 

(2002), use a variety of ethnic, income, and land clustering measures across specific strata of a popu-

lation. Esteban and Ray (2005) review a large number of indices of economic polarization that are 

based on income groups.  

 Political polarization has had an important role in the study of cabinet stability in multiparty 

democracies. The most common measure of polarization used in this literature is the proportion of 

seats in the parliament controlled by extremist parties (Warwick, 1994; Biglaiser and Brown, 2003). 

Evans (2003), following DiMaggio, Evans, and Bryson (1996) measured political polarization with 

survey data using dispersion indices, bimodality (measured as kurtosis of response distributions), and 

consolidation of opinions (measured as difference of means across variables between groups). 

 In international politics, the concepts of polarity and polarization have a central place in 

theories of peace and war and of international economic processes. Consequently, there exist quite a 

few measures of polarity and polarization (Wayman and Morgan 1991). One measurement strategy 

focuses on the distribution of national capabilities (e.g., Singer and Ray 1973; Hopf, 1991). Other 

measures of polarization focus on the alliance structure of the international system (e.g., Wayman, 

1985; Moul, 1993; Singer and Small, 1968).  

 The large number of polarization indices casts doubt on the marginal utility of yet another 

measure. Yet a new measure of polarization makes sense for several reasons.  

1. Most existing measures focus either on the attributes of the units/groups, or on their relation-

ship and organization; few combine both. For example, none of the measures of political 

polarization combines the ideological position of parties with their sizes. Likewise most income 

inequality indices do not combine the structure of social groups (e.g., in terms of religion, eth-

nicity, education) with their attributes (income). Furthermore, the distance between these 

groups on some dimension (e.g., ideology) is not reflected in most attribute-based measures (Es-

teban and Ray, 1994; Duclos et al., 2004). 

2. Most measures of polarization assume exogenous assignment of units to groups (e.g., alliances, 

ethnic groups, proto-coalitions). This assumption is quite tenuous in many real-life situations. In 

many cases, group identities are due to structures of relationships among units. In such cases, 

measures need to reflect a set of endogenously derived groups rather than rely on exogenous as-

signment of units to pre-defined ones. 
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3. Most measures of polarization assume that the system is divided into discrete groups. In real 

life, however, some units may not be in any group, while other units may be in multiple groups. 

The degree of overlap across group membership may be an important property of polarization 

(e.g., Montalvo and Reynal Querol, 2005). 

4. There is a general confusion about the boundaries of polarization. Many studies fudge the subs-

tantive meaning of the endpoints of polarization; others fail to impose upper or lower bounds. 

Still others discuss one endpoint (either minimum or maximum) but not the other. This causes 

both conceptual and methodological confusion. Is a society more polarized when it is divided 

into two groups or into many groups? Should polarization be relatively independent of the 

number of groups in a society? Is a society more polarized when the groups composing it are 

similar on a given attribute (e.g., income, political power) or if they differ on this attribute? We 

need to (a) explain what we mean by minimum and maximum polarization, and (b) to justify 

this conception of endpoints both conceptually and mathematically. 

5. Most measures are one-dimensional; they focus either on a single attribute, or on a single rule 

that assigns units to groups. In reality, however, a given unit may belong to different groups, 

each of which is defined by a different principle. For example, a given voter‘s ―political identity‖ 

may be defined in terms of ethnicity, education, income, or residence. Virtually none of the 

measures of polarization allows incorporation of multiple dimensions (or what we may call, for 

our purposes, as multiple networks). 

3. The Duclos, Esteban, and Ray (DER) Polarization Index 

 Esteban and Ray (ER 1994) and Duclos, Esteban, and Ray (DER 2004) develop one of the 

most sophisticated measures of polarization. Relying on an axiomatic approach, their measure over-

comes various biases in measures of inequality and polarization such as the Gini index. Rehm and 

Reilly (2007) use this index to compare political polarization in the United States to other political 

systems. A special volume of the Journal of Peace Research (March 2008) applies the DER index to the 

study of civil and international conflict. This index allows elucidation of the advantages and short-

comings of existing indices of polarization and for motivating the index of network polarization 

proposed herein.1  

The DER index is based on an ―identity-alienation‖ framework. Its intuition is simple: the pola-

rization of a given society is based on (a) the extent to which individuals identify with a given group, 

                                                 
1  See also Esteban and Ray (2005). This unpublished paper is a formal comparison of economic measures of ―po-

larization,‖ that are actually measures of inequality across groups. 
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(b) the relative sizes of these groups, and (c) the distances between these groups. Consequently pola-

rization should reflect several properties (ER 1994, 824): 

(1) Within-group homogeneity. Polarization should increase in the level of identification of members 

with their groups. 

(2) Cross-group heterogeneity. Polarization should increase to the extent that individuals in one group 

feel that they share little or nothing in common with other groups. 

(3) A small number of significantly sized groups. Negligible minorities (no matter how homogenous they 

are internally or how heterogeneous they are with respect to large groups) or individuals that 

cannot be placed within specific groups do not count. 

DER (2004) offer four axioms that motivate their measure of polarization. I frame these axioms in 

terms that are applicable to network terminology. 

Axiom 1: Suppose a population is composed of a single group, whose members are distributed along 

a given (set of) dimension(s). If the variance of this distribution is narrowed down (so that the mean 

of the distribution does not change—they call this ―a single squeeze‖), polarization should not in-

crease. 

Axiom 2: Suppose a population is composed of three discrete groups, distributed along some dimen-

sion. It the variance of the two extreme groups is ―squeezed‖ towards their respective means, then 

polarization should not decrease. 

Axiom 3: Suppose a population is composed of four discrete groups, distributed along some dimen-

sion. If the two ―central‖ groups are pushed towards the end of the continuum, and the groups 

remain discrete (they don‘t share members), polarization must increase. 

Axiom 4: Suppose a population F is more polarized than another population G. If we in-

crease/decrease these populations by the same amount, F should continue to be more polarized than 

G (this is a population invariance axiom).2 

They then prove a theorem that specifies a family of measures of polarization satisfying these 

axioms. These measures are described by the following formula (ER 1994: 834). 

 
1

1

1 1

| |
k k

i j i j

i j i

ERPOL p p y y




  

   [1] 

where pi and pj are the proportions of groups i and j in the population, respectively, α is an index of 

group identification (α  [.25, 1]) and yi, yj are the attribute characteristics (e.g., mean income) of 

                                                 
2  Esteban and Ray (2005) add four more axioms but I do not discuss these here because they complicate the 

measures of polarization significantly without adding much substance. 
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groups i and j. DER (2004) generalize this index to take into account groups that are not described 

by a single attribute, but rather by a distribution of a given attribute (such as income). Accordingly, 

the index they propose has the following form:  

 
1

1

1 1

| |
k k

i j j i j i

i j i

DERPOL p p y y d d




  

   [2] 

where di, and dj denote group densities.  

This measure of polarization overcomes two of the problems that characterize other meas-

ures of polarization: (1) It combines the organization of units into groups with the attributes of the 

group (cohesion or homogeneity), (2) It incorporates relationships between pairs of groups (inter-

group distances), thus allowing, in principle, a way of dealing with overlapping groups.3 This measure 

has also a clear lower boundary condition: minimum polarization is observed when the population is 

bunched into a single group (regardless of density—axiom 1). Finally, DERPOL offers a conception 

of polarization that is different from inequality-based measures such as the Gini index.4 

 However, some of the problems of traditional polarization measures remain. First, DERPOL 

assumes exogenous assignment of group memberships; it is based on single-dimensionality of group 

assignments; and—strictly speaking—it assumes discrete groups. Second, it contains a number of 

arbitrary features that are not well justified theoretically and are also not mathematically necessary. 

For example, they exclude individuals who are not part of identifiable groups (ER 1994, 824; DER 

2004, 1740). Likewise, the restriction to a ―small number of significantly sized groups‖ is both arbi-

trary and vague. It is arbitrary because it eliminates areas of interest where there exist large numbers 

of groups and when unaffiliated individuals may matter for the level of social polarization. It is vague 

because DER do not specify what they mean by ―a small number of significantly sized groups.‖  

Third, the assumption of a uniform group identification parameter () is not defended at all. 

Why would individuals in one group identify with the group at exactly the same rate as individuals in 

another group? Moreover, the choice of the precise value of this parameter is not explained or de-

fended. When it comes to practical applications of their index, DER make ad-hoc assumptions about 

the size of this parameter (e.g., Esteban and Ray 2008).5 

                                                 
3  I demonstrate this below, but it must be noted that I am taking some creative liberty with the interpretation of 

the distance |yiyj| parameter in Equation [2]. 
4  When the homogeneity parameter  is zero, the DER measure converges to the Gini coefficient (DER 2004, 

1746). 
5  The DER index offers a significant advance over other measures of polarization (e.g., Wang and Tsui, 2000; 

Wolfson 1997). See Esteban and Ray (2005) for a comparative analysis of these measures. It follows that the li-
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 I illustrate some of the problems associated with attempts to generalize such measures of po-

larization to broader social contexts. Assume a set of N = [1,.., n] political parties denoted by their 

political positions Y = [y1,…, yn] distributed along a single left-right dimension in the [0,1] range. Par-

ties‘ seat proportions are denoted by P = [p1, …, pn] (where p = 1, pi < .5  i  N). For 

convenience, ideal points match parties‘ index numbers from left to right (y1 < y2 < …. < yn).  

 Since no party controls a majority of seats, two or more of them must form a coalition in 

order to establish a government. Again, to simplify, we assume that coalitions are possible only be-

tween ideologically adjacent parties (no leapfrogging). For this illustration, I restrict these coalitions 

to minimum winning coalition (Mw) such that mi  Mw iff ipi > .5 [pi  cm] and pipk < .5  k  i.  

 Now, how do we conceptualize polarization in this setting? Figure 1.1 provides a graphic illu-

stration of a number of possible minimum winning coalitions in this system.  

 

Figure 1: Possible Winning Coalitions in a Six-Party System 

Each of the coalitions has some membership overlap with the other coalitions. Coalitions C1234 

and C345 share members 3 and 4, coalitions C345 and C456 share members 4 and 5, and so forth. How 

do we measure inter-group distance when groups are not discrete?  

Moreover, the variances of these coalitions differ. If we think of the identification of an individu-

al (in our case a specific party) with the group (coalition) in terms of the distance between the party‘s 

ideal point and the coalition‘s ideal point, then the notion of group homogeneity as a constant is not 

                                                                                                                                                              

mitations of these measures with respect to the broader aspects of social and political polarization are quite sig-
nificant. 
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very meaningful. Party 4 is clearly happier with coalition C345 than with all other coalitions of which it 

is a member. It is impossible to tell whether party 3 is happier with coalition C1234 than with coalition 

C345. 

In Figure 1.2, two things change. First, parties 3 and 5 moved towards the center, so that the va-

riance of coalition C345 has shrunk (this is a ―squeeze‖ in the DER terminology). Second, party 2 

moved left, but given the move of party 3 to the center, the range and variance (as well as the ideal 

point) of coalition C1234 has not changed. Let us examine the DER axioms in this context. First, ig-

noring for the moment the move of party 2 to the left, it is intuitively clear that the polarization of 

the political system in Figure 1.2 should be higher than that represented by Figure 1.1. This is incon-

sistent with axiom 1 in DER. 

If we focus on the left-shift of party 2 and assume that everything else remains the same, should 

polarization increase in Figure 1.2 compared to 1.1? It is not clear. If we extrapolate from axiom 3, 

then polarization should increase. But given that the mean and variance of coalition C1234 have not 

changed, intuition would suggest that if the only difference between Figures 1.1 and 1.2 were the lo-

cation of party 2 then polarization in both cases should remain the same. 

Now, these figures represent a simple case because they cover very few groups and there are no 

isolate parties. But how do we treat a highly diversified population in which some individuals do not 

belong to specific groups, or in which there are multiple groups, all of relatively small sizes, or where 

individuals belong to multiple groups? This discussion suggests at least four desired attributes of po-

larization indices. 

1. The relationship between the number of groups and polarization is nonlinear: ceteris paribus, one 

group reflects zero polarization; maximum polarization can occur only if the population is di-

vided into two groups; a division of the population to more than two groups decreases 

polarization. 

2. Ceteris paribus, as the cohesion of groups declines so does polarization. 

3. Polarization should decline with the degree of inter-group overlap, and increase with the degree 

of inter-group distance. 

4. Polarization should increase with the degree of equality among group sizes, or in some attribute 

of groups (e.g., power, number of seats in parliament, income). 

Given these desiderata, I suggest that polarization should not:  

(a) ignore individuals with no group identification,  

(b) be limited to a small number of groups, 
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(c) assume a uniform group identification index. 

Consequently, I accept the four axioms offered by DER, but suggest two additional axioms. 

Axiom 5: Individual Defection. Suppose a population of size n is composed of a single group. If a single 

node eliminates a single tie that connects it to the group, polarization must increase.  

Axiom 5 seems intuitive. A cohesive population in the sense that all individuals identify with a single 

group is completely nonpolarized. Under such conditions, suffice it for a single person to be alie-

nated from the group for polarization to increase. 

Axiom 6: Bipolarity (maximum polarization). Maximum polarization can be accomplished if and only if 

society is: (a) divided into two groups, (b) these groups share the same amount of an attribute (or the 

same number of people when no attribute is defined), and (c) these groups are discrete (or are at a 

maximum distance from each other in some space). The intuition here is that measures of polariza-

tion need to have well-defined upper and lower bounds. Axioms 1 and 5 establish the lower bound. 

Axiom 6 establishes the substantive meaning of maximum polarization. Any deviation from one of 

the conditions specified in axiom 6 reduces polarization.  

I now turn to a discussion of the Network Polarization Index. 

4. The Network Polarization Index (NPI): A Basic Introduction 

The Network Polarization Index has a number of components. These components corres-

pond to the elements of the DER measures, but each is defined differently. We can interpret these 

components in terms of an identity-alienation framework. I discuss each of these components in 

turn, starting with the simplest formulation of the index, and expanding it to accommodate more 

complex formulations.  

Note that most network indices are standardized on the unit [0,1] interval to control for net-

work size. This is obtained by the following general structure: 

|

|

T

T

Actualvalue Network
Network Index

Maximumvalue Network
     [3] 

Where the subscript T indicates a specific property of the network. For example, the density of a bi-

nary network is the number of ties within a network made up of n nodes, divided by the maximum 

density of a network of size n ([n(n1)]) (Wasserman and Faust, 1997: 164).6 

I start with basic notation. Let X be a Sociomatrix of order n. Let G =[g1, g2,..., gk] be the set of 

groups derived from the network.7 A group gj is an endogenously-derived subset (of size 1,2,…, n). 

                                                 
6  In valued networks, density is the sum of all values divided by max(vij)n(n-1) where max(vij) is the maximum value 

that a dyadic relationship can assume. 
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Let S = [s1, s2,..., sj, …, sk] be the number of nodes in groups g1, g2,..., gj, …, gk, respectively, and let P = 

[p1 =s1/n,  … pk=sk/n] be the group members proportions. The set G has the following properties. 

1. The size of each element of G [gj  G] can vary from sj=1, 2,..., n. 

2. A given group can be either a discrete subset of the network, or a non-discrete subset. A parti-

tion of a network into a set of disjoint subsets (e.g., blocks, clusters) implies that a node can be in 

one and only one group (i.e., if i  gr, then i  gk, and mk  mr =   k r; k, r  G—where mk 

and mr are the set of nodes in groups k and r, respectively). In contrast, a partition of the network 

into a set of non-discrete groups (e.g.,  cliques, communities) suggests that a given node can be a 

member of one or more groups, and that any two groups may overlap in terms of membership 

up to two nodes). The only constraint is that a given group cannot be equal to, or a proper sub-

set of, another group. Formally, given any two groups gk and gr there must exist at least one node 

i  gk and i  gr and at least another j  gk  and j  gr,  g  G. 

The NPI is a product of two elements: group polarization and group overlap. Group polarization 

measures the relationship between members of groups and nonmembers. Group overlap measures 

the relationships between groups. The most basic version of the NPI assumes minimal (relational) 

data. Extensions of this measure incorporate additional information about the attributes of units or 

the structure of groups.  

4.1. Group polarization 

 Assume a network X. This can be a binary or valued network; it could be symmetric (xij = xji 

 i,jN) or directional (xij  xji for at least one pair i,jN). However, for the derivation of some 

types of groups (e.g., cliques, communities), valued and/or directional Sociomatrices need to be bi-

narized and symmetrized by some exogenous rule, for reasons that become apparent below.8 This 

suggests a considerable loss of information about the direction and strength of relationships. How-

ever, in the next section I show how the network polarization index can be expanded to recapture 

most of the lost information.  

                                                                                                                                                              

7  I show below that the measure of polarization applies to any and all types of partitions of a network into (joint 
or disjoint) subsets. These include the following types: cliques, blocks, clusters, and communities. Any partition 
of the network into a set of subsets can be used. 

8  See Wasserman and Faust (1997: 273-278) for clique extraction strategies in directional/valued networks. 
Communities require binarization of valued networks but not symmetrization (Leicht and Newman 2008). 
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 We extract from X all groups,9 and derive the group affiliation matrix (GA). GA is an n  k  

matrix, with rows representing nodes and its columns representing groups. Entry gaij equals one if 

unit i is affiliated with group j and zero otherwise. Note that, for some cases, isolates may be is in a 

single-member group. To illustrate this, consider Figure 2, displaying a hypothetical network. 

 

Figure 2: A Hypothetical Six-Node Network 

The Sociomatrix corresponding to this figure is given in Table 2.1 and the GA matrix (in this 

case the group concept used is that of cliques) is given by Table 2.2. This network collapses into 

three cliques. The bottom rows reflect the clique sizes in terms of the number of members in each 

(si), the proportion of members (pi).  

Table 2: Clique Structure for Figure 2 

 

                                                 
9  There are multiple algorithms for group extraction. These vary both for the extraction of a given type of group 

(e.g., blocks) and across group types. Typically different algorithms produce different partitions of groups, but 
this is not of concern here. The index discussed here can be applied to any group extraction algorithm as long 
as it produces group affiliation and group density matrices as discussed below. 
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Table 2.1: Sociomatrix 

 1 2 3 4 5 6 

1 0 1 1 1 0 0 

2 1 0 1 1 0 0 

3 1 1 0 0 1 1 

4 1 1 0 0 0 0 

5 0 0 1 0 0 1 

6 0 0 1 0 1 0 

       

Table 2.2: Group Affiliation Matrix   

 q1 q2 q3 Row sum   

1 0 1 1 2   

2 0 1 1 2   

3 1 0 1 2   

4 0 1 0 1   

5 1 0 0 1   

6 1 0 0 1   

Si 3 3 3    

pi 0.5 0.5 0.5    

Table 2.4: Group Density    

 q1 q2 q3    

q1 1 0 0.33    

q2 0 1 0.67    

q3 0.33 0.67 1    

 

Group polarization measures the distance between the nodes that are members of a given group 

and nodes that are not. The first step requires specification of the maximum possible polarization 

between members of a given group and the remaining nodes. This yields a set of pairwise compari-

sons across all dyads making up the network. For a pair of cells i and m in column j, this yields 

dimj=(gaij–gamj)
2. For all pairs of cells in this column, this yields 

1
2

1 1

( ) .
n n

j ij mj

i m i

d ca ca


  

   Maximum 

polarization for each column of CA is when half of the nodes in the network are members of a 

group and half are not. Stated in terms of proportions, the maximum polarization of group vs. non 

group members as djmax = max[pj(1-pj)] = 0.5(1–0.5) = 0.25. For a group affiliation matrix of size k, 

Dmax = 0.25k. 

For a group affiliation matrix, GA of size n × k, the Group Polarization index (CPOL) is giv-

en by: 
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1

max|

(1 )
|

|

k

j j

jT

T k

p p
actual group polarization Network

GPOL
maximum group polarization Network GPOL





 


 [4] 

Given that pj = sj/n, and Dmax|k = 0.25k, we substitute these terms in (4) 

 
1 1

2

(1 ) 4 ( )

0.25

k k
j j

j j

j j

s s
s n s

n n
GPOL

k kn

 

 

 

 
 [5] 

This index varies from zero when GA is an n  1 matrix with all nodes in one group 
1( ),q n

to one when GA is an n  2 matrix with exactly half (in the case of an even n), or (n―1)/2 nodes (in 

case of an odd n) are in one group and the remaining nodes are in the other group. A disconnected 

network (where all nodes are isolates), yields k = n groups of size 1. GPOL for such networks is giv-

en by, 

 0 2

4( 1)n
GPOL

n


  [6] 

This means that the larger number of nodes without any ties to other nodes, the lower the 

group polarization index. Third, as the number of groups exceeds 2, GPOL decreases, just as we 

suggested above. I now turn to the second element of the network polarization index. 

4.2. Group Density Index (GDI) 

 The group polarization measure may be extremely misleading if used in isolation. Consider 

the GA matrix in Table 2.2. Group polarization is one because each group has half of the nodes as 

members and half as nonmembers. But this network is less than maximally polarized. Groups g2 and 

g3 overlap considerably in terms of membership, and groups g1 and g3 overlap with respect to one 

member. Thus, the degree of polarization in this network requires us to consider both group polari-

zation and the extent to which any two groups share the same members. The Group Density Index 

(GDI) measures both the within and between-group density. This is given in the Group Density 

(GD) matrix. GD is a k  k matrix.  Element gdij is the proportion actual links to the possible links 

between nodes in group gi and those of gj. The main diagonal gdii indicates the within group density of 

gi.
10  

Accordingly, the group density index is the ratio of ties across groups to the maximum possi-

ble ties between the nodes belonging to these groups. The GD matrix is given in Table 2.3. 

                                                 
10  As in the general case of density 0 ≤ gdij ≤ 1. 
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The GDI measures the extent to which members in one group are linked to members of 

another group. Our notion of polarization requires that group be not only discrete because a given 

extraction algorithm produced them as such, but that members of one group have few or no ties 

with members of another group. Thus, the lower the cross-group density, the higher the degree of 

polarization in the network. Accordingly, the group density index is given by  

The COI provides information on the extent of polarization of the groups in the network 

with respect to each other.11 Note that 0  COI < 1 because maximal convergence between two cli-

ques qi, qj (with si  sj) is max(cocij)=cocjj-1. A strict variation of COI that varies from zero to one is 

given by  
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       [7] 

Note that we ignore within group density. This is so because we are interested only in the dif-

ference between groups. The characteristics of groups will come into play in the more complex 

versions of NPI.  

4.3. The Network Polarization Index (NPI) 

Network polarization depends both on the way units are grouped and on the relationship 

(overlap) among groups. This yields the simple version of the NPI. NPI is the product of the clique 

polarization index and the complement of the clique overlap index, namely NPI = CPOL × (1- COI), 

specifically: 
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 [9] 

I discuss the mathematical properties of this index below. For now, however, it is important to re-

view some of the limitations of the measure as specified above. 

                                                 
11  When the network converges into a single clique, COI is set to zero by definition.  
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1. When the group type used is the clique, NPI is limited to symmetric relations. Directional net-

works must be symmetrized. This requires imposing an exogenous structure on the network that 

goes beyond the information provided by the original network data. 

2. Group affiliation is a binarized reduction of the information contained in valued networks. Some 

group extraction algorithms (e.g., those used to extract blocks or clusters) are based on the origi-

nal valued nature of the network. Other algorithms (e.g., clique extraction algorithms or 

community extraction algorighms) require binarization. This causes significant loss of informa-

tion about the strength of ties between nodes.  

3. This version of NPI ignores the attributes of the groups and of their members. In particular it 

ignores elements of polarization as one may reasonably conceive it: group cohesion and group 

size.  

4. A question arises whether this concept of NPI is applicable to multiplexes.  

5. Inter-group distance is measured in terms of convergence or discreteness of groups. GDI does 

not allow measurement of distance between two discrete groups; it treats all discrete groups as 

having the same distance between them. However, when groups are distributed along a meaning-

ful scale (e.g., income, left-right ideological continuum), distance between discrete groups 

matters.  

Let us discuss these issues in some detail. First, network polarization must reflect the relative homo-

geneity or heterogeneity of groups (DER 2004). Two networks may be composed of two discrete 

groups of equal size in which half the population is in one group and the remaining half is in the 

other. However, the homogeneity of the groups (the variance of the attributes of their members) in 

one network is roughly equal, whereas in the other network one of the two groups is much more 

homogeneous than the other. This is illustrated in Figures 1.1 and 1.2. The squeeze of the [345] coa-

lition in Figure 1.2 suggests that the system characterized by this figure should be more polarized 

than the one given in Figure 1.1. 

Second, the current NPI measures group size in terms of the number of members (states in the 

international system, political parties in a multiparty parliamentary system, individuals in a social 

class). But this assumes that all nodes in the network are of an identical weight. In many cases this is 

an unreasonable assumption. Node—and thus group—sizes may be determined by some attribute 

(e.g., the military capability of states, proportion of seats of political parties in the legislature, the in-

come of individuals in a social group). In such cases, polarization increases with the extent of the 

relative equality of the attribute-based sizes of groups. A political system is more polarized if the dis-
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crete proto-coalitions are of equal size than when one of the coalitions controls a majority of the 

seats. An international system is more polarized if its two discrete alliance blocks are equal in capabil-

ities, not necessarily in terms of the number of states in each.  

Third, polarization may reflect systems in which group membership is determined along multiple 

dimensions. Consider a political system in which ideology is not uni-dimensional. A set of coalitions 

that forms on the basis of the economic platforms of parties is not necessarily equivalent to the set 

of coalitions that may be formed on the basis of their foreign policy positions. Similarly, a society 

may be divided along income groups, religious groups, or geographic groups. A person‘s identity may 

be defined along multiple dimensions. To measure polarization in such cases we need to take ac-

count of multiple dimensions. 

Finally, NPI must incorporate a measure of inter-group distance that allows distinction between 

discrete groups when there exists a well-defined dimension that defines the distribution of cliques. 

The DER index does not know how to treat distances between overlapping groups. At the same 

time, GDI treats all discrete cliques as having maximal inter-clique distance. A more general way of 

measuring distance between discrete cliques is in order. 

These desired properties of polarization require additional information about the attributes of 

units in the network or about the attributes of the system (e.g., the rule(s) by which units are spread 

within the network). If such information is available, we can develop a progressively richer measure 

of NPI. These extensions rely on the basic structure of NPI, but modify its components to accom-

modate the attributes of units and to generalize for cliques along multiple dimensions. 

5. Extensions of NPI 

I offer two modifications in the NPI that allow us to capture (a) group cohesion, and (b) 

group size. I then extend the measure to deal with multiple networks and scale-based inter-clique 

distances.  

Group Cohesion.  Group cohesion reflects the extent to which members of a clique are similar in terms 

of some exogenously defined attribute (e.g., wealth, ideological distance, etc.), or in terms of the pat-

tern of ties between clique members. In the latter case, clique cohesion can be derived endogenously 

from the original Sociomatrix X.  

Clique cohesion offers two improvements on the simple measure of network polarization. 

First, when we use profiles of ties between group members and all other units in the network, we 

recapture the information that was lost due to binarization and symmetrization of directional and/or 

valued networks. Second, this extension allows us to incorporate the characteristics of individual 
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groups, thus distinguishing between groups that have the same number of members but differ in 

terms of the relations among (or similarity of) members.  

Let us first deal with cohesion defined by relations among network members. In such cases, 

the cohesion of a group is a function of the degree of similarity or affinity among group members. 

We consider a group to be highly cohesive if members have similar or identical patterns of ties with 

all nodes (not only with other members of the clique).12 Network analysts use measures of structural 

equivalence to reflect the similarity between any two nodes (Wasserman and Faust, 1997: 366-375). 

One such measure is based on Euclidean distance of the ties between node i and any other node in 

the network and the ties between node j and any other node in the network. I measure dyadic cohe-

sion as standardized structural equivalence index defined on the unit interval [0,1].  
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Where seij is the structural equivalence score of nodes i and j and max(|xikxjk|, |xkixkj|) is the 

largest possible pairwise distance in the network. Performing this calculation on any dyad in the orig-

inal Sociomatrix X (without binarizing or symmetrizing it) allows us to recapture the information 

entailed in valued or directional networks. The result is a structural equivalence matrix SE of order n, 

where each entry seij denotes the standardized structural equivalence of nodes i,j. The higher the se 

score of two nodes, the closer seij is to unity.  

 We consider a group to be cohesive to the extent that the se scores of all the element dyads 

approach unity. Therefore group cohesion is defined as the average seij score for all dyads in a given 

clique, that is: 
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 Note that, by definition, 0 < cj  1.  Alternatively, cohesion can be based on an exogenously 

defined attribute. In such a case, we can substitute SE by another cohesion matrix as theoretically 

appropriate.  

                                                 
12  A useful example in political science is one in which the political similarity among states is defined by the simi-

larity of their alliance or trade portfolios (Bueno de Mesquita, 1981; Signorino and Ritter, 1998; Maoz et al., 
2006). 
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Group Size. We incorporate the size of each group in terms of some attribute of theoretical impor-

tance. For example, if we want to measure the polarization of the international system in terms of 

alliance structures, the capabilities of the states comprising an alliance clique is a better measure of its 

size than the number of states in that clique. Likewise, in parliamentary systems, cliques represent 

proto-coalitions and their sizes are defined by the proportion of seats they control. 

This suggests the following operation. Define an attribute vector A of order n. Each entry ai 

reflects a size-related attribute of node i measured as a proportion of the network‘s size. Thus, if we 

were to measure capabilities of alliances then the attribute vector would reflect the share of the sys-

tem‘s capabilities of each state in the system. Likewise, the power of parties is measured by the 

vector of seat shares. 

To incorporate size into the measurement of NPI we multiply GA elementwise by A, to de-

rive a weighted group affiliation matrix GAp (where the subscript p suggests that the entries in GA 

are proportions of size-related attributes of clique members). 

Inter-Clique Distance. In many situations, groups in societies are lined up on multiple dimensions. Each 

dimension of the space may be characterized by some real-valued vector (e.g., ideology, income, reli-

gion). In such cases we define a k × m matrix GC of group characteristics with elements gcij denoting 

the value of clique i on the scale m (standardized on a [0,1] unit square). For a single dimension GC is 

an vector of length k. We now define the GD matrix such that its entries are:  
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The GDI index remains the same and so does the NPI.13  

Recalculating NPI with cohesion and size: We now have three versions of NPI. The choice of the specific 

version depends on the theoretical purpose of the measure and on the amount of data available to 

the researcher. When we have cohesion scores (that are derived either endogenously via the SE ma-

trix or exogenously via some other measure of dyadic affinity), but not size attribute data beyond the 

number of group members, we discount the group polarization by its cohesion.  
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        [13] 

                                                 
13  Note that for the single-dimension case goij = 1- |gcik – gcjk|. 
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CPOL is maximized if and only if the network is divided into two cliques composed of fully structu-

rally equivalent (or perfectly cohesive) dyads. If we can incorporate both clique cohesion and clique 

size into the measurement of NPI, we recalculate CPOLcp as follows 

1

1

25
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j
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
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.
       [14] 

Accordingly, NPI = GPOLcp×(1GDI).  

The more complex versions of NPI overcome most of the problems of the simpler version. 

First, they allow reintegration of the basic data of valued or directional networks into the cohesion 

scores. Second, they incorporate size attributes when these are deemed important. Third, they are 

flexible with respect to possible inclusion of exogenous data on nodes into the measurement of 

group cohesion, group size, or both. Fourth, they allow uni- or multi-dimensional exogenous meas-

ures of inter-group distance.  

Polarization in multiple networks: When a system is characterized by multiple relations, we are con-

fronted by a set of networks. Polarization may differ from one network to another. A society may be 

highly divided in terms of religious groups, but it may be fairly homogeneous politically. An interna-

tional system may be highly polarized in terms of alliance relations, but may be highly integrated in 

terms of patterns of trade. One way to assess polarization along multiple networks is to measure the 

polarization index of each specific network and somehow integrate these separate indexes across 

these networks (e.g., to take some weighted mean of the polarization indexes across networks). 

 There are several ways of extracting groups from multiplexes. In some cases, e.g., block ex-

traction, the approach is simple (Wasserman and Faust, 1997: 367-370). In other cases, e.g., 

community extraction, this is more complex (xxxx, 2008). In some other cases, the algorithms for 

group extraction from multiplexes (e.g., cliques) are under development. The general problem is re-

duced, however, to finding a set of groups defined by a group affiliation matrix. Once this is done, 

the remaining aspects of NPI become straightforward. 

6. NPI—Mathematical Properties 

Proposition 1: Under any of its versions, NPI satisfies axioms 1-6. 

Proof. I go over each of the axioms separately. 

Axiom 1: With a single group (group g1) and a cohesion score of c1, we get GPOLc = 4s1(n-s1)c1/n2 = 

4n(n-n)c1/n2 = 0. Reducing the variance of the distribution of nodes in g1 would increase c1. However, 

the n(n-n) element of GPOL remains under any alternative formulation of this part of NPI, and since 
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all other elements are products of this particular element, we have GPOLc = 0. Consequently, NPI = 

GOLc × (1GDI) = 0.    

Axiom 2: It might be useful to make this axiom stricter than in DER (2004), as follows: For any 

number of groups, and any distribution of nodes over these groups, if the distribution of any of the 

groups is squeezed towards its mean (i.e., its cohesion increases), ceteris paribus, polarization must in-

crease.  

Consider a network with a set of G = [g1, g2, …, gk] groups with sizes S = [s1, s2, …, sk] and cohesion 

scores C = [c1, c2, …, ck] (with 0 < cj  1  cj  C). Change *

k kc c x   (x > 0, ck + x  1).  Thus, 
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NPI satisfies axiom 2 even if GDI does not change. However, a squeeze of clique k may actually re-

duce GDI, because a squeeze of the distribution of group k towards its mean implies that the 

distance between gk and any of the other groups increases (or the cross-group density declines). This 

results in GDI* ≤ GDI, and thus NPI* > NPI. 

Axiom 3: The DER specification of this axiom assumes (1) four groups, (2) discrete, (3) with fixed 

cohesion, and (4) the two middle groups are pushed towards the respective end points of the scale 

(without changing their cohesion). Because this axiom involves moving discrete groups on a scale, 

the simple group denisty version of GDI is irrelevant here. We focus instead on the measurement of 

GDI where groups are distributed along a single dimension.  

Assume two networks X1 and X2, each with four discrete groups, identical group sizes, and group 

cohesions. Set group positions on a [0,1] scale. Let G1 = [g11, …, g14], G2 [g21,…, g24] be the groups sets 

of X1 and X2, respectively. Let C1 = [c11,…, c14] and C2 = [c21, …, c24] be the scale scores of the groups 

in G1 and G2, respectively. Let c11 = c21 and c14 = c24, and |c11 – c12| < |c21 – c22|, |c11 – c13| > |c21 – 

c23|, |c12 – c13|< |c22 – c23|, |c12 – c14| < |c22 – c24|, |c13 – c14| < |c23 – c24|. Let c12  c22 = a and c13  c23 

= b. Accordingly, we substitute these values in C2 which now becomes [c11, c12-a, c13+b, c14]. The two 

matrices GD1 and GD2 are shown in Table 3. 

Table 3: GD Matrices in Axiom 3 
GD1 g11 g12 g13 g14 

g11 1|c11c11|=1 1-|c11–c12| 1-|c11–c13| 1-|c11–c14| 
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g12 1-|c11–c12| 1 1-|c12–c13| 1-|c12–c14| 

g13 1-|c11–c13| 1-|c12–c13| 1 1-|c13–c14| 

g14 1-|c11–c14| 1-|c12–c14| 1-|c13–c14| 1 

     

GD2 g21 g22 g23 g24 

g21 1 1-|c11–c12|–a 1-|c11–c13|+b 1-|c11–c14| 

g22 1-|c11–c12|–a 1 1-|c12–c13|+a+b 1-|c12–c14|+a 

g23 1-|c11–c13|+b 1-|c12–c13|+a+b 1 1-|c13–c14|-b 

g24 1-|c11–c14| 1-|c12–c14|+a 1-|c13–c14|-b 1 

 

To prove that NPI satisfies axiom 3, we need to prove that GDI2 < GDI1. We first define the values 

of each GDI. With a single dimension, Equation [12] reduces to: 
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ij ik jk
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And COI is defined by  
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Given that |c1i – c1j| = 0 if j = i, we have j(1-cdjj) =0. So Equation [16] becomes: 
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Likewise, GDI2 is given by: 
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Subtracting GDI2 from GDI1 yields, 
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Substituting c12 – a for c22 and c13 + b for c23 converts [19] into, 
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 [20] 

Since a and b are positive (with range of [0,1]), GDI1  GDI2 > 0. Given that the only thing that 

changes is the location of c22 and c23, GPOL1 = GPOL2. Thus [NPI1 = GPOL1 × (1–GDI1)] < [NPI2 

= GPOL2 × (1–GDI2)]. 

Axiom 4: Population Invariance. NPI actually satisfies a stricter version of this axiom, that can be res-

tated as follows: If a given network X1 is more polarized than another network, X2 and the networks 

are scaled up or down by the same amount, leaving all (relative) distribution unchanged, then the dif-

ference in polarization between X1 and X2 remains the same. Formally let X1 and X2 be two networks 

of size n. Let NPI1 – NPI2 = r. Assume that we add to (or subtract from) both networks a set of 

nodes t such that both new networks X1* and X2* are now of size n+t (or n–t). Since the distribu-

tions do not change, this implies that G1 = G1* and G2 = G2*; P1 = P1*, P2 = P2*; and C1 = C1*, C2 = 

C2*.14 It is therefore easy to show that NPI1 = NPI1* and NPI2 = NPI2*. 

Axiom 5: Assume a fully connected network X1. Thus G1 = g11, S1 = N,  GPOL = 0, and NPI = 0. 

Consider two scenarios. The first entails a node eliminating all of its ties with the other nodes. The 

new network, denoted by X2, yields G2 = [g21, g22] and S2 = [s21=(n1), s22=1]. Since the pattern of ties 

within cliques does not change, the cohesion vector of X2 is given by C2 = [c21=1, c22=1]. It follows 

that the matrix of group density of the second network GD2 becomes a 2 × 2 matrix with the fol-

lowing structure CO2 = [1, 0; 0, 1]. This means GDI2 = 0. Thus NPI for the new network X2 

depends strictly on CPOL. In this case, we get 
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This implies GPOL2 > GPOL1.  

The second scenario entails a case where a single node eliminates a single tie. In this case, the new 

network X2 yields two groups with s21 = s22 = n1 and c21 = c22 < 1. CPOL is therefore,  

                                                 
14  This can happen if and only if the addition or subtraction of nodes does not change the group structure. If 

nodes are added, the new nodes must have identical relational patterns to existing nodes across all cliques. Al-
ternatively, subtracted nodes are reduced equally from all cliques. Addition or subtraction of nodes that change 
clique structures violates this axiom for both NPI and DERPOL.  
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GD in this case is = [1, (n1)/n; (n1)/n, 1]. Thus COI is given by: 
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 Thus, we get  
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Axiom 6: Bipolarization. In order to prove that the NPI satisfies this axiom, I show that violation of 

the any of the three conditions stipulated in this axiom induces NPI < 1. These conditions are: (a) 

two groups, (b) of equal size, and (c) no inter-group overlap. Suppose a network divided into G=3 

groups that satisfies conditions (b) and (c). In order to meet these conditions, it must be the case that 

S = [n/3, n/3, n/3], and GDI = 0. (since there is no interclique overlap, it follows that cj = 1  qj  

Q.) This yields,  
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Generalizing this to any number of cliques where k > 2  and sj = n/k, 
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which can equal to 1 iff k =2. 

To prove that violation of condition (b) yields NPI <1, suppose we have k=2 discrete groups (of 

maximum cohesion each) but one is larger than the other by one node, so that Q = 2, S = [s1 = 

(n+1)/2, s2 = (n1)/2], and GDI =0. Again, NPI = GPOL, and15  

                                                 
15  Here too I assume that cj = 1  j  Q. Any cj < 1 will, by definition, bring NPI<1. 
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 [27] 

The proof that a violation of condition (c) regarding intergroup overlap induces NPI < 1 is trivial. 

With any non-diagonal element of the GD matrix gdij > 0, we get GDI > 0. When GPOL = 1 and 

GDI>0, NPI = 1 × (1 GDI) < 1. Q.E.D. 

 It is instructive to explore the boundary relations between NPI and some of the other com-

monly used measures of network structure. Table 4 provides this analysis. Proofs are trivial so they 

are not discussed here. The table suggests that there are clear boundary relations between NPI and 

most structural indices of network structure. However, the relationships across the range of NPI‘s 

values are not all that simple or evident. The Monte Carlo simulation in the next section provides 

evidence of the relationship between NPI and other measures of system structure.  

Table 4: Relationships between NPI and other Network Attributes 
 

Network Attribute NPI = 0 NPI = 1 Relationship Comment 

     

Density 1.0 1

1n 
 

Linear-negative  

Transitivity (Cluster-
ing Coefficient) 

1.0 4

4 1( )

n

n




 

U-shaped  

No. Components* 1.0 2.0 Unclear  

Giant Compo-
nent/n** 

1.0 0.5 Unclear  

Group Degree Cen-
tralization*** 

0.0 0.0 Inverse U-
shaped 

 

Notes: * No. of Components. A component is a closed subset of reachable nodes. 
 ** G/N. The proportion of network nodes in the largest component. 
 *** Group Degree Centralization (Wasserman and Faust, 1997) is a measure of centralization based on 

degree centrality.  

  It is measured as 1

1 2

( (max) )

( )( )

n

i

i

DC DC

DGC
n n






 



 

  where DC(max) is the highest degree centrality score in a network of size n. 
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5. NPI: Statistical Properties and Empirical Implications 

 In order to provide a more general sense of the propoerties of NPI, a Monte Carlo simula-

tion was performed. The key features of the simulation are as follows. 

1. The simulation is based on 10,000 random networks of sizes ranging from 10 to 170 (increasing 

at an interval of ten, i.e., 10, 20, …. 170).  

2. In each run of the simulation, the program calculated the network characteristics listed in Table 

4. I have also calculated other characteristics of the network that are relevant for the assessment 

of the properties of NPI. These include the number of cliques in the network, the average size of 

the cliques (si), the average number of clique memberships per node, GPOL, GPOLc, and GDI. I 

also calculated a number of NPI versions, starting with the simple version, and continuing with 

the NPIc values. The latter incorporate cohesion indices using the SE matrices derived from each 

of the sample X Sociomatrices.  

3. I calculate DERPOL as follows. I use a group-identification  value of 1.0, to make it maximally 

equivalent to GPOL without cohesion. Second, I interpret the inter-group distance as 

| | 1 .i j ijy y gd   Finally, di = ci  i  Q. I interpret the density of a clique to be equal to the co-

hesion score of that clique as defined above. Consequently, DERPOL is now defined as: 

 
1

2

1 1

(1 )
k k

i j ij i j

i j i

DERPOL p p gd c c


  

   [28] 

4. The simulation was run on three different group types: cliques, blocks (generated via CON-

COR—Wasserman and Faust 1997), and clusters. A run based on community structures (Leicht 

and Newman 2008) in incomplete at this time; results will be reported at a later time. 

The descriptive statistics of this simulation are given in Table 5. The correlations between these 

structural network indices are shown in Table 6. 

The results of Table 6 suggest that the NPI based on cliques is negatively correlated with the number 

of cliques. The correlation between NPI and the number of blocks is not very meaningful as the 

number of blocks is determined by the depth of the block generation procedure (the number of clus-

ters is fixed exogenously). The correlations between NPI scores based on different group types are 

moderately-high. The correlations between NPI scores and ERPOL are moderately-high to very 

high. The correlations between network density, network transitivity, and NPI scores are negative 
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and low. Finally, the correlations between group centralization and NPI scores are moderate to mod-

erately-high.  

Overall, these results suggest that the NPI offers a generally distinct measure of network structure. 

This index differs across the type of grouping of nodes, but generally speaking, a given network 

shows similar degrees of polarization across group types.  

Table 5: Basic Statistics of the Monte Carlo Simulation of Network Polarization 
 

Variable N Mean Std. Dev. Min Max 

      Network ID 10000 5000.500 2886.896 1.000 10000.000 

No. of Nodes 10000 90.260 51.667 10.000 170.000 

No. of Cliques 10000 35909.130 21488.570 3.000 50000.000 

No. of Clusters 10000 4.000 0.000 4.000 4.000 

No. of Blocks 10000 3.997 0.163 3.000 6.000 

Avg. Clique Size 10000 11.110 2.857 3.615 15.777 

Avg. Cluster Size 10000 22.911 12.732 2.500 42.500 

Avg. Block Size 10000 22.571 12.908 1.667 42.500 

Avg. No. of Clique Mem. Per Node 10000 4147.403 2481.817 2.000 7853.857 

Avg. No. of Cluster Mem. Per Node 10000 1.000 0.000 1.000 1.000 

Avg. No. of Block Mem. Per Node 10000 1.000 0.000 1.000 1.000 

No. of Components--Cliques 10000 1.000 0.000 1.000 1.000 

No. of Components--Clusters 10000 4.000 0.000 4.000 4.000 

No. of Components--Blocks 10000 3.997 0.163 3.000 6.000 

Simple GPOL--Cliques 10000 0.503 0.182 0.295 1.000 

Simple GPOL--Clusters 10000 0.150 0.173 0.035 0.740 

Simple GPOL--Blocks 10000 0.745 0.021 0.547 0.880 

Simple NPI--Cliques 10000 0.421 0.097 0.274 0.678 

Simple NPI--Clusters 10000 0.057 0.127 0.001 0.608 

Simple NPI--Blocks 10000 0.567 0.015 0.484 0.645 

GOI--Cliques 10000 0.391 0.114 0.188 0.878 

GOI--Clusters 10000 0.459 0.125 0.115 0.921 

GOI--Blocks 10000 0.482 0.119 0.120 0.936 

GPOL-Cohesion--Cliques 10000 0.249 0.085 0.148 0.480 

GPOL-Cohesion--Clusters 10000 0.105 0.122 0.026 0.525 

GPOL-Cohesion--Blocks 10000 0.393 0.026 0.358 0.619 

NPI-Cohesion--Cliques 10000 0.163 0.059 0.083 0.270 

NPI-Cohesion--Clusters 10000 0.105 0.122 0.026 0.525 

NPI-Cohesion--Blocks 10000 0.393 0.026 0.358 0.619 

Density 10000 0.500 0.019 0.311 0.700 

Transitivity 10000 0.499 0.024 0.255 0.717 

Network Interndependence 10000 0.060 0.009 0.009 0.259 
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Degree Group Centralization 10000 0.157 0.076 0.069 0.722 

ERPOL 10000 0.060 0.054 0.017 0.207 

 
Key: No. Cliques: Average number of cliques. Clique Size: Average number of nodes per clique. 
 Clique Memb.: Average number of clique memberships per node.  GPOL: simple group pola-

rization index.  GOI: group overlap index. Siimple NPI = GPOL × (1-GOI). GPOL-Coh: 
group polarization index with cohesion. NPI-Coh = GPOL-Coh × (1-GOI). 
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Table 6: Correlation Matrix of Network Attributes in the Monte-Carlo Simulation 
 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

                 1. N 1.000 
               2. Clq. Size 0.960 1.000 

              3. Clst. Size . 0.960 1.000 
             4. Blk Size . 0.960 1.000 1.000 

            5. GPOL Clq. -0.923 -0.959 -0.923 -0.923 1.000 
           6. GPOL Clst. -0.762 -0.858 -0.762 -0.762 0.901 1.000 

          7. GPOL Blk 0.159 0.201 0.170 0.167 -0.178 -0.148 1.000 
         8. GPOL Ch. Clq -0.935 -0.957 -0.935 -0.934 0.997 0.877 -0.206 1.000 

        9. GPOL Ch. Cls -0.759 -0.859 -0.759 -0.758 0.906 0.992 -0.198 0.884 1.000 
       10. Gpol Ch. Blk -0.636 -0.726 -0.621 -0.633 0.771 0.821 0.173 0.857 0.758 1.000 

      11. NPI Ch. Clq -0.948 -0.897 -0.948 -0.948 0.846 0.624 -0.159 0.870 0.604 0.493 1.000 
     12. Npi Ch. Cls. -0.759 -0.859 -0.759 -0.758 0.906 0.992 -0.198 0.880 1.000 0.852 0.619 1.000 

    13. NPI Ch. Blk -0.636 -0.726 -0.621 -0.633 0.771 0.821 0.173 0.753 0.852 1.000 0.509 0.858 1.000 
   14. Density -0.004 0.165 0.009 -0.004 -0.063 0.011 0.040 -0.064 -0.006 -0.015 -0.100 -0.006 -0.015 1.000 

  15. Transitivity 0.082 0.341 0.085 0.082 -0.278 -0.122 0.067 -0.242 -0.130 -0.123 -0.170 -0.130 -0.123 0.819 1.000 
 16. ERPOL -0.827 -0.909 -0.827 -0.827 0.942 0.978 -0.195 0.929 0.963 0.775 0.742 0.961 0.779 0.009 -0.107 1.000 

17. Grp. Deg. Cent -0.708 -0.755 -0.688 -0.707 0.779 0.792 -0.161 0.776 0.817 0.730 0.610 0.817 0.730 -0.016 -0.008 0.783 

 

 

Note: All correlations are statistically significant due to large n.  

 



 

6. Network Polarization and International Conflict 

 International relations theorists have long debated the effects of systemic polariza-

tion on international stability (Waltz, 1979; Deutsch and Singer 1964; Bueno de Mesquita 

1978; Moul 1993; Mearsheimer 1990). Empirical tests of this relationship have yielded mixed 

results (Bueno de Mesquita and Lalman 1988; Wayman and Morgan, 1991). Moreover, most 

polarization indices that have been used to test this relationship had the problems enume-

rated above. I apply the NPI framework to retest this relationship on two networks: security 

networks—i.e., alliances—and economic—i.e., international trade—networks. 

 Maoz (2006) reviewed key themes in the literature on polarization and conflict in the 

international system. He argues that the theoretical IR literature does not have clear expecta-

tions about the way in which network polarization affects the level of systemic conflict. 

However, based on the results of that study, I adopt the hypotheses relating alliance and 

trade polarization to international conflict.  

H1. The higher the degree of alliance polarization, the higher the amount of conflict in 

the international system. 

H2. The higher the degree of trade polarization, the higher the amount of conflict in the 

international system. 

The intuition behind these hypotheses is discussed elsewhere (Maoz 2006, 2010).  

Dependent Variables. 

International Conflict. I used the dyadic MID dataset (Maoz, 2005) that consists of all Milita-

rized Interstate Disputes (MIDs) and interstate wars over the period 1816-2001. A MID is ―a 

set of interactions between or among states involving the threat, display, or use of force in 

short temporal intervals. To be included, these interactions must be overt, non-accidental, 

government-sponsored and government-directed‖ (Gochman and Maoz, 1984: 586). I use a 

number of indices of systemic conflict. 

No. of MIDs/Wars. Number of dyadic MIDs/wars underway in the system in a given year. 

Conflict Severity. Each MID is assigned a severity score in the [0,100] range that reflects the 

highest level of hostility reached by any of the parties. This score is based on the Maoz 

(1982: 217-231) severity scale. Severity scores are averaged over all MIDs for a given year. 

Duration. Duration in days is aggregated over all MIDs for a given year. 

Independent Variables.  These include alliance NPI/DERPOL and trade NPI/DERPOL indic-

es. I discuss each measure separately. 
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Alliance NPI. The polarization index is composed of two variables. First, I use the Alliance 

Treaties and Obligations Project (ATOP) data on formal international alliances (Leeds, 

2005). I operationalize alliance commitments between two states as follows (Maoz 2010):  
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. Since two 

states may have multiple alliance commitments in a given year, their relative commitment is 

the ratio of the sum of their specific commitment scores to the sum of all possible commit-

ments. This variable is used to generate the alliance commitment Sociomatrices (AC), with 

entries acij=0 if states ij had no formal alliance in a given year, and acij=relcommitij otherwise. 

The second variable is the Combined Index of National Capability (COW 2003; Singer 1990) 

[CINC]. This measures a state‘s share of the system‘s military capabilities. This variable is 

used to measure the capabilities (sizes) of the alliance cliques.  

 For each year t, I generate an alliance commitment network ACt  of size nt (indepen-

dent states). Entry acijt reflects the alliance commitment score of state i to state j in year t. The 

attribute vector CINCt represents the capabilities of the n states in year t. The clique affilia-

tion matrix in year t reflects the closed subsets of states that have any type of alliance with 

each other in that year. This matrix is multiplied elementwise by CINCt to give us the pro-

portion of the system‘s capabilities owned by a given alliance clique, such that pi = icinci. 

The cohesion scores of the clique are obtained as the average Euclidean distance between 

the alliance profiles of any two states using the original alliance commitment scores of the 

Sociomatrix. DERPOL is measured as in Equation [36] above.  

Trade Polarization. I use the Oneal-Russett (2005) dataset that updates and extends Gleditsch‘s 

(2002) trade dataset. This dataset covers the years 1870-2001. For each year, I define a matrix 

Et with entries eij in the trade matrix representing the proportion of state i's exports directed 

to state j (thus eji reflects the value of goods and services imported by state j from state i). 
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Trade networks tend to have extremely high connectivity and complexity scores, resulting in 

a huge number of cliques (when any level of trade is included, the number of cliques for 

1999 is over 42,000). In order to simplify this, I used a clique membership cutoff of eij/ei = 

0.001 (two states are in the same clique if at least one state exports to the other state one 

tenth of one percent of its total exports). The weight of trade cliques was measured by a 

GDPit vector with entries gdpit representing state‘s i share of the world‘s GDP for that year. 

Thus, the pi scores in the trade clique affiliation matrix are the share of the world‘s GDP 

―owned‖ by members of clique i. The cohesion scores are defined as the complement of the 

average Euclidean distance scores of the trade profiles for all dyads making up a given trade 

clique.16 

Control Variables. I use the same control variables employed by Maoz (2006). These are do-

cumented in more detail in that article, and include the following: 

Capability Concentration. Singer and Ray‘s (1973) measure of capability concentration.17 

Number of Major Powers. Number of states designated as major powers by the Correlates of 

War Project (see Maoz 2010: Ch. 7). 

Results 

I start with a description of alliance and trade network series. Figure 4 shows how the three 

versions of alliance NPI differ over time. The simple version of NPI (incorporating only re-

lational information without clique cohesion scores) and the NPIc version that incorporates 

cohesion scores are almost perfectly correlated. This correlation is significantly higher than 

the correlation between these two versions of NPI in the Monte Carlo simulation. On the 

other hand, once the relative sizes of alliance cliques are re-interpreted in terms of their ag-

gregate capabilities, substantial differences arise between the versions of NPI. The 

correlations decrease (but are still statistically significant). Note that the different versions of 

alliance NPI begin to diverge after World War I, suggesting that power played a major role in 

the polarization of the international system throughout most of the twentieth century.  

                                                 
16  This is a somewhat questionable procedure. Low seij scores indicate that members of a dyad have a 

very similar set of trading partners. This may mean that they actually compete over the same markets, 
rather than having similar trading preferences. Nevertheless, without information on the commodities 
that make up these trading profiles, it is reasonable to assume that cohesion scores within a clique in-
crease to the extent that states making up this clique have similar pattern of trading partnerships.  

17  This is one of the measures of polarization often used by international relations theorists. It is a meas-
ure of the concentration of CINC scores. 
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 Figure 5 shows the alliance and trade NPIs. As can be seen, these series are inversely 

correlated at a moderate level. While the alliance series displays significant fluctuations over 

time, trade polarization suggests a generally declining trend, suggesting growing levels of 

trade interdependence over time.  
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 Table 7 examines the effects of alliance and trade network polarization on interna-

tional conflict. The results suggest that alliance polarization had a robust positive effect on 

conflict, while trade polarization has a negative effect on conflict. These results replicate and 

extend those of Maoz (2006) who focused only on the simple version of NPI. The NPI ver-

sions shown here are the NPIcs measures, but the findings hold when the simpler versions of 

alliance and trade NPI are used. The table does not show the effects of polarization meas-

ured in terms of alliance or trade DERPOL on measures of conflict because the raw 

DERPOL measures are highly correlated with time (which is also correlated with the num-

ber of MIDs and duration but not with war or relative hostility). Therefore they do not 

display a consistently significant effect on conflict. These results suggest that as strategic po-

larization—measured by alliance structure and by the distribution of capabilities across 

alliances—increases, the level of conflict in the system also rises. Trade polarization has a 

consistently dampening effect on conflict.  

6. Conclusion 

 This study developed a measure of network polarization. It showed that this measure 

satisfies all of the axioms put forth by DER (2004), as well as two additional axioms. The 

DER polarization index satisfies the first five axioms, but fails to satisfy the bipolarization 

axiom, except under a very limited case ( = 1). The Monte Carlo simulation and the empir-
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ical application of the measures of polarization on international alliance and trade data reveal 

some important empirical properties of these measures. These analyses also demonstrate that 

these measures have important implications for social networks analysis, in general, and for 

the analysis of international networks, in particular.  

Table 7: Effects of Network Polarization on International Conflict, 1870-2001 
 

 Dependent Variable 

Independent Variable 
No. 

MIDs+ No. Wars+ 

Relative 
Hostility++ Duration+ 

Alliance NPI 8.949** 10.970** 41.277* 10.666** 

 (0.999) (2.272) (22.718) (1.314) 

Trade NPI -10.782** -12.897** -114.143** -11.345** 

 (1.713) (3.404) (37.349) (2.140) 

Capability Concentration 2.616** 14.720** 165.490** 6.677** 

 (1.515) (2.716) (37.276) (1.786) 

No. Major Powers 0.279** 0.664** 3.808** 0.406** 

 (0.058) (0.119) (1.222) (0.074) 

Ar(1) (Rho) 0.787** 0.571** 0.288 0.863** 

 (0.062) (0.070)  (0.059) 

Constant 1.494** -6.473** 10.839 4.201** 

 (0.555) (1.249) (13.074) (0.713) 

Root MSE 0.412 0.977 7.932 0.557 

Durbin-Watson Statistic   2.054  

N 130 130 130 130 

F 70.85** 28.8** 5.89** 65.18** 

Adj. R2 0.730 0.519 0.132 0.713 

 
Notes:  Numbers in parentheses are robust standard errors 
  + Autoregressive Poisson Regression 
  ++ Time-series Regression with Cochrane-Orcutt correction for autocorrelation 
  * p < 0.05 ** p < 0.01 
 

 Clearly, this is a first cut into a complex subject, and as such the results should be 

seen as tentative. Additional applications of this index examining the effect of polarization 

on cabinet duration in parliamentary systems (Maoz and Somer-Topcu 2010) and to a 

broader set of international networks (Maoz 2010) have shown that this index helps illumi-

nate a number of political processes. More simulation-based and empirical research would 

enable us to better assess the empirical utility of this family of measures. Yet, these results 

appear sufficiently encouraging to warrant further exploration of these issues.  
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