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Generalized Reciprocals, Factors of Dickson
Polynomials and Generalized Cyclotomic

Polynomials over Finite Fields

Robert W. Fitzgerald
and

Joseph L. Yucas

Abstract

We give new descriptions of the factors of Dickson polynomials
over finite fields in terms of cyclotomic factors. To do this general-
ized reciprocal polynomials are introduced and characterized. We also
study the factorization of generalized cyclotomic polynomials and their
relationship to the factorization of Dickson polynomials.

1 Introduction

Throughout, q = pe will denote an odd prime power and Fq will denote the
finite field containing q elements. Let n be a positive integer, set s = bn/2c
and let a be a non-zero element of Fq. In his 1897 PhD Thesis, Dickson
introduced a family of polynomials

Dn,a(x) =
s∑

i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i.

These are the unique polynomials satisfying Waring’s identity

Dn,a(x +
a

x
) = xn + (

a

x
)n.

In recent years these polynomials have received an extensive examination.
In fact, a book [9] has been written about them. They have become known
as the Dickson polynomials (of the first kind).
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In [5] and then later simplified in [2] a factorization of these Dickson
polynomials over Fq is given. We summarize their results as follows:

Theorem 1.1. Dn,a(x) is the product of irreducible polynomials in Fq[x]
which occur in cliques corresponding to the divisors d of n for which n/d is
odd. To each such d there corresponds φ(4d)/(2Nd) irreducible factors, each
of which has the form

Nd−1∏
i=0

(x−√a
qi

(ζqi

+ ζ−qi

))

where ζ is a primitive 4dth root of unity, φ is Euler’s totient function, kd is
the least positive integer such that qkd ≡ ±1 (mod 4d) and

Nd =





kd/2 if
√

a /∈ Fq, kd ≡ 2 (mod 4) and qkd/2 ≡ 2d± 1 (mod 4d);
2kd if

√
a /∈ Fq and kd is odd;

kd otherwise.

Notice that the factors appearing in the above result are in Fq[x], al-
though their description uses elements from outside of Fq. The purpose of
this paper is to better understand these factors. In this regard, we show
that these factors can be obtained from the factors of certain cyclotomic
polynomials. This generalizes the results of [7] where the case a = 1 was
considered. To do this we need the notion of generalized reciprocals. This is
introduced in section 2. Here we characterize polynomials which equal their
generalized reciprocals in terms of their orders. This generalizes Theorem 11
of [14]. Section 3 is a rather straight-forward generalization of results from
[7] and section 4 provides the factorization of the Dickson polynomials. In
section 5 we introduce cyclotomic factors and provide an algorithm for fac-
toring Dickson polynomials. Section 6 provides some computational aids and
in section 7 we introduce generalized cyclotomic polynomials and study their
factorization and their relationship to Dickson factors. Section 8 provides a
long and tedious proof of our result on the order of generalized cyclotomic
polynomials.

2 Generalized reciprocals of polynomials

Recall that q is an odd prime power and 0 6= a ∈ Fq. For f(x) ∈ Fq[x] monic
of degree n, with f(0) 6= 0, define the a-reciprocal of f(x) by
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f̂a(x) =
xn

f(0)
f(a/x).

That is, if

f(x) =
n∑

i=0

bix
i

then

f̂a(x) =
1

b0

n∑
i=0

bia
ixn−i.

Notice that f̂a(x) is monic and if α is a root of f(x) then a/α is a root
of f̂a(x). Also notice that f̂a(0) = an/f(0) thus the a-reciprocal of f̂a(x)
is f(x). Consequently, f̂a(x) is irreducible over Fq if and only if f(x) is.

However, f̂a(x) may not have the same order as f(x). For example, consider
f(x) = x3 + 3 over F7. f(x) has order 9 while f̂3(x) = x3 + 2 has order 18.

A monic polynomial f(x) of degree n = 2m is said to be a-self reciprocal
if f̂a(x) = f(x). Notice that f(x) =

∑n
i=0 bix

i is a-self reciprocal if and only
if bn−ib0 = bia

i. When i = n we see that f(0)2 = an so there are two types
of a-self reciprocal polynomials:

1. (f(0) = −am). Here, f(
√

a) = −f(
√

a) hence f(
√

a) = 0 and f(x) is a
multiple of x2 − a. We will refer to a-self reciprocal polynomials of this type
as being trivial .

2. (f(0) = am). Here bn−ia
m = biai hence bi = bn−ia

m−i and f(x) has the
form

f(x) = bmxm +
m−1∑
i=0

b2m−i(x
2m−i + am−ixi)

for some bj ∈ Fq and b2m = 1. We will refer to a-self reciprocal polynomi-
als of this type as being non-trivial . As an example, it is easy to check
that f(x)f̂a(x) is a non-trivial a-self reciprocal polynomial for every monic
polynomial f(x).

Notice that the only irreducible trivial a-self reciprocal polynomial is x2−a
when a is not a square in Fq. The following Theorem gives a characterization
of non-trivial a-self reciprocal polynomials.

Theorem 2.1. Suppose a ∈ Fq with a 6= 0. For a monic irreducible polyno-
mial f(x) over Fq of degree n = 2m, the following statements are equivalent.

1. f(x) is a non-trivial a-self reciprocal polynomial.
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2. f(x) has a root α ∈ Fqn with a/α 6= α also being a root of f(x).
3. αqm

= a/α for every root α of f(x).

Proof: 1⇒2. By 1.,

f(x) =
xn

f(0)
f(

a

x
).

Hence, if α is a root of f(x) then so is a/α. If α = a/α then α2 − a = 0
which implies that f(x) = x2 − a, a contradiction.

2⇒3. By 2., f has a root α with αqj
= a/α for some j with 1 ≤ j ≤ n−1.

Hence
αq2j

= (αqj

)qj

= a/αqj

= a/(a/α) = α.

Consequently, n divides 2j. But 1 ≤ j ≤ n − 1 and n > 1, so n = 2j and
m = j. If β is any other root of f(x) then β = αqi

for some i. We have

βqm

= (αqi

)qm

= (αqm

)qi

= (
a

α
)qi

=
a

β
.

3⇒1. By 3., f(x) and g(x) = (xn/f(0))f(a
x
) are monic polynomials

having the same roots and same degree hence they are equal. If f(x) = x2−a

then by 3.,
√

a
q+1

= a hence a
q+1
2 = a and a

q−1
2 = 1 implying

√
a ∈ Fq and

contradicting the irreducibility of f(x).
Define

Dn = {r : r divides qn − 1 but r does not divide qs − 1 for s < n}.
For r ∈ Dn, write r = drtr where dr = (r, qm + 1). We next characterize

a-self reciprocal polynomials in terms of their orders.

Theorem 2.2. Suppose f(x) is an irreducible polynomial of degree n over
Fq and let t be a divisor of q − 1. The following statements are equivalent:

1. f(x) is a-self reciprocal for some a ∈ F∗q with ord(a) = t.
2. f(x) has order r ∈ Dn with tr = t.

Proof: 1 ⇒ 2. Let β be a root of f(x). Since f(x) is a-self reciprocal,
βqm+1 = a and hence β(qm+1)t = 1. Let r = ord(f). Then r ∈ Dn since f(x)
is an irreducible polynomial of degree n. Write r = drtr where dr = (r, qm+1)
and write qm + 1 = drd. Then (tr, d) = 1. Since β(qm+1)t = 1, we see that
drtr divides drdt and thus tr divides t. On the other hand,

atr = β(qm+1)tr = βdrdtr = βrd = 1.
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Consequently, t divides tr and hence tr = t.
2 ⇒ 1. Let β be a root of f(x) and write r = drtr where dr = (r, qm + 1).

Then βdrtr = 1. Let a = βqm+1. Since dr divides qm + 1 and tr = t divides
q − 1 we see that aq−1 = 1 thus a ∈ F∗q and f(x) is a-self reciprocal. Also
notice that atr = 1. Again write r = drtr where dr = (r, qm + 1) and write
qm + 1 = drd. Suppose as = 1. Then

1 = β(qm+1)s = βdrds.

Since β has order r, we see that drtr divides drds. Finally, (d, tr) = 1 implies
that tr divides s.

Let Qd(x) be the dth cyclotomic polynomial, namely the product of (x−γ)
over all primitive dth roots of unity γ.

Corollary 2.3. Let r ∈ Dn and suppose tr divides q−1. Then Qr(x) factors
into all a-self reciprocal monic irreducible polynomials of degree n and order
r where a ranges over all elements of Fq of order tr.

Proof: By Theorem 2.47 of [10], the irreducible factors of Qr are all the
irreducible polynomials of degree n and order r. The result now follows from
the previous Theorem.

Our next goal is to give a description of the a appearing in Theorem 2.1.

Lemma 2.4. Suppose β ∈ Fqn and c = βqm+1 ∈ Fq. Then

βqj

=
c

βqm+j .

Proof: (βqm+1)q−1 = 1 hence βqm+1−qm+q−1 = 1. Then

βq =
βqm+1

βqm+1 =
c

βqm+1

and
βqj

= (βq)qj−1

=
c

βqm+j .

Lemma 2.5. Suppose β ∈ Fqn and c = βqm+1 ∈ Fq. If tr(β−1) 6= 0 then

c =
tr(β)

tr(β−1)
.
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Proof:

tr(β−1) =
n−1∑
j=0

1

βqj =
1

β
qn−1
q−1

n−1∑
j=0

β
qn−1
q−1

−qj

=
β

qn−1
q−1

−qn−1

β
qn−1
q−1

n−1∑
j=0

βqn−1−qj

.

Hence

tr(β)

tr(β−1)
=

β
qn−1
q−1 tr(β)

β
qn−1
q−1

−qn−1 ∑n−1
j=0 βqn−1−qj

= c(
βqn−1−qm−1tr(β)∑n−1

j=0 βqn−1−qj
).

Thus it suffices to show

tr(β) =

∑n−1
j=0 βqn−1−qj

βqn−1−qm−1
,

that is we show

tr(β) =
n−1∑
j=0

βqm−qj+1.

βqm−qj+1 = c/βqj
= βqm+j

by Lemma 2.4 thus

n−1∑
j=0

βqm−qj+1 =
n−1∑
j=0

βqm+j

=
n−1∑
j=0

βqj

= tr(β).

For an irreducible polynomial f(x) over Fq, the inverse trace of f(x) is the
coefficient of x in f(x) divided by the constant term of f(x). Equivalently,
if β is a root of f(x) and K = Fq(β) then the inverse trace of f(x) is
trK/Fq(1/β). For f ∈ Fq[x], let itr(f) denote the inverse trace of f .

Theorem 2.6. Suppose f(x) is a monic irreducible polynomial over Fq of
degree n = 2m. If ord(f)|(qm +1)(q−1) and tr(f) = a · itr(f) 6= 0 then f(x)
is a-self reciprocal.

Proof: Let β ∈ Fqn be a root of f(x). We show that βqm+1 = a. Since
ord(f)|(qm + 1)(q − 1), we see that (βqm+1)q−1 = 1 hence βqm+1 ∈ Fq. Let
c = βqm+1. By Lemma 2.5,

c =
tr(β)

tr(β−1)
=

tr(f)

itr(f)
= a.
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3 The mappings Φa and Ψa

Let Pm be the collection of all monic polynomials over Fq of degree m and let
Sm,a denote the family of all monic non-trivial a-self reciprocal polynomials
over Fq of degree m.

We define
Φa : Pm → S2m,a

by

f(x) → xmf(x +
a

x
).

This transformation Φa has been studied extensively when a = 1. The
first occurrence is Carlitz [3]. Other authors writing about Φ1 are Miller
[12], Andrews [1], Meyn [11], Cohen [6], Scheerhorn [13], Chapman [4] and
Kyuregyan [8].

Recall that a non-trivial monic a-self reciprocal polynomial b(x) of degree
2m can be written as

f(x) = bmxm +
m−1∑
i=0

b2m−i(x
2m−i + am−ixi)

for some bj ∈ Fq and b2m = 1. Define

Ψa : S2m,a → Pm

by

b(x) → bm +
m−1∑
i=0

b2m−iDm−i,a(x).

The following theorem is nearly a straight-forward generalization of [7]. We
include a proof here for completeness.

Theorem 3.1. (a) Φa ◦Ψa = idS2m,a and Ψa ◦ Φa = idPm.
(b) Φa and Ψa are multiplicative.
(c) If b(x) is a monic irreducible non-trivial a-self reciprocal polynomial

of degree 2m then Ψa(b(x)) is irreducible. If f(x) is an irreducible polynomial
of degree m and not a-self reciprocal then Ψa(f(x)f̂a(x)) is irreducible.

Proof: We first check that the codomains are correct. For f(x) = xm +
am−1x

m−1 + · · · , we have Φa(f(x)) = xm[(x + a
x
)m + am−1(x + a

x
)m−1 + · · · ]

7



which is monic of degree 2m. Since the constant term of Φa(f(x)) is am we
see that the a-reciprocal of Φa(f(x)) is

x2m

am

am

xm
f(

a

x
+ x) = xmf(x +

a

x
) = Φa(f(x)).

Thus Φa(Pm) ⊂ S2m,a. And

Ψa(b(x)) = b2mDm,a(x) + b2m−1Dm−1,a(x) + · · ·

is monic of degree m since b2m = 1 and Dj,a is monic of degree j. So
Ψa(S2m,a) ⊂ Pm.

We now prove (a). Write b(x) = bmxm +
∑m−1

i=0 b2m−i(x
2m−i + am−ixi).

Φa ◦Ψa(b(x)) = Φa

(
bm +

m−1∑
i=0

b2m−iDm−i,a(x)

)

= xm

[
bm +

m−1∑
i=0

b2m−iDm−i,a(x +
a

x
)

]

= xm

[
bm +

m−1∑
i=0

b2m−i(x
m−i + (

a

x
)m−i)

]

= bmxm +
m−1∑
i=0

b2m−i(x
2m−i + am−ixi) = b(x),

where we have used Waring’s identity in the third line. Thus Φa ◦Ψa is the
identity.

Now in Pm the coefficient of xm is 1 and the others are arbitrary so that
|Pm| = pm. And for b(x) ∈ S2m,a, b2m−1, · · · , bm are arbitrary and the other
coefficients are determined so that |S2m,a| = pm. Hence Ψa ◦ Φa is also the
identity.

We now prove (b). Say deg f(x) = r and deg g(x) = s. Then

Φa((fg)(x)) = xr+s(fg)(x +
a

x
)

= xrf(x +
a

x
) · xsg(x +

a

x
)

= Φa(f(x))Φa(g(x)).
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Now suppose b(x) and c(x) are monic self-reciprocal polynomials. From
(a)

Φa(Ψa(b(x)c(x)) = b(x)c(x)

= (Φa ◦Ψa)(b(x)) · (Φa ◦Ψa)(c(x))

= Φa[Ψa(b(x))Ψa(c(x))] by the first part.

Consequently,
Ψa(b(x)c(x)) = Ψa(b(x))Ψa(c(x))

as Φa is injective by (a).
For (c), let b(x) ∈ S2m,a be irreducible. Suppose Ψa(b(x)) = f(x)g(x),

with deg f, deg g ≥ 1. Then using (a) and (b)

b(x) = (Φa ◦Ψa)(b(x)) = Φa(f(x))Φa(g(x)),

a contradiction. Next suppose f(x) is irreducible and Ψa(f(x)f̂a(x)) =
u(x)v(x), with deg u(x), deg v(x) ≥ 1. Then, taking Φa, we have f(x)f̂a(x) =
Φa(u(x))Φa(v(x)). Since f(x) is irreducible, it divides one of Φa(u(x)) or
Φa(v(x)). Say f(x) divides Φa(u(x)). Since Φa(u(x)) is a-self reciprocal,
f̂a(x) also divides Φa(u(x)). Further, since f̂a(x) is irreducible and f(x) 6=
f̂a(x) we see that f(x)f̂a(x) divides Φa(u(x)). But then the degree of Φa(v(x))
is less than 1, a contradiction.

4 Factors of Dickson polynomials

If n = pk then Dn,a(x) = [Dk,a(x)]p so we assume that (n, p) = 1.

Lemma 4.1. Let g(x) be a separable a-self reciprocal polynomial over Fq.
Then g(x) factors as

g(x) =
∏

f(x)f̂a(x)
∏

b(x),

where each f(x) is irreducible and not a-self reciprocal, each b(x) is irreducible
and a-self reciprocal and the f(x) and b(x) are distinct.

Proof: Let p(x) be an irreducible factor of g(x) and let β be a root of
p(x). Then a/β is also a root of g(x) as g(x) is a-self reciprocal. If a/β is a
root of p(x) then p(x) is a-self reciprocal. Otherwise, the minimal polynomial
of a/β, namely p̂a(x), also divides g(x), and p(x) 6= p̂a(x). The factors are
distinct as g(x) has no multiple roots.
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Lemma 4.2. Φa(Dn,a(x)) = x2n + an.

Proof;

Φa(Dn,a(x)) = xnDn,a(x +
a

x
) = xn(xn + (

a

x
)n) = x2n + an,

where we have again used Waring’s identity.

Proposition 4.3. x2n + an is separable and a-self reciprocal. Factor as in
Lemma 4.1

x2n + an =
∏

f(x)f̂a(x)
∏

b(x),

Then
Dn,a(x) =

∏
Ψ(f(x)f̂a(x))

∏
ψ(b(x)),

is the factorization of Dn,a(x) into irreducible polynomials over Fq.

Proof: The first statement is clear. By Lemma 4.2, Φ(Dn,a(x)) = x2n +

an. Applying Ψ using Theorem 2.1(b) we see that each Ψ(f(x)f̂a(x)) and
Ψ(b(x)) is irreducible by Theorem 2.1(c).

Example 4.4. We factor D(18, 2) over F7.

Here n = 18, a = 2, q = 7 and an = 1.

x36 + 1 = [(x6 + 5x3 + 2)(x6 + 6x3 + 4)][(x6 + 2x3 + 2)(x6 + x3 + 4)]

[(x2 +4x+1)(x2 +x+4)][(x2 +3x+1)(x2 +6x+4)](x2 +5x+2)(x2 +2x+2).

Now (x2 +5x+2) and (x2 +2x+2) are 2-self reciprocal; the other factors
are not but they have been paired with their 2-reciprocals. Consequently,
the factors of D18,2(x) are

(1) Ψ2((x
6 + 5x3 + 2)(x6 + 6x3 + 4)) = Ψ2(x

12 + 4x9 + x6 + 4x3 + 1)

= D6,2(x) + 4D3,2(x) + 1

= (x6 + 2x4 + x2 + 5) + 4(x3 + x) + 1

= x6 + 2x4 + 4x3 + x2 + 4x + 6.

(2) Ψ2((x
6 + 2x3 + 2)(x6 + x3 + 4)) = x6 + 2x4 + 3x3 + x2 + 3x + 6

10



(3) Ψ2((x
2 + 4x + 1)(x2 + x + 4)) = Ψ2(x

4 + 5x3 + 2x2 + 3x + 4)

= D2,2(x) + 5D1,2(x) + 2

= (x2 + 3) + 5(x) + 2 = x2 + 5x + 5

(4) Ψ2((x
2 + 3x + 1)(x2 + 6x + 4)) = x2 + 2x + 5

(5) Ψ2((x
2 + 5x + 2)) = D1,2(x) + 5 = x + 5

(6) Ψ2((x
2 + 2x + 2)) = D1,2(x) + 2 = x + 2.

5 Cyclotomic factors

As seen in the previous section, to factor Dn,a(x) it suffices to factor x2n +an.
In this section we derive the factors of x2n + an from factors of cyclotomic
polynomials and we provide an algorithm for factoring Dn,a(x) for all a ∈ Fq

with o(−an) = t.

Proposition 5.1. Suppose f(x) is a monic irreducible polynomial over Fq

which divides x2n + an. Then either f or f̂a has order 2dt for some divisor d
of n with n/d odd and t = o(−an).

Proof: Let β be a root of f . Since f divides x2n + an, β2n = −an and
(a/β)2n = −an. Hence both o(β) and o(a/β) divide 2nt. Now, (−an)o(β) =
(β2n)o(β) = 1 so t divides o(β). Similarly, t divides o(a/β). Write o(β) = s1t
and o(a/β) = s2t. Then s1 and s2 both divide 2n. Assume that s1 and s2 both
divide n. Then βnt = 1 and (a/β)nt = 1 thus 1 = βnt = ant. Since (−an)t =
1, t must be even. Write t = 2m. Then 1 = βnt = β2nm = (β2n)m = (−an)m.
Consequently, t divides m. But t = 2m > m, a contradiction. Hence s1

and s2 both do not divide n. Suppose s1 does not divide n. Since s1 divides
2n we can write s1 = 2d for some d dividing n. Notice that n/d = 2n/s1.
Assume that n/d is even and write 2n/s1 = 2r. Here we see that 2n = 2rs1

and s1 divides n, a contradiction. Thus n/d is odd. A similar argument will
work if s2 does not divide n.

Proposition 5.2. Suppose f(x) is a monic irreducible polynomial over Fq

of order 2dt where d divides n with n/d odd and t divides q − 1. Then x2n

mod f(x) is in Fq.

11



Proof: Let β be a root of f(x). Since β2dt = 1 and d divides n, we see
that (β2n)t = 1 and thus β2n ∈ Fq. Let c = β2n. Write x2n = f(x)g(x)+r(x)
with the degree of r(x) less than the degree of f(x). Then

c = β2n = f(β)g(β) + r(β) = r(β),

thus β satisfies r(x)−c and f(x) divides r(x)−c. Since the degree of r(x)−c
is less than the degree of f(x) we must have r(x) = c.

For a monic irreducible polynomial f(x) over Fq set

rn(f) = x2n mod f(x).

The following algorithm is not efficient. The algorithm works best for
factoring Dn,a(x) for various a’s. But still it is simpler to apply one of the
standard factorization algorithms to each Dn,a(X). We present the algorithm
only to illustrate how the previous results combine to factor the Dickson
polynomials Dn,a(x).

Algorithm for factoring Dn,a(x) when o(−an) = t: For each divisor
d of n with n/d odd, factor Q2dt. For each factor f of Q2dt compute rn(f).
If rn(f) = −an then compute f̂a. If f = f̂a then Ψ(f) is a factor of D(n, a).
If f 6= f̂a then Ψ(ff̂a) is a factor of D(n, a).

Example 5.3. We factor D13,2(x) and D13,3(x) over F5.

Let q = 5, n = 13 and t = 4. The elements a of F5 with o(−an) = t are
2 and 3. The divisors d of n with n/d odd are 1 and 13. Further, −2n = 3
and −3n = 2.

1. d = 1.

Factor f of Q2dt(x) rn(f) a a-reciprocal of f

x2 + 3 2 3 x2 + 3
x2 + 2 3 2 x2 + 2

.

We see that both factors are a-self reciprocal for their respective a. Con-
sequently, Ψ2(x

2 + 2) = x is a factor of D13,2(x) and Ψ3(x
2 + 3) = x is a

factor of D13,3(x).
2. d = 13.

12



Factor f of Q2dt(x) rn(f) a a-reciprocal of f

x4 + x3 + 2x2 + 3x + 4 3 2 x4 + 4x3 + 2x2 + 2x + 4
x4 + 2x3 + x + 4 3 2 x4 + 3x3 + 4x + 4

x4 + 2x3 + 4x2 + x + 4 3 2 x4 + 3x3 + 4x2 + 4x + 4
x4 + 4x3 + 3x + 4 2 3 x4 + x3 + 2x + 4

x4 + 2x3 + 3x2 + 4x + 4 2 3 x4 + 3x3 + 3x2 + x + 4
x4 + 4x3 + x2 + 3x + 4 2 3 x4 + x3 + x2 + 2x + 4

.

Here we omitted factors of Q2dt that are a-reciprocals of other factors
already considered. Notice that the first three factors will contribute to
D13,2(x) and the last three factors will contribute to D13,3(x). None of the
factors are a self reciprocal, Consequently,

Ψ2((x
4 + x3 + 2x2 + 3x + 4)(x4 + 4x3 + 2x2 + 2x + 4)) = x4 + 2,

Ψ2((x
4 + 2x3 + x + 4)(x4 + 3x3 + 4x + 4)) = x4 + 3x2 + 3

and

Ψ2((x
4 + 2x3 + 4x2 + x + 4)(x4 + 3x3 + 4x2 + 4x + 4)) = x4 + x2 + 2

are factors of D13,2(x).

Ψ3((x
4 + 4x3 + 3x + 4)(x4 + x3 + 2x + 4)) = x4 + 2x2 + 3,

Ψ3((x
4 + 2x3 + 3x2 + 4x + 4)(x4 + 3x3 + 3x2 + 1x + 4)) = x4 + 2

and

Ψ3((x
4 + 4x3 + x2 + 3x + 4)(x4 + x3 + x2 + 2x + 4)) = x4 + 4x2 + 2

are factors of D13,3(x) We have

D13,2(x) = x(x4 + 2)(x4 + 3x2 + 3)(x4 + x2 + 2)

and
D13,3(x) = x(x4 + 2)(x4 + 2x2 + 3)(x4 + 4x2 + 2).

13



6 Computing rn(f )

In some cases it is not necessary to compute rn(f) in the algorithm of the
previous section as the next two results illustrate.

Proposition 6.1. Let a ∈ F∗q. Suppose f(x) is a monic irreducible polyno-
mial over Fq of degree ω and order r = 2dt where t = o(−an). A necessary
condition for rn(f) = −an is

(f(0))
(q−1)n

td = (−1)
ω(q−1)

t (−an)
qω−1

r .

If ( qω−1
r

, q − 1) = 1, this condition is sufficient.

Proof: Let β be a root of f in Fqd and write qω − 1 = 2dts. Recall that
rn(f) = β2n. If β2n = −an then

β2d n
d

s = (−an)s

β
qω−1

t
n
d = (−an)

qω−1
r

(−1)
ω(q−1)

t β
qω−1

t
n
d = (−1)

ω(q−1)
t (−an)

qω−1
r .

But
f(0) = (−1)ωβ

qω−1
q−1

thus
(f(0))

(q−1)n
td = (−1)

ω(q−1)
t β

qω−1
t

n
d

since n/d is odd.
Conversely, if β is a root of f then since d divides n we have (β2n)t = 1

so β2n ∈ Fq. Write again qω − 1 = 2dts.

(f(0))
(q−1)n

td = ((−1)ωβ
qω−1
q−1 )

(q−1)n
td = (−1)

ω(q−1)
t β

qω−1
t

n
d .

Thus
β

qω−1
t

n
d = (−an)

qω−1
r

and
(β2n)s = (−an)s.

Consequently, o( β2n

−an ) divides s. If (q − 1, s) = 1, we have β2n = −an.
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Example 6.2. We consider a = 2 and the polynomial f(x) = x4+x3+2x2+
3x + 2 over F7.

f(x) is a monic irreducible polynomial over F7 of order 60 = 2 · 5 · 6,
f̂2(x) = x4 + 3x3 + 4x2 + 4x + 1 and o(−25) = 6. We have q − 1 = 6, t = 6,
n = 5, d = 5, f(0) = 2, ω = 4 and r = 60.

(f(0))
(q−1)n

td = 2 and (−1)
ω(q−1)

t (−an)
qω−1

r = 4

thus rn(f) 6= −an and Ψ(f(x)f̂a(x)) is not a factor of D5,2(x).

Proposition 6.3. Let a ∈ F∗q. Suppose f(x) is a monic irreducible polyno-
mial over Fq of degree ω and order r = 2dt where d divides n, n/d is odd
and t = o(−an). Write qω − 1 = 2dts and suppose there exist a positive
integer y such that t divides (sy − 1). A necessary and sufficient condition
for rn(f) = −an is

(f(0))
(q−1)ny

td = (−1)
ω(q−1)y

t (−an).

Proof: Suppose first that the condition holds. Let β be a root of f(x)
in Fqd .

((−1)ωf(0))
(q−1)ny

td = (β
qω−1
q−1 )

(q−1)ny
td = β2nsy.

Now, β2nsy

β2n = β2n(sy−1) = 1 since t divides (sy − 1) and d divides n. Conse-

quently, β2nsy = β2n and we have

β2n = ((−1)ωf(0))
(q−1)ny

td = −an

Conversely, by Proposition 6.1 we have

(f(0))
(q−1)n

td = (−1)
ω(q−1)

t (−an)s

(f(0))
(q−1)ny

td = (−1)
ω(q−1)y

t (−an)sy

(−1)
ω(q−1)y

t (f(0))
(q−1)ny

td = (−an)sy = −an

since t divides sy − 1.

Example 6.4. We consider a = 2 and the polynomials f(x) = x3 + 9 and
g(x) = x3 + 13 over F43.
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f(x) and g(x) are both monic irreducible polynomial over F43 of order
126 ·9 ·7, and o(−29) = 7. We have q−1 = 42, t = 7, n = 9, d = 9, f(0) = 9,
g(0) = 13, ω = 3, r = 60,s = 631 and y = 1.

(f(0))
(q−1)ny

td = 4

(g(0))
(q−1)ny

td = 16

(−1)
ω(q−1)y

t = 1

and

(−an)sy =
qω − 1

r
= 4

thus rn(f) = −an but rn(g) 6= −an Consequently, Ψ(f(x)f̂a(x)) is a factor
of D9,2(x) and Ψ(g(x)ĝa(x)) is not.

In the final result of this section we show that rn(f) can be computed
using a standard recurrence.

Let f(x) = xd + cd−1x
d−1 + · · · + c1x + c0 be an irreducible polynomial

over Fq. Consider the recurrence given by

ρ1(f) = ρ2(f) = · · · = ρd−1(f) = 0

ρd(f) = 1

ρk(f) = −cd−1ρk−1(f)− cd−2ρk−2(f)− · · · − c0ρk−d(f), for k > d.

Proposition 6.5. Suppose f(x) is a monic irreducible polynomial over Fq of
degree d and order st where t divides q−1. Then f(x) divides xsk+f(0)ρsk(f)
for any positive integer k.

Proof: Let β be a root of f(x) in Fqd . The linear mapping L : Fqd → Fq

that sends βj to 0 for 0 ≤ j < d−1 and which sends βd−1 to 1 satisfies L(βj) =
ρj+1(f) for 0 ≤ j < qd − 1. Since (βsk)t = 1 we see that βsk ∈ Fq and thus
for 1 ≤ j < d− 1, L(βsk+j) = L(βskβj) = βskL(βj) = 0. That is, ρsk+1(f) =
ρsk+2(f) = · · · = ρsk+d−1(f) = 0. Let g(x) =

∑sk
i=1 ρi(f)xsk−i. We will show

that xsk +f(0)ρsk(f) = f(x)g(x). Notice that the leading term of f(x)g(x) is
xdρd(f)xsk−d = xsk and the constant term of f(x)g(x) is f(0)ρsk(f), thus it
remains to show that the other terms of f(x)g(x) equal 0. For 1 ≤ j ≤ sk−d,
the coefficient of xsk−j in f(x)g(x) is c0ρj(f)+c1ρj+1(f)+· · ·+cd−1ρj+d−1(f)+
ρj+d(f) = 0 by the recurrence relation. For 1 ≤ j < d, the coefficient of xj
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in f(x)g(x) is c0ρsk−j(f)+ c1ρsk−j+1(f)+ · · ·+ cjρsk(f). Recall however that
ρsk+1(f) = ρsk+2(f) = · · · = ρsk+d−1(f) = 0. Consequently, this coefficient
can be written as c0ρsk−j(f)+c1ρsk−j+1(f)+· · ·+cd−1ρsk+d−j−1(f)+ρsk+d−j(f)
and again the recurrence relation yields the result.

Corollary 6.6. Suppose f(x) is a monic irreducible polynomial over Fq of
order 2dt for some divisor d of n with n/d odd. Then rn(f) = f(0)ρ2n(f).

Proof: f(x) divides x2n − rn(f) by definition and f(x) divides x2n +
f(0)ρ2n(f) by Proposition 6.5 hence f(x) divides −rn(f) + f(0)ρ2n(f) and
thus rn(f) = f(0)ρ2n(f).

7 Generalized cyclotomic polynomials

Set Tn,a(x) = x2n + an. In our pursuit of factoring Tn,a(x), some interesting
factors arose. We will call these factors generalized cyclotomic polynomials.
In this section we derive the degree, order and invariance of these polynomials
and study their relationship to Dickson factors.

Lemma 7.1. If k|n and n/k is odd then Tk,a(x)|Tn,a(x) and Dk,a(x)|Dn,a(x).

Proof: Note that y + z divides ym + zm if m is odd. Set y = x2k and
z = ak to get the result for Tn,a(x). Apply Ψ to get the result for Dn,a(x).

Set

Qn,a(x) =
Tn,a(x)

lcm{Tk,a(x) : k|n, n/k odd and k < n}
and set

Hn,a(x) =
Dn,a(x)

lcm{Dk,a(x) : k|n, n/k odd and k < n} .

Thus Qn,a(x) consists of the factors of Tn,a(x) which have not occurred as
factors of Tk,a(x), k < n, and similarly for Hn,a(x). We call the Qn,a(x) the
a-cyclotomic polynomials.

Let ∆m denote the set of primitive mth roots of unity.

Lemma 7.2. 1. Qn,a(x) is a-self reciprocal, separable and we have that
Ψ(Qn,a(x)) = Hn,a(x).
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2. We have

Qn,a(x) = aφ(2n)Q2n(x2/a) =
∏

ρ∈∆2n

(x2 − aρ).

3. deg Qn,a(x) = 2φ(2n).

Proof: (1) The first two statements follow from Qn,a(x) being a quotient
of separable, a-self reciprocal polynomials. The third follows form Ψa being
multiplicative, Theorem 3.1.

(2) We begin with

xn + 1 =
∏

d|n,
n
d

odd

Q2d(x)

x2n + an = an
∏

d|n,
n
d

odd

Q2d(x
2/a).

And so the new part of x2n + an is

Qn,a(x) = aφ(2n)Q2n(x2/a) =
∏

ρ∈∆2n

(x2 − aρ).

This proves (2) and (3) follows immediately from (2).
Let w denote the order of q modulo 2n. Then Q2n(x) factors, over Fq, as

a product of irreducible polynomials, each of degree w. Let ρ0 be a particular
primitive (2n)th root of unity. The factorization of Q2n(x) is

∏
ci(x) where

for each i
ci(x) =

∏
ρ∈Si

(x− ρ)

over a subset Si of ∆2n, an orbit under the automorphism group of F (ρ0)/F .
Fix a ρi ∈ Si for each i. Let w′ denote the order of q modulo 4n.

Lemma 7.3. Either w′ = w or w′ = 2w.

Proof: Since qw′ ≡ 1 (mod 2n) we get w|w′. And qw′ − 1 = (qw −
1)(qw + 1), qw + 1 is even, so q2w ≡ 1 (mod 4n). Hence w′|2w.

Lemma 7.4. 1. All irreducible factors of Qn,a(x) have the same degree.
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2. The degree of an irreducible factor of Qn,a(x) is w iff one of the follow-
ing holds:

(a) w is even and w′ = w.

(b) w is odd, w′ = w and a is a square.

(c) w is odd, w′ = 2w and a is a non-square.

3. In all other cases, the degree of an irreducible factor of Qn,a(x) is 2w.

Proof: Set
hi(x) =

∏
ρ∈Si

(x2 − aρ).

Then hi(x) = awci(x
2/a) ∈ Fq[x] and Qn,a(x) =

∏
hi(x), by Lemma 7.2.

Note that the automorphisms of Fq(ρ0)/Fq permute the x2−aρ, over ρ ∈ Si.
Hence if x2−aρi is irreducible over Fq(ρ0) then hi(x) is irreducible, of degree
2w. If x2 − aρi splits as (x + u(ρi))(x + v(ρi)), for polynomials u, v over Fq,
then hi(x) = k)i(x)mi(x) where

ki(x) =
∏
ρ∈Si

(x + u(ρ)) and mi(x) =
∏
ρ∈Si

(x + v(ρ)),

are irreducible over Fq of degree w.
(1) Fix a primitive (2n)th root of unity ρ0. Suppose one irreducible factor

of Qn,a(x) has degree w. Then for some primitive (2n)th root of unity ρ1,
x2 − aρ1 splits in Fq(ρ0). Thus aρ1 = u2 for some u ∈ Fq(ρ0).

Let ρi be another primitive (2n)th root of unity. Then ρi = ρs
1 for some

s prime to 2n. In particular, s is odd. Then asρi = u2s = asρs
1 and so

aρi = [usa−(s−1)/2]2 ∈ Fq(ρ0)
2. Thus all x2 − aρi split in Fq(ρ0) and all

factors have degree w. Otherwise, no x2 − aρi split in Fq(ρ0) and all factors
have degree 2w.

(2), (3) Let ρ be a primitive (2n)th root of unity. Note that Fq(ρ) = Fqw

and Fq(
√

ρ) = Fqw′ . Thus
√

ρ ∈ Fq(ρ) iff w = w′. And
√

a ∈ Fq(ρ) iff w is
even or a is a square (in Fq ).

We check the cases. If w′ = w is even then
√

a and
√

ρ are in Fq(ρ). So
x2 − aρ splits in Fq(ρ) and all factors have degree w.

If w′ = w is odd then
√

ρ ∈ Fq(ρ) and
√

a ∈ Fq(ρ) iff a is a square in Fq.
So if a is a square then x2− aρ splits in Fq(ρ) and all factors have degree w.
If a is not a square then x2− aρ does not split in Fq(ρ) and the factors have
degree 2w.
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If w′ = 2w with w even then
√

a ∈ Fq(ρ) and
√

ρ /∈ Fq(ρ). Hence x2−aρ
does not split in Fq(ρ) and the factors have degree 2w.

Lastly, suppose w′ = 2w and w is odd. Then neither
√

a,
√

ρ are in Fq(ρ).
Both have degree 2 over Fq(ρ) and so

√
a = β

√
ρ for some β ∈ Fq(ρ). Then

aρ = β2ρ2 ∈ Fq(ρ)2. Hence x2 − aρ splits and the irreducible factors of
Qn,a(x) have degree w.

Proposition 7.5. Let g(x) be an irreducible factor of Qn,a(x). If g(x) is
a-self reciprocal of degree d = 2e then 2n|qe + 1.

Proof: Let α be a root of g(x). Then we have that αqe
= a/α by Theorem

2.1, and α2/a is a primitive 2nth root of unity, by Lemma 7.2. Now

(α2/a)qe+1 = (αqe

)2α2/a2 = 1.

And so 2n divides qe + 1.

Lemma 7.6. 1. Either every irreducible factor of Qn,a(x) is a-self reci-
procal or none are.

2. An irreducible factor g(x) of Qn,a(x) is a-self reciprocal iff deg g is even
(say deg g = 2e), 2n|qe + 1 (say qe + 1 = 2ns) and one of the following
holds:

(a) s is odd, e is odd and a is a non-square.

(b) s is even and a is a square.

Proof: Let g(x) be an irreducible factor of Qn,a(x). Suppose g(x) is
a-self reciprocal. Now deg g is even, say deg g = 2e. Also, by Proposition
7.5, 2n|qe + 1. Write qe + 1 = 2ns. Let α be a root of g(x). As g(x) divides
Qn,a(x) which divides Tn,a(x) = x2n + an, we have that α2n = −an. Theorem
2.1 gives αqe

= a/α. So

a = αqe+1 = α2ns = (−1)sans.

Then a(qe−1)/2 = (−1)s. Write

qe − 1

2
=

q − 1

2
(1 + q + q2 + · · ·+ qe−1)

and let Q be the second factor. Then we have
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a
q−1
2

Q = (−1)s, (1)

Conversely, suppose irreducible g has degree 2e and that qe + 1 = 2ns.
We still have α2n = −an as g divides Tn,a(x). If Equation 1 holds then

αqe+1 = αns = (−1)sans = a,

and g is self reciprocal.
(1) We have shown that g(x) being a-self reciprocal depends only on deg g.

By Lemma 7.4, all irreducible factors of Qn,a(x) have the same degree. Hence
either all factors are a-self reciprocal or none are.

(2) We need only check when Equation 1 holds. Note that with Q is odd
iff e is odd and

a
q−1
2 =

{
1, if a is a square

−1, if a is not a square.

Both sides of Equation 1 are −1 iff s is odd, e is odd and a is a non-square.
This is case (a). Both sides of Equation 1 are +1 iff s is even and either
e is even or a is a square. But s and e cannot both be even. Namely, e
even implies that qe ≡ 1 (mod 4) and so qe + 1 ≡ 2 (mod 4). But then
qe + 1 = 2ns with s odd. Thus both sides of Equation 1 are +1 iff s is even
and a is a square, which is case (b).

Proposition 7.7. Let α be a root of an irreducible factor g(x) of Qn,a(x).
Set β = a/α and let t = o(−an). We have lcm(o(α), o(β)) = 2nt. In
particular, if g(x) is a-self reciprocal then o(g(x)) = 2nt and if g(x) is not
a-self reciprocal then o(g(x)ĝa(x)) = 2nt.

The proof is long and technical. It is postponed to the last section.

Theorem 7.8. Suppose n > 1. Let t = o(−an).

1. Suppose that w′ = w is even (say w = 2v), 2n|qv +1 (say qv +1 = 2ns)
and one of the following holds:

(a) s is odd, v is odd and a is not a square,

(b) s is even and a is a square.
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Then each irreducible factor of Qn,a(x) has degree w, order 2nt and is
a-self-reciprocal.

2. Suppose that w′ = w is even but Case 1 does not hold. Then each
irreducible factor g(x) of Qn,a(x) has degree w, is not a-self reciprocal
and g(x)ĝa(x) has order 2nt.

3. Suppose that w′ = w is odd and a is a square. Then each irreducible fac-
tor g(x) of Qn,a(x) has degree w, is not a-self reciprocal and g(x)ĝa(x)
has order 2nt.

4. Suppose that w′ = 2w, w is odd, and a is not a square. Then each
irreducible factor g(x) of Qn,a(x) has degree w, is not a-self reciprocal
and g(x)ĝa(x) has order 2nt.

5. In all other cases, each irreducible factor g(x) of Qn,a(x) has degree 2w,
is not a-self reciprocal and g(x)ĝa(x) has order 2nt.

Proof: First suppose w = w′ = 2v is even and 2n|qv + 1, with qv + 1 =
2ns. Then the degree of an irreducible factor is w, by Lemma 7.4. Apply
Lemma 7.6, with e = v, to get each factor is a-self reciprocal. The order
follows from Proposition 7.7.

The other cases follow even more easily from Proposition 7.7, Lemma 7.4
and Lemma 7.6.

Example 7.9. Each of the cases of Theorem 7.8 does occur.

1. Let q = 5 and n = 7. Then w = w′ = 6 so v = 3. And 53 + 1 = 14 · 9
so that s = 9. If a = 2, a non-square, then we are in Case 1a. Here
t = o(−27) = 4. The irreducible factors of Q7,2(x) all have degree 6,
order 56 and are 2-self-reciprocal. If a = 4, a square, then we are in
Case 2 and the factors still have degree 6, but none are 4-self-reciprocal.
Here t = 1 so for each factor g(x), g(x)ĝ4(x) has order 14.

2. Let q = 7 and n = 11. Then w = w′ = 10 so v = 5. And 75+1 = 22·764
so that s = 764. If a = 2, a square, then we are in Case 1b. Here
t = o(−211) = 6. The irreducible factors of Q11,2(x) all have degree
10, order 132 and are 2-self-reciprocal. If a = 3, a non-square, then we
are in Case 2 and the degree of the factors is still 10 but none of them
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are 3-self-reciprocal. Here t = 3 so for each factor g(x), g(x)ĝ3(x) has
order 66.

3. Let q = 5 and n = 11. Then w = w′ = 5. If a = 4 then we are in
Case 3. The irreducible factors of Q11,4(x) have degree 5 and none are
2-self-reciprocal. Here t = 1 so for each factor g(x), g(x)ĝ4(x) has order
22. If a = 2 then we are in Case 5. The degree of the factors is now 10
and each g(x)ĝ2(x) has order 22t = 88.

4. Let q = 7 and n = 9. Then w = 3 and w′ = 6. If a = 3 we are in
Case 4. Here t = o(−39) = 1. The irreducible factors of Q9,3(x) all
have degree 3 and are not 3-self-reciprocal. The order of g(x)ĝ3(x) is
18. If a = 2 then we are in Case 5 and the factors now have degree 6
and each g(x)ĝ2(x) has order 36.

Each of these examples may be easily verified with MAPLE.

The following corollary appeared, with different notation, in [2].

Corollary 7.10. The irreducible factors of Hn,a(x) all have the same degree.
This degree is (referring to the Cases of Theorem 7.8)

1. w/2 in Case 1,

2. w in Cases 2, 3, and 4,

3. 2w in Case 5.

Proof: Combine Theorem 3.1, Lemma 7.2 and Theorem 7.8.

Example 7.11. Let n = 45, q = 29 and a = 12, a non-square. Then t = 4,
w = w′ = 6 and q3 + 1 = 90 · 271, so we are in Case 1(a). Factoring Q360(x)
gives 16 polynomials of degree 6, all of the form x6 + bx3 + c with c = 12 or
17. These are:

c = 12 b = 1, 2, 4, 11, 18, 25, 27, 28

c = 17 b = 5, 10, 12, 13, 16, 17, 19, 24.

Computation shows that r45(f) = 17 = −1245 precisely for the factors with
c = 17 (see after Proposition 6.3 for an explanation of this). Each of these
factors is 12-self reciprocal and

Ψ12(x
6 + bx3 + 17) = Ψ12(x

3(x3 + (12/x)3 + b) = D3,12(x) + b = x3 + 22x + b.

The product of these Ψ12(f), over the (b, 17), is H45,12(x).
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Example 7.12. Let n = 45, q = 31 and a = 3, a non-square.Then t = 1,
w = 3 and w′ = 6 so we are in Case 4. The only divisors d of 45 with the
order of q modulo 2dt equal to 3 are d = 9, 45. The factors of both Q18(x)
and Q90(x) have the form x3 + b. These are

Q18(x) b = 5, 25

Q90(x) b = 7, 9, 10, 14, 18, 19, 20, 28.

We get r45(f) = 1 = −a45 for all of these factors. But r9(f) = 2 = −a9 for
a = 10, 19 so these two values must be omitted. Each of the remaining ff̂3

has the form x6+cx3+27 = x3(x3+(3/x)3+c) for c = 2, 4, 5, 12, 19, 26, 27, 29.
Hence

Ψ3(ff̂3) = D3,3,(x) + c = x3 + 22x + c

and their product is H45,3(x).

Note that the discarded factors, x3 + b for b = 10, 19, have the same
degree, order and invariance as the factors of Q45,3(x) (given by Theorem
7.8), but are not factors of Q45,3(x).

8 Proof of Proposition 7.7

We begin with three not quite obvious lemmas about cyclic groups.

Lemma 8.1. Let b, c ∈ GF (q)∗ and let π be an odd prime. Let e = vπ(q−1),
the highest power of π dividing q − 1. If cπe+1

= −bπe+1
then cπe

= −bπe
.

Proof: We have cπe+1
= (−b)πe+1

and so xπe+1
= 1 for x = c/(−b). Then

o(x)|πe+1. Also o(x)|(q−1). Hence o(x) divides (πe+1, q−1) = πe. So xπe
= 1

and we are done.

Lemma 8.2. Let G be a cyclic group of even order and let ε be the unique
element of order 2. Let a ∈ G.

1. o(a) = 2m iff a2m−1
= ε.

2. If o(a2n
) = 2m then o(a) = 2n+m.

3. If o(εa) = n then

o(a) =





n/2, if n ≡ 2 (mod 4)

n, if n ≡ 0 (mod 4)

2n, if n ≡ 1, 3 (mod 4).
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Proof: (1) If o(a) = 2m then a2m−1
has order 2 and so equals ε. Con-

versely, assume that a2m−1
= ε. Then o(a)|2m. Suppose o(a) = 2k with

k < m. Then
ε = a2m−1

= (a2k

)2m−1−k

= 1,

a contradiction. Thus o(a) = 2m.
(2) We have from (1) that

a2n+m−1

= (a2n

)2m−1

= ε.

Hence, by the other direction of (1), o(a) = 2n+m.
(3) First, suppose n = 2m with m odd. Note that (εa)m has order two

and so (εa)m = ε, εam = ε and am = 1. Let k = o(a). Then k|m and so k
is odd. We have ak = 1, (εa)k = ε and (εa)2k = 1. Thus n|2k, m|k and so
k = m.

Next, suppose n = 4m. Note that an = (εa)n = 1. Further, (εa)2m = ε
and so a2m + ε. Let k = o(a). Then k|4m. If k|2m then 1 = ak = a2m = ε, a
contradiction. So k = 4m′ where m′|m. We have 1 = a4m′

= (εa)4m′
so that

n = 4m divides 4m′. Thus m = m′ and k = n.
Lastly, suppose n is odd. Then (εa)n = 1 implies an = ε and a2n = 1. Let

k = o(a). Then k|2n. If k|n then 1 = ak = an = ε, a contradiction. Thus
k = 2n′ where n′|n. Then an′ has order two and so an′ = ε. As n′ is odd, we
have (εa)n′ = 1 and n|n′. Thus n = n′ and k = 2n.

Lemma 8.3. Let G be a finite cyclic group and let a, b ∈ G.

1. If o(ak) = t then o(a) = ts for some s that divides k such that (k/s) is
prime to t.

2. If o(a) = n and o(b) = m then o(ab) = n′m′s where d = (n,m),
n′ = n/d, m′ = m/d, and for some s dividing d such that (d/s) is
prime to n′m′.

Proof: (1) Note 〈ak〉 < 〈a〉 so t divides o(a). And akt = 1 so o(a)|tk.
Hence o(a) = ts, for some s dividing k. Write k = sk′. We also have

o(ak) =
ts

(ts, k)
=

t

(t, k′)
,

so that (t, k′) = 1.
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(2) We have (ab)d = adbd, o(ad) = n′ and o(bd) = m′. As (n′,m′) = 1, we
get o((ab)d) = n′m′. Apply (1).

Let t = o(−an). Let g(x) be an irreducible factor of Qn,a(x) and let α be
a root of g(x).

Note that as −an ∈ F , t divides q − 1. We set up notation:

n = 2eAB,

where A is the largest common odd factor of n and q − 1, and B is odd.
Write

q − 1 = 2AA1,

t1 = (t, A1) t = t1t2 A1 = t1A2 2A = t2A3.

Note that (t2, A2) = 1. Further, let e2 = v2(A2) and write

A2 = 2e2A4.

Lastly, set f = max{0, e− e2}. Note that e2 + f ≥ e.

Lemma 8.4. Let k be the least positive integer with αk ∈ F . Then k =
2fBt2.

Proof: We proceed in four steps.
Step 1. k|2fBt2.
We wish to calculate (α2f Bt2)q−1. Now

2fBt2(q − 1) = 2fBt2(2A)(t12
e2A4)

= 2(2f+e2AB)tA4

= 2(2eAB)t2f+e2−eA4

= 2nt(2f+e2−eA4).

Since α2nt = (−an)t = 1, we get (α2f Bt2)q−1 = 1. Thus α2f Bt2 ∈ F and
k|2fBt2.

Step 2. B|k.
We first introduce yet more notation. As α2n = −an ∈ F , we have k|2n.

Write 2n = km.
Let B1 be a factor (greater than 1) of B that is prime to q− 1. Suppose,

if possible, that B1|m; write m = B1m1. Note that km is even as is km1,
since B1 is odd. In this notation, we have

αkm = −an = −akm/2.
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Let c = αk; c ∈ F . Then

cm = cB1m1 = −akB1m1/2 = (−1)B1akB1m1/2.

The map x 7→ xB1 is an isomorphism of F , since B1 is prime to q − 1, so we
have

cm1 = −akm1/2.

But then
αkm1 = (−a)km1/2 = −akm1/2,

and α is a root of Tkm1/2,a(x). Now n divided by km1/2 is (2n)/(km1) =
m/m1 = B1 is odd. But α, a root of Qn,a, is not a root of any Ti with i|n,
i 6= n and n/i odd. Hence 2n = km1, m = m1, B1 = 1, a contradiction.
Hence B1 divides k.

Next we consider factors of B that are not prime to q− 1. Suppose π is a
prime dividing B and q − 1. Note that B is odd, so π is odd. Let e = vπ(A)
and f = vπ(B) ≥ 1 so that vπ(n) = e + f . Note that vπ(q − 1) = e as
A = (n, q − 1).

We want to show πf divides k. Suppose instead that vπ(k) ≤ f−1. Then
vπ(m) ≥ e + 1. Write m = πe+1m2. We have

cm = −akm/2

(cm2)πe+1

= −(akm2/2)πe+1

(cm2)πe

= −(akm2/2)πe

,

using Lemma 8.1. But then

αkm/π = cm/π = cm2πe

= −akm/(2π),

contradicting the fact that α is not a root of Ti for i < n and n/i odd. Hence
πf |k. This completes that proof that B|k.

Step 3. Bt2|k.
By Step 2, we have that k = B`, for some ` dividing t2. Then

1 = (αk)2e(q−1) = αB`·2e·2AA1

= (α2·2eAB)`A1

= (−an)`A1 .

Thus t divides `A1. So t2 = t/t1 divides `A1/t1 = `A2. Since (t2, A2) = 1 we
have that t2|`. So Bt2|k as desired.
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Step 4. Finish.
Combining Steps 1 and 3 shows we can write k = 2hBt2 for some h ≤

f ≤ e. Let αk = c ∈ F . Now

c2e−hA3 = α2e−hA32f Bt2

= α2e(2A)B = α2n = −an,

has order t. Write t = 2v2(t)t′ and A3 = 2v2(A3)A′
3, with t′ and A′

3 odd. Then

(−an)t′ = c2e−ht′A3 = c2e−h+v2(A3)t′A′3 ,

has order 2v2(t). By Lemma 8.2, the order of ct′A′3 is 2 to the power of
e− h + v2(A3) + v2(t). This must divide q − 1, as c ∈ F . So

v2(q − 1) ≥ e− h + v2(A3) + v2(t).

Now q − 1 = 2AA1 = t2A3 · t1A2 = tA2A3. Thus

v2(t) + v2(A2) + v2(A3) ≥ e− h + v2(A3) + v2(t)

h ≥ e− v2(A2) = e− e2.

As h is non-negative, we have h ≥ max{0, e − e2} = f . But h ≤ f by Step
1, so h = f and k = 2fBt2.

As above, set:
cα = α2f Bt2 ∈ F.

Lemma 8.5. 1. o(α) = 2fBt2o(cα).

2. c2e−f A3
α = −an.

3. Suppose 2f t2 is even. Then cα = xy, where o(x) = 2 · 2e−fA3 and
y = a2f Bt2/2. Further, o(−y2e−f A3) = t.

4. Suppose 2f t2 is odd. Then c2
α = xy, where o(x) = 2eA3 and y = bBt2.

Further, o(−y2eA3/2) = t.

Proof: (1) Just for this proof, let d = o(α). Then αd = 1 ∈ F so
that k = 2fBt2 divides d, using the value of k from Lemma 8.4. Write
d = 2fBt2d2. Then

1 = αd = α2f Bt2d2 = cd2
α
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and so o(cα) divides d2.

Also α2f Bt2o(cα) = c
o(cα)
α = 1 so d = 2fBt2d2 divides 2fBt2o(cα). Thus we

have the converse that d2|o(cα). So d2 = o(cα).
(2) We have,

c2e−f A3
α = α2eBt2A3 = α2·2eAB = α2n = −an.

(3) We assume that 2f t2 is even. Now e2 ≥ e− f so that 2e−f divides A2,
and so A1. And t2 divides 2A. Thus 2e−f t2 divides 2AA1 = q − 1. We have,
by (2),

c2e−f2A3
α = −a2eBt2A3/2.

Thus, in F , we may take roots of order 2e−fA3, obtaining cα = xy where
x2e−f A3 = −1 and y = a2f Bt2/2.

We check that o(x) = 2 · 2e−fA3. Recall that A3 = 2e3A5 with A5 odd.
Then

(xA5)2e−f+e3 = −1.

So o(xA5) = 2 ·2e−f+e3 by Lemma 8.2 (1). Hence o(x) = 2 ·2e−f+e3π for some
divisor π of A5. Then

α2e+e3Bt2π = c2e−f+e3π
α = x2e−f+e3πy2e−f+e3π = (−1)b2e+e3Bt2π/2.

Hence α is a root of Ti(x), for i = 2e+e3Bt2π/2 and n/i = A5/π is odd. Since
α is a root of Qb

n(x), the new part of Tn(x), we must have π = A5 as desired.
To complete (3) note that y2e−f A3 = a2eBt2A3/2 = an so that −y2e−f A3 has

order t.
(4) Now assume 2f t2 is odd. Note that f = 0, A3 is even and A3/2 is

odd. We have
c2eA3
α = −a2eBt2A3/2.

Take roots of order 2eA3/2 to get:

c2
α = xy x2eA3/2 = 1 y = at2B.

The proof that o(x) = 2eA3 is similar to that of (3). And, also similarly,
y2eA3/2 = a2eBt2A3/2 = an so that −y2eA3/2 has order t

We introduce yet more notation. Set β = a/α, which is a root of ĝa(x).
Set

cβ = β2f Bt2 =
a2f Bt2

cα

.
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Proof of Proposition 7.7 It is enough to show lcm(o(α), o(β)) = 2nt.
By the first part of Lemma 8.5, it suffices to show lcm(o(cα), o(cβ)) = 2e−fA3t
as then

lcm(o(α), o(β)) = 2fBt2 · 2e−fA3t = 2e(t2A3)Bt = 2nt.

Part I We first consider the case where 2f t2 is even. We check that t
is even in this case. If t2 is even then t = t1t2 is even. Say f ≥ 1. If t is
odd then o(an) = 2t by Lemma 8.2. Then o(ant) = 2, o((aABt)2e

) = 2 and
o(aABt) = 2e+1, by Lemma 8.2. This must divide q − 1. So

v2(q − 1) ≥ e + 1

v2(A2) + 1 ≥ e + 1

e2 ≥ e.

But then f = 0,a contradiction. Hence when 2f t2 is even, t is even.
From Lemma 8.5, we have that cα = xy, where o(x) = 2 · 2e−fA3 and

o(−y2e−f
) = t. Then, by Lemma 8.2, o(y2e−f

) = t/2 if t ≡ 2 (mod 4) and t,
if t ≡ 0 (mod 4).

Case 1 First suppose that t ≡ 2 (mod 4). Then

o(y) =
1

2
ts1/2 with2e−fA3 = s1s2, (s2, t/2) = 1,

by Lemma 8.3. Then

(o(x), o(y)) = (2s1s2,
1

2
ts1) = s1(2s2,

1

2
t) = s1,

as s2 is prime to t/2 and t/2 is odd. Apply Lemma 8.3 to get

o(cα) = (2s2)(t/2)s3 with s1 = s3s4, (s4, ts2) = 1.

Now we have cβ = y2/cα. Here o(y2) is ts1/2 if s1 is odd, and ts1/4 if s1

is even.
Case 1A We suppose s1 is odd. Then

(o(cα, o(y2)) = (ts2s3,
1

2
ts3s4/2) = (ts3/2)(2s2, s4) = ts3/2,

as s4 is prime to ts2 and t is even. Apply Lemma 8.3 once again to get

o(cβ) = s4(2s2)s5, ts3/2 = s5s6, (s6, 2s2s4) = 1.
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We obtain:

lcm(o(cα), o(cβ)) = lcm(ts2s3, 2s2s4s5)

= lcm(2s2s5s6, 2s2s4s5)

= 2s2s5lcm(s6, s4),

where we have used ts3 = 2s5s6 in the second line. Lastly, s6 is prime to s2s4

so lcm(s4, s6) = s4s6. We get

lcm(o(cα), o(cβ)) = 2s2s5s6s4

= 2s2(ts3/2)s4

= ts2(s3s4)

= ts2s1 = t2e−fA3,

as desired.
Case 1B Now we suppose that s1 is even and so o(y2) = ts1/4. We

compute as in Case 1A:

(o(cα), o(y2)) = ts3/4

o(cβ) = s4(4s2)s5, with ts3 = s5s6, (s6, 4s2s4) = 1

lcm(o(cα), o(cβ)) = 4s2s5s6s4

= 2e−fA3t.

This completes Case 1.
Case 2 Now suppose that t ≡ 0 (mod 4). Here o(y) = ts1 and o(y2) =

ts1/2 as t is even. Compute as in Case 1A to get lcm(o(cα), o(cβ))2e−fA3t.
This completes Part I.

Part II Now we consider the case where 2f t2 is odd. Note that f = 0
here and, from 2A = t2A3, that A3 is even, A3/2 is odd. The proof is
similar to the previous cases. We have c2

α = xy where o(x) = 2eA3 and
o(−y2eA3/2) = t. We thus have from Lemma 8.2

o(y2eA3/2) =





t/2 if t ≡ 2 (mod 4)

t, if t ≡ 0 (mod 4)

2t, if t ≡ 1, 3 (mod 4).

There are four cases, depending on t modulo 4. The computations are all
similar to Part I. We present only the first case.
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Suppose t ≡ 2 (mod 4). Then

o(y) = ts1/2 with 2eA3/2 = s1s2, (s2, t/2) = 1,

by Lemma 8.3. Then

(0(x), o(y)) = (2eA3, ts1/2) = (2s1s2, ts1/2) = s1,

as s2 is prime to t/2 and t/2 is odd. So

o(c2
α) = (2s2)(t/2)s3 with s1 = s3s4, (s4, s2t) = 1,

by Lemma 8.3 again. As s2ts3 is even, o(cα) = 2s2ts3. Now

cβ =
bBt2

cα

=
y

cα

.

We have

(o(cα), o(y)) = (2s2ts3, ts1/2) = (2s2ts3, ts3s4/2) = ts3/2,

s4 is prime to s2 and s4 is odd (since it is also prime to t). Applying Lemma
8.3 once again gives

o(cβ) = (4s2)s3s5 with ts3/2 = s5s6, (s6, 4s2s3) = 1.

Hence

lcm(o(cα), o(cβ)) = lcm((2s2)(2s5s6), 4s2s3s5)

= 4s2s5(s6s4)

= 2eA3t,

as desired.
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