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SDE’s: Stable Manifolds

« Formulate a Local Stable Manifold
Theorem for SDE’s driven by Brown-
ian motion (or general noise with sta-
tionary ergodic increments): Stratono-

vich or Ito type.

e Start with the existence of a stochas-
tic low for SDE.

« Concept of a hyperbolic stationary
trajectory. The stationary trajectory
is a solution of the forward /backward
anticipating SDE for all time (Stratono-

vich case).



« Existence of a stationary random fam-
ily of asymptotically invariant stable
and unstable manifolds within a sta-
tionary neighborhood of the hyper-

bolic stationary solution.

« Stable and unstable manifolds dynam-
ically characterized using forward and
backward solutions of anticipating ver-
sions of the (Stratonovich) SDE.

 Proof based on Ruelle-Oseledec (non-
linear) multiplicative ergodic theory

and anticipating stochastic calculus.



Formulation of the Theorem

Stratonovich SDE on R?

dx(t) dt+Zgz )odWi(t),  (I)

driven by m-dimensional Brownian mo-
tion W := (Wy,--- ,Wy,).
(Q, F, (F)er, P) := canonical filtered Wiener

space.

Q := space of all continuous paths w :
R — R™, w(0) = 0, in Euclidean space R™,
with compact open topology;

F := Borel s-field of q;
F: .= sub-s-field of 7 generated by the

evaluations w — w(u), v<t, teR.

P .= Wiener measure on 9.
4



h:R?— R4 1<i<m, C/° vector fields on
R?; viz. h has all derivatives Din,1 < j <
k, continuous and globally bounded, p*n

Holder continuous with exponent ¢ € (0,1).
gi, 1 <i<m, globally bounded and ¢;*.

f:RxQ— 0 is the (ergodic) Brownian
shift

O(t,w)(s) ==w(t+s)—w(t), tseR,well

Let ¢: RxR?x Q — R? be the stochastic
flow generated by (I) (¢(t,-,w) = [¢(=t,-, 0(t,w))] L,

t <0). Then ¢ is a perfect cocycle:

¢(t1 + t27 ',Cd) — ¢(t27 '70(t17w)) © ¢(t17 °7w>7



for all ,4, e R and all wea ([I-W], [A-S],
A).

Figure illustrates the cocycle prop-
erty. Vertical solid lines represent ran-
dom fibers consisting of copies of R?. (¢,6)
i1s a “random vector-bundle morphism”

over the “base” probability space q.



The Cocycle

¢(t1 +t2, T, ,w)

9(t17 ) 9(t27 )
w H(tl:,w) 9(t1 —|—It2,w>
t=0 t=1 t =11 + 1o



Definition

The SDE (I) has a stationary trajec-
tory if there exists an F-measurable ran-

dom variable v :Q — R? such that

¢(t, Y (w),w) =Y (0(t,w)) (1)

for all t e R and every w e Q. Denote sta-

tionary trajectory (1) by ¢@t,v) =Y (6(t)).



Examples of Stationary Solutions

1. Fixed points:

Take Y (w) =z, for all we Q.

2. Linear affine case d = 1:
do(t) = Ap(t) dt + dW (1)
x>0 fixed, w(t) e R. Take

o(t, z,w) = e [:c + /Ot e dW(u)] :

V()= [ e vaw),

O(t,w)(s) =w(t+s) —w(t).
9



Check that ¢t Y(w),w) = Y(8(t,w)), using in-
tegration by parts and variation of pa-

rameters.

3. Affine linear SDE in 4 =2:
do(t) = A(t) dt + GdW (¢)

with 4 a fixed hyperbolic 2 x 2-diagonal
matrix; ¢ a constant 2 x 2-matrix, and w

o-dimensional Brownian motion.

4. Non-linear transforms of (3) under a

global diffeomorphism.

5. Invariant measure for SDE: Enlarge
probability space ([M-S.3]).
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Let ¢(t,v) be a stationary solution of
(I). Cocycle property of ¢ implies that

the linearization
(D29(t,Y (w),w), 0(t,w))

along the stationary solution is also a
d x d-matrix-valued cocycle. Using Kol-

mogorov’s theorem, the random variables

| D2 (2, z)|

sup L >0,
zerd (1 +]z]7)

have moments of all orders. If Elog™ |v] <
00, then Elogt |D2¢(1,Y)| < . Apply Os-
eledec’s Theorem to get a non-random finite

Lyapunov spectrum:

lim 2+ log | Dap(n, ¥ (w),w)(w(w))|, v € Lo RA).

n—oo M

11



Spectrum takes finitely many fized values

{x}r_, with non-random multiplicities ¢,
p

1 <i<p and Y ¢ =d ([Ru.l], Theorem

L.6). -

Definition

Stationary trajectory ¢(t,v) of (I) is
hyperbolic 1f Elog™ |Y(-)] < oo, and if the lin-
earized cocycle (Dy¢(n,Y (w),w),0(n,w)) has a

non-vanishing Lyapunov spectrum
{)\p< "'<)\i0—|—1 <)\i0 <O<)\i0_1 < e < Ao <)\1}

l.e. ) #£0 for all 1 <i<p.

Define A, := max{) : »; <0} if at least
one )\ < 0. If all » > o0, set ), = —.
(This implies that A, , is the smallest

12



positive Lyapunov exponent of the lin-
earized flow, if at least one A, > 0; in case

all »;, are negative, set A, 1 = .)

Let peR*t, z e R,
B(z,p) := open ball in R4, center » and ra-
dius p;
B(z, p) := corresponding closed ball;
KR4 := the class of all non-empty com-
pact subsets of R¢ with Hausdorflf metric
d*:
d*(Ay, Ag) := sup{d(z, A;) : € A}V sup{d(y, As) : y €
A;} where Ay, A, e K(RY);
d(z,A;) :=inf{lz —y|:y € A;}, v € R%, i =1,2;
B(K(R%) := Borel s-algebra on x(®R?) with

respect to the metric d-.

13



Theorem 1 (The Stable Manifold Theo-
rem) (M.+ Scheutzow, AOP ’99)

Assume that the coefficients of SDE (I) satisfy the
given hypotheses. Suppose ¢(t,Y) is a hyperbolic station-
ary trajectory of (I) with Elog™ |Y| < oo.

Fix ¢ € (0,—X;,) and €2 € (0,A;,—1). Then there
exist

(i) a sure event Q* € F with 0(t,-)(Q2*) = Q* for all
t € R,

(ii) F-measurable random variables p;, 5; : Q* — (0,1), B; >
p; > 0,1 = 1,2, such that for each w € Q*, the fol-
lowing is true:

There are C*< (e € (0,0)) submanifolds S(w), U(w)
of B(Y (w),p1(w)) and B(Y (w), p2(w)) (resp.) with the

following properties:

14



(a) S(w) is the set of all z € B(Y (w), p1(w)) such that
[p(n, z,0) = Y (B(n,w))| < Bi(w) Mo te)n
for all integers n > 0. Furthermore,

limsup - log [6(t,,w) = Y (O(L,@))| < Ny (2

t—o0

for all x € S(w). Each stable subspace S(w) of the
linearized flow Dy¢ is tangent at Y (w) to the sub-
manifold S(w), viz. Ty(w)S(W) = S(w). In particu-

lar, dim S(w) = dim S(w) and is non-random.

{|gb(t,x1,w) — ¢(t, T2, w)| H <

|71 — 22|

1
(b) limsup — log[ sup
t—o0 t T FT2
z1,z2€S(w)

Aig -
(c) (Cocycle-invariance of the stable manifolds):

There exists T1(w) > 0 such that



Also
Dyp(t,Y (w),w)(S(w)) = S(8(t,w)), ¢>0. (4)

(d) U(w) is the set of all z € B(Y (w), p2(w)) with the

property that

o(—n,z,w) — Y (0(—n,w))| < f2(w) p(—Xig—1te2)n
(5)

for all integers n > 0. Also

i sup % log |¢(—t, 2, w) — Y (6(—t, w))| < —Aiy 1.
(6)
for all z € U(w). Furthermore, the unstable subspace
U(w) of Dy¢ is the tangent space to U(w) at Y (w),
viz. Ty U (w) = U(w). In particular, dim U(w) =

dim U(w) and is non-random.
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() limsupélog[ sup {|¢( t, @1, )—¢(—t,$2aw)|}] <

t— o0 T1#T2 |5131 —$2|
1,z €EU(w)

—Nig—1-
(f) (Cocycle-invariance of the unstable manifolds):

There exists T2(w) > 0 such that
o(—t,,w)UW) CUB(-tw)), t27(w). (7)
Also
Dap(—t,Y (w),w)U(w)) =U(0(-t,w)), t=0. (8)
(g) The submanifolds U (w) and S(w) are transversal, viz.
R? = Ty (@)U (w) ® Ty ()S(w). (9)

(h) The mappings

Q- KRY, Q- KRD,

w— S(w) w— U(w)
17



are (F, B(K(R%)))-measurable.

Assume, further, that h,g;, 1 < i < m, are C;°.
Then the local stable and unstable manifolds S(w), U (w)

are C'°°,

18



t > 7'1((4))

A picture is worth a 1000 words!

19




t > 7'2((4))

20



Sketch of Proof

Linearization and Substitution

Assume regularity conditions on the
coefficients n,¢;. By the Substitution Rule,
6(t,Y (w),w) 1S a stationary solution of the

anticipating Stratonovich SDE

1=1

do(t,Y) = h(p(t,Y))dt + zm:gi((b(t, Y))odW;(t), t> O}

$(0,Y) =Y.
(I1)

(IN-P]).
Linearize the SDE (I) along the sta-

tionary trajectory. By substitution, match

the solution of the linearized equation

21



with the linearized cocycle Dy¢(t, Y (w),w).
Hence D,¢(t, Y (w),w), t > 0, solves the SDE:

dD2¢(t,Y) = Dh($(t,Y)) Dath(t,Y) dt )

—|—ZDgz d(t,Y))Dop(t,Y) 0 dW;(t), t>0°

(I11)

D,, D denotes spatial (Fréchet) derivatives.

Similarly, the backward trajectories
¢(t7Y>7 D2¢(t7Y>7 t < 07

solve the corresponding backward Stratonovich
SDE’s:

do(t,Y) = —h($(t,Y)) dt — Z gi(p(t,Y)) o dW;(t), t< 0}

$(0,Y) =Y.
(I117)
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dDyp(t,Y) = —=Dh((t,Y))D2¢(t,Y) dt

—Zpgz (t,Y))Dap(t,Y) o dW;(t), t<0

(I117)
Above SDE’s (II)-(III)- give dynamic
characterizations of the stable and un-

stable manifolds.

The following lemma is used to con-
struct the shift-invariant sure event ap-
pearing in the statement of the local sta-
ble manifold theorem. Gives “perfect
versions” of the ergodic theorem and King-

man’s subadditive ergodic theorem.

23




Lemma 1

(i) Let h : Q@ — R* be F-measurable and such that

/ sup h(f(u,w))dP(w) < 0.
Q

0<u<l1

Then there is a sure event )y € F such that 8(t,-)(1) =

Qq for allt € R, and

lim ~h(0(t,w)) = 0

t—o00

for all w € ;.
(ii) Suppose f : RT x @ — R U {—o0} is a measurable
process on (2, F, P) satisfying the following condi-

tions

(a) E sup fT(u) <oo, E sup f(1—wu,0(u)) < oo
0<u<1 0<u<1

(b) f(t1—|—t2,(,U) < f(tl,w)+f(t2,9(t1,w)) forallt1,t5 > 0

and all w € ().

24



Then there is sure event Qg € F such that 0(t,-)(Q2) =
Q) for allt € R, and a fixed number f* € RU{—oo0} such
that

lim = f(t,w) = f*

t—oo t

for all w € 5.

Proof

[Mo.1], Lemma 7. O

25



Theorem 2 ([O], 1968)

Let (Q, F, P) be a probability space and § : R x —
() a measurable family of ergodic P-preserving transforma-
tions. Let T : R* x Q — L(R?) be measurable, such that
(T, 0) is an L(R®)-valued cocycle. Suppose that

E sup log® [|T(t,-)|| <oo, E sup log™ [|T(1—t,0(t,-))|| < co.
0<t<1 0<t<1

Then there is a set Qg € F of full P-measure such that
6(t,-)(Qo) C Qo for all t € R, and for each w € g, the
limit

lim [T(t,w)* o T(t,w)]* ") := A(w)

t—o0

exists in the uniform operator norm. FEach A(w) has a

discrete non-random spectrum

eM > M2 > e s s et

26



where the \;’s are distinct. Each e has an eigen-space
F;(w) and a fixed non-random multiplicity m; := dimF;(w).

Define

Ey(w) C - C Eiy1(w) C Bij(w)--- C Ez2(w) C Ei(w) =R

1
lim 7 log |T(t,w)x|| = A\i(w), if =€ Ej(w)\Fir1(w),

t— o0
and

T(t,w)(Ei(w)) C Ei(6(¢t,w))
forall t>0, 1< <p.
Proof.

Based on the discrete version of Os-

eledec’s multiplicative ergodic theorem
27



and Lemma 1. (|[Ru.l], IL.H.E.S Publi-
cations, 1979, pp. 303-304; cf. Fursten-
berg & Kesten (1960), [Mo.1]), “perfect”

infinite-dimensional version and applica-
tion to SFDE’s. O

28



Spectral Theorem

T(t w)
/\\ /<_Rd
E, =RI— Wr\/” $\E2(9(taw))

29



Apply Theorem 2 with
T(t,w) := Dap(t,Y (w),w)

Then linearized cocycle has random
invariant stable and unstable subspaces

{S(w),U(w) : w e Q}:

D2g(t, Y (w), w)(S(w)) = S(0(t,w)),

Dap(=t,Y (w), w)(U(w)) =U(0(-t,w)), t=0.

[Mo.1].

30



ub(t,w))

- S(0(t,w))

31



Estimates on the non-linear cocycle

Theorem 3 (M + Scheutzow [M-
S.2])

There exists a jointly measurable modification of the
trajectory random field of (I) (with initial condition x at
t = s), denoted by {¢s () : —00 < s,t < 00, © € R%},

having the following properties:

The cocycle ¢ : R x R% x Q — R? is given by
o(t,r,w) == ¢os(z,w), z€RYwetecR.

Then for all w € Q, € € (0,0),v,p,T > 0,1 < |a| <k,

P(t,-,w) is CF€, 0 < € < §, and the quantities

T,w DY T, w
I N | T RO |
0<s,t<T, [1 + |x (log |£IZ|)7] 0<s,t<T, (1 + |CIJ|7)
mERd mERd
|DZ¢s,t(x,w) — D s (2, w)|
sup  sup ,
reRd 0<s,t<T, |./I; - $/|€(1 —|_ |$|>'Y

o<l —z|<p
32



are finite. The random variables defined by the above

expressions have p-th moments for all p > 1.

33



Ruelle’s Non-linear Ergodic Theorem

Theorem 4 ([Ru.1], 1979)

Let Q >— F, € C*(R%0;R%0) be measurable
such that Elog™ |F.|B(0,1)||g,e < 0o. Set F™(w) := Fp(n_1.4,)°
+-+0 Fy(1,0) 0 Fy,. Suppose A < 0 is not in the spectrum of
the cocycle (DF(0),0(n,w)). Then there is a sure event
Qy € F such that 0(1,-)(Qg) C Qq, and measurable func-
tions 0 < a(w) < B(w) < 1,y(w) > 1 with the following

properties:

(a) If w € g, the set
V(j‘ = {z € B(0,a(w)): |F"(z)| < B(w)em‘ for allm > 0}

is a C%€ submanifold of B(0, a(w)).

(b) If 1,25 € V), then

|F(21) — 2 (m2)] < y(w)|z1 — 22]e™
34



for all integers n > 0. If ' < X and |\, )] is disjoint
from the spectrum of (DF(0),0(n,w)), then there

exists a measurable v'(w) > 1 such that
B2 (21) = FJ(32)] </ (w)|z1 — wale™

for all x1, x5 € ch‘ and all integers n > 0.

Proof

[Ru.1], Theorem 5.1, p. 292.
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Construction of the Stable/Unstable Man-
ifolds

o Use auxiliary cocycle (z,6):
Z(t,x,w) = ¢t,x+Y(w),w) —Y(0(t,w)) (16)

for t ¢ R,z € R w € Q. Set 7= 6(1,): Q2 —

Q. Define maps F,, F": R¢ - R

F,(z):=2Z(1,z,w) zcR?

Fn = Tn—l(w) ©0-:++0 FT(w) (@) Fw

w

for all w e . Then cocycle property
for z gives F" = Z(n,-,w) for each n > 1.

F, 1S C*< (e € (0,0)) and (DF,)(0) = D2¢(1,Y (w),w).

o Integrability of the map

w > log™ [|Dag(1,Y (w),w) || L(re)
36



(Lemma 2) implies discrete cocycle
((DE™)(0),6(n,w),n > 0) has same non-random
Lyapunov spectrum as that of lin-

earized continuous cocycle
(D2¢(t> Y(LU), w)? e(ta w)a t > O)?

VIZ. {dm < - < Aip1 < X < - < A2 < A1},
where each A, has fixed multiplicity
¢, 1<i<m (Lemma 2).

If x; >0 for all 1 <i < m, then take
Sw) = {Y(w)} for all w € . Theorem

1s trivial in this case. Hence assume

there 1s at least one ), <o.

Use discrete non-linear ergodic the-
orem of Ruelle (Theorem 4) and its

proof to obtain a sure event O € F
37



such that 6@, ) () = o for all ¢ € R,
F-measurable positive random vari-
ables pi.8 : Q@ = (0,0), p1 < 81, and a
random family of c#< (e € (0,5)) sub-
manifolds of B(0,p,(w)) denoted by
Sa(w), w € , and satistying the follow-
ing properties for each w e Qi: Sy(w) 18
the set of all z € B(0, p1(w)) such that

Z(n,z,w)| < By (w)e(AiOJrel)", nezZ’ (21)

Si(w) 18 tangent at o to the stable sub-
space S(w) of the linearized flow D,s,
Viz. TpSu(w) = S(w). Therefore dim S,(w)

is non-random by ergodicity of 4. Also

. 1 |Z(n,x1,w)—Z(n,x2,w)|

lim sup — log sup

n—oo T r1#£T3, |5131 - 5132|
z1,22€8g(w)

< Ay -

(22)
38



The 6(t,-)-invariant sure event Qf € 7
1s constructed using the ideas in Ru-
elle’s proof (of Theorem 5.1 in [Ru.1],
p. 293), combined with the estimate
(10) of Lemma 2 and the subadditive

ergodic theorem (Lemma 1 (ii)).

For each w e 0z, let S(w) be as defined
in part (a) of the theorem. Then by

definition of S,(w) and z:

~

S(w) = Syq(w) + Y (w). (23)

Since S,(w) is a c*< (e € (0,6)) subman-
ifold of B(0,p:1(w)), then Sw) is a C*«
(¢ € (0,6)) submanifold of B(y(w),pi(w)).

Furthermore, 7y ,S(w) = THSu(w) = S(w).
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Hence dim S(w) = dim S(w) = Em: g, and

1s non-random.
(22) implies that

1
limsup —log |Z(n, z,w)| < A4 (24)
n

n— 00

for all w in 0 and all z € S;(w). Lemma
4 1mplies there is a sure event Q3 c O
such that 6(t,-)() = o3 for all t e R, and

1
lim sup p log |Z(t, x,w)| < A4y (25)

t— o0

for all w e @z and all z € S;(w). There-
fore (2) holds.

To prove (b), let w € 0;. By (22),
there is a positive integer N, := Ny(w)
(independent of z € S,w)) such that
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Z(n,z,w) € B(0,1) for all n > Ny,. Let Q3 =

Q3 N Q3, Where Qs is the shift-invariant
sure event defined in the proof of Lemma
4. Then Q; is a sure event and 6(¢,-)(Q}) =
q; for all ¢t e R. By cocycle property,
Mean-Value theorem and the ergodic

theorem (Lemma 1(i)), we get (b).

To prove the invariance property (4),
apply the Oseledec theorem to
(D2g(t,Y (w),w),0(t,w)). Get a sure 6(t,-)-
invariant event, also denoted by «,
such that

Dsg(t,Y (), w)(S(w)) C S((t,w)) for all ¢ >0
and all w e Q. Equality holds because
D2¢(t,Y (w),w) 18 Injective and dim S(w) =
dim s(4(t,w)) for all +>0 and all w e Q.
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« To prove the asymptotic invariance
property (3), use ideas from Ruelle’s
Theorems 5.1 and 4.1 in |[Ru.l], to
pick random variables p;, 3, and a sure
event (also denoted by) o; such that
a(t, ) () = for all ¢t e R, and for any
e e (0,e) and every w e Q:, there exists
a positive K¢(w) for which the inequal-
1ties

p1(0(t,w)) > Ki(w)pr(w)ePioto,

(26)
B (0(t,w)) > K¢ (w)By(w)ePioTe)t

hold for all ¢+ >0. Use (b) to obtain a
sure event Q: c O such that 6, -)(Q;) =

q; for all t e R, and for any 0 < ¢ < ¢
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and w e @, there exists p<(w) >0 (inde-

pendent of z) with
B¢, 2,w) = Y(0(t,w))] < f(w)eMo¥" (27)

for all z € Sw),t>0. Fix t >0, we O
and z € S(w). Let » be a non-negative
integer. Then the cocycle property
and (27) imply that

[$(n, ¢(t,7,w), 0(t,w)) =Y (8(n, O(, w)))]
= |60+ £.2,) = Y (B(n +1,)
< ¢(w)ePiote)(ntt)

< BG(CU)G()\iO+6)t6()\i0+61)n.
(28)

If w € 0z, then it follows from (26),(27),
(28) and the definition of §(6(t,w)) that
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there exists = (w) > 0 such that ¢, z,w) €

S(4(t,w)) for all ¢ > r,(w). This proves as-

ymptotic invariance.

Prove (d), the existence of the lo-
cal unstable manifolds #(w), by run-
ning both the flow ¢ and the shift ¢
backward in time getting the cocycle

~

(Z(t,-,w),0(t,w),t > 0):

o(t,z,w) = d(—t,z,w), Z(t,z,w) = Z(—t,z,w),

~

O(t,w) :=0(—t,w)

for all t >0,w e Q. The linearized flow
(D2g(t,Y (w),w), 8(¢,w), t > 0) 1S an L(R%)-valued
perfect cocycle with a non-random fi-
nite Lyapunov spectrum {-x; < —X; <

c < =M < —Aig1 < -0 < =M} Where {),, <
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< Aip1 < A < --- < Xy < A} 18 the Lya-

punov spectrum of the forward lin-
earized flow (D.¢(t,Y(w),w),0(t,w),t > 0).
Apply first part of the proof to get
stable manifolds for the backward flow
é satisfying assertions (a), (b), (c).
This gives unstable manifolds for the orig-
inal flow ¢, and (d), (e), (f) automat-
ically hold.

Measurability of the stable manifolds

follows from the representations:

S(w) =Y (w) + Sa(w) (29)
Sa(w) = nll_)Il’oloB (0, p1(w ﬂ fi(,w) HB(0,1))
(30)

fi(z,w) = Bi(w) e~ R te)i Z(; 2 w), z € RY, w € QF,
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for all integers i >0. (Above limit is
taken in the metric ¢- on K(®R4).) Use
joint continuity of translation and mea-
surability of v, f, p,, finite intersec-

tions and the continuity of the maps
R* 5 r— B(0,r) € K(RY).
Hom@®?) > f— f~1(B(0,1)) € KRY).

For n,¢; in ¢, can adapt above argu-
ment to give a sure event in F, also
denoted by o such that Sw), u(w) are
ce forall weo . O
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Some Technical Lemmas

ke := C**-nOTIM ON C** mappings B(0, p) —

RY.
Lemma 2

Assume that log™ |Y(-)| is integrable. Then the co-

cycle ¢ satisfies

/Qlog+ S [p(t2, Y (0(t1,w))+(:),0(t1, w)) ||k, dP(w) < o0
B (10)

for any fixed 0 < T,p < oo and any € € (0,0). Further-
more, the linearized flow (D2¢(t,Y (w),w),0(t,w)), t > 0,

is an L(R%)-valued perfect cocycle and

[ro8" s Dbl Y (011,09, 00t1,) g AP(@) < o
Q —T<t1,t2<T
(11)
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for any fixed 0 <T' < oo. The forward cocycle

(D2¢(t,Y (w),w),0(t,w),t > 0) has a non-random finite

Lyapunov spectrum {\,, < -+ < X113 < A < -+ <

A2 < A1}. Each Lyapunov exponent \; has a non-random

multiplicity q;, 1 <1 < m, and zm:qz- = d. The backward
i=1

linearized cocycle (D2¢(t,Y (w),w),0(t,w),t < 0), admits

a “backward” non-random finite Lyapunov spectrum:

lim_~ 10g | Dag(t, ¥ (), @) (0(w))], v € L, RY)

t——o0

taking values in {—\;}/*, with non-random multiplicities
m

di, 1§Z§m7 andZQz:d
=1
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The Auxiliary Cocycle

To apply Ruelle’s discrete non-linear
ergodic theorem (|Ru.l], Theorem 5.1,
p. 292), introduce the following auxil-
lary cocycle z: RxR¢x Q — RY. This a
“centering” of the flow ¢ about the sta-

tionary solution:
Z(t,x,w) = ¢(t,x+Y(w),w) —Y(0(t,w)) (16)

for teR,z e R%,w e Q.

Lemma 3

(Z,0) is a perfect cocycle on RY and Z(t,0,w) = 0

for allt € R, and all w € (.
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The proof of the local stable-manifold
theorem (Theorem 1) uses a discretiza-
tion argument that requires the follow-

ing lemma.

Lemma 4
Suppose that log™ |Y'(-)| is integrable. Then there is
a sure event {23 € F with the following properties:
(i) 0(t,)(Q3) = Qg for allt € R,

(ii) For every w € Q3 and any € R?, the statement

1
limsup — log |Z(n, z,w)| < 0 (17)
n

n— o0
implies

1 1
lim sup p log |Z(t, x,w)| = limsup — log | Z(n, z,w)].

t— 00 n—oo N

(18)
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Deterministic ODE’s: Stable Manifolds

ODE on R¢:
dr(t) = h(z(t)) dt (ODE)

driven by a vector field A : R? — R%, CF; viz. all derivatives
D7h,1 < j <k, continuous and globally bounded.

Assume hyperbolic equilibrium at 0: h(0) = 0; Dh(0) €
L(R?) has all eigenvalues off imaginary axis.

Then (ODE) has a ¢f flow ¢: R x R — R? s.t.
(i) ¢(-,z) = unique solution of (ODE) through = € R
(ii) ¢(t,0)=0,t € R.
(iii) Group property:

P(ty +t2,) = d(t2,:) o P(t1,-), ti,t2 €R

(iv) Local flow-invariant stable/unstable C* manifolds in
a neighborhood of 0.

Properties (i)-(iv) are “generic” among all vector fields.



The Flow

P(t1,-) P(t2,-)
T T
R¢ R¢ R¢
N)
o(t1 + to, )
(:) t:l t1 —:I—tz



Local Stable/Unstable Manifolds







What happens

if vector field

is noisy??



Stable Manifolds

Outline

Smooth cocycles in Hilbert space. Stationary trajec-
tories.

Linearization of a cocycle along a stationary trajec-
tory.
Ergodic theory of cocycles in Hilbert space.

Hyperbolicity of stationary trajectories. Lyapunov

exponents.

Cocycles generated by stochastic systems with mem-
ory. Via random diffeomorphism groups.

Local Stable Manifold Theorem for stochastic differ-
ential equations with memory (SFDE’s): Existence
of smooth stable and unstable manifolds in a neigh-
borhood of a hyperbolic stationary trajectory.

Proof: Ruelle-Oseledec multiplicative ergodic theory+
perfection techniques.



The Cocycle

(2, F, P) :== complete probability space.

f:R*T x Q — Q a P-preserving (ergodic) semigroup on
(Q,F, P).

E := real (separable) Hilbert space, norm | - ||, Borel
o-algebra.

Definition.

k = non-negative integer, e € (0,1]. A C*< perfect cocy-
cle (X,0) on E is a measurable random field X : R* xExQ —
E such that:

(i) For each w € Q, the map Rt x E > (t,z) — X(t,z,w) € E
is continuous; for fixed (t,w) € Rt x Q, the map E >
x> X(t,z,w) € Eis O (D*X(t,z,w) is C¢ in ).

(i) X(t1+te,-,w) = X(t2,-,0(t1,w))o X (t1,-,w) for all t;,2, € R,
all we Q.

(iii) X(0,2,w) =« for all z € E,w € Q.



Cocycle Property

X(tl —I—tg,.’,l’:,,CU)

X(tla'aw) X(t27'a0(t17w))
/\ /\
E E E
i
X(t17x7w)
i H(tla) i 9(t27) i
0 H H H
w H(tl,w) 9(t1 —|—t2,w)
t=0 t=1th t =11 +t2

Vertical solid lines represent random fibers: copies of

E. (X,0) is a “vector-bundle morphism”.



Definition

A random variable Y : Q — E is a stationary point for
the cocycle (X, 0) if

X(t,Y(w),w) =Y (0(t,w)) (1)

for all t € R and every w € Q. Denote stationary trajectory
(1) by X(t,Y) =Y (8(t)).
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Linearization. Hyperbolicity.

Linearize a C*< cocycle (X,6) along a stationary ran-
dom point Y: Get an L(E)-valued cocycle (DX (t,Y (w),w), 8(t,w)).
(Follows from cocycle property of X and chain rule.)
Theorem. (Oseledec-Ruelle)

Let T : RT xQ — L(E) be strongly measurable, such that (T, 0)
is an L(FE)-valued cocycle, with each T (t,w) compact. Suppose that

E sup log* |T(¢, -)HL(E) < o0, E sup log™T ||T(1—t,t9(t,'))||L(E) < 00.
0<t<1 0<t<1

Then there is a sure event Qy € F such that 0(t,-)(Qy) C Qo for all

t € RT, and for each w € Qy,

lim [T(t,w)* o T(t,w)] 1) .= A(w)

t—o00

exists in the uniform operator norm. A(w) is self-adjoint with a non-

random spectrum

eM >e)‘2>e)‘3>---

where the \;’s are distinct. Each e has a fized finite non-random

multiplicity m; and eigen-space F;(w), with m; := dimF;(w). Define
Ei(w) =B, Ejw):= [0 Fjw)] ", i > 1, B = kerA(w).

11



Then

Ew C++-C -+ C Eijy1(w) C Ei(w) -+ C By(w) C Ey(w) = E,

’Lf Tr e Ez ((,U)\EH_l(LU),

o1 A
lim 2 log |7, )z = |
t —o0 if 7€ Ex(w),

t—o0

and
T(t,w)(Ei(w)) C Ei(0(t,w))

forall t >0, 7> 1.

Proof.

Based on discrete version of Oseledec’s multiplicative
ergodic theorem and the perfect ergodic theorem. ([Ru.1],
[.LH.E.S Publications, 1979, pp. 303-304; cf. Furstenberg
& Kesten (1960), [Mo.1]). O

Lyapunov Spectrum:

{X1, A2, A3, -+ } := Lyapunov spectrum of (T,6).
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Spectral Theorem

e A

T(t w)

\

/

[ E3(6(

\

Definition

A stationary point Y (w) of (X, 6) is hyperbolic if the lin-
earized cocycle (DX (t,Y (w),w),8(t,w)) has a non-vanishing
Lyapunov spectrum {--- < A1 < X\ < -+ < Aa2 < A}, Viz.
X\ #0 for all i > 1.

13
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Let ip > 1 be s.t. \;, <0< X\;jy_1.
Assume X (t,-,w) locally compact and

Elog®™ sup |[D2X(t2,Y(8(t1)),0(t1))|| n(m) < oo
0<t1,t2<r

By Oseledec-Ruelle Theorem, there is a sequence of closed
finite-codimensional (Oseledec) spaces

-'Ei_l(W) C Ez(LU) C---C EQ(LU) C El(W) = E,

Eiw)={zcE: lim %log IDX (Y (@), ) (@) <N}, i3> 1,
for all w € Q*, a sure event in F satisfying (¢, -)(Q*) = Q* for
all t € R.

Let {U(w),S(w) : w € Q*} be the unstable and stable
subspaces associated with the linearized cocycle (DX, 6)
([Mo.1], Theorem 4, Corollary 2; [M-S.1], Theorem 5.3).
Then get a measurable invariant splitting

E=Uw)dSw), w e 0F,

DX(t,Y(w),w)U(w)) =U(0(t,w)), DX(tY (w),w)(Sw)) € S(O(t,w)),

for all ¢t > 0, with exponential dichotomies

IDX(t,Y (w),w)(z)|| > |||’ for all t>7,zclU(w),

14



|IDX(t,Y (w),w)(z)] < ||:r;||e_62t forall t>7),z¢ S(w),

with 7 = 7*(z,w) > 0,7 = 1,2, random times and §; > 0,i =
1,2, fixed.

/S(G(t,w))

| —U(6(t,w))




Nonlinear Stochastic Systems with Memory
“Regular” It6 SFDE with finite memory:

dz(t) = H(z(t),z) dt + Z G;(z(t)) dW; (¢),
(2(0),x9) = (v,n) € My := RY x L2([—7’, 0],Rd)

Solution segment z;(s) := z(t +s), t > 0,5 € [-r,0].

m-dimensional Brownian motion W := (Wy,---,W,,),
W (0) = 0.

Ergodic Brownian shift # on Wiener space (2, F, P).
F := P—completion of F.

State space M,, Hilbert with usual norm || - ||.

Can allow for “smooth memory” in diffusion coeffi-
cient.

H: M, — R?, C*9, globally bounded.

G:R? = L(R™ RY), CFtM0 G = (G, , G-
B((v,n),p) open ball, radius p, center (v,n) € Ms;
B((v,n), p) closed ball.

Then (1) has a stochastic semiflow X : R* xMyxQ — M,

with X(t,(v,n),-) = (z(t),z;). X is C*< for any ¢ € (0,9), takes
16



bounded sets into relatively compact sets in M. (X,6) is
a perfect cocycle on M, ([M-S.4]).

Theorem. ([M-S], 1999) (Local Stable and Unstable Manifolds)

Assume smoothness hypotheses on H and G. LetY : Q — My be
a hyperbolic stationary point of the SFDE (I) such that E(||Y (+)||°) <

oo for some € > 0
Suppose the linearized cocycle (DX (t,Y (w),w),0(t,w),t > 0) of
(1) has a Lyapunov spectrum {--- < X171 < N < -+ < Ay < A1}
Define \;, := maz{)\; : \; < 0} if at least one A\; < 0. If all finite \;
are positive, set \;;, = —oo. (This implies that \;,_1 is the smallest
positive Lyapunov exponent of the linearized semiflow, if at least one
Ai > 0; in case all \; are negative, set \j,—1 = 00.)
Fiz e; € (0,—X\;,) and €3 € (0,\j;—1). Then there ezist
(i) a sure event Q* € F with 6(t,-)(Q*) = Q* for all t € R,
(ii) F-measurable random variables p;, 3; : Q* — (0,1), B; > p; > 0,
1 = 1,2, such that for each w € Q% the following is true:
There are C*< (e € (0,6)) submanifolds S(w), U(w) of B(Y (w), p1(w))
and B(Y (w), p2(w)) (resp.) with the following properties:
(a) S(w) is the set of all (v,n) € B(Y (w), p1(w)) such that

1X (nr, (v,1),w) — Y (8(nr,w))|| < Bi(w) ePiotenr

17



for all integers n > 0. Furthermore,

) 1

im sup 1og [ X(1, (0,1),0) Y (0(1,) | < A
—00

for all (v,n) € S(w). Each stable subspace S(w) of the linearized

semiflow DX is tangent at Y (w) to the submanifold S(w), viz.

Ty(w)g(W) = S(w). In particular, codim S(w) = codim S(w), is

fized and finite.

“ | X (¢, (vi,m),w) — X(t, (v2,m2),w)]|
[ p{ 1(0r,m) — (v2,m0)]

(v2,m2), (v1,m), (v2,m2) € S(W)H < iy -

1
(b) lim sup n log

t— 00

: (Ulanl) #

(c) (Cocycle-invariance of the stable manifolds):

There exists T (w) > 0 such that
X(t,-,w)(S(w)) C SO(t,w))
for allt > 1 (w). Also

DX(t,Y (w),w)(S(w)) C S(O(t,w)), t>0.

(d) U(w) is the set of all (v,n) € B(Y (w), p2(w)) with the property

that there is a unique “history” process y(-,w) : {—nr : n >

18



(f)

0} — My such that y(0,w) = (v,n) and for each integer n > 1,
one has X (r,y(—nr,w),8(—nr,w)) = y(—(n — 1)r,w) and

Hy(—nr, Ld) - Y(Q(—m“, w))||M2 < ﬁQ(W)e_(Aio—l—ﬁz)n'r'-

Furthermore, for each (v,n) € U(w), there is a unique continuous-
time “history” process also denoted by y(-,w) : (—o0,0] — M>
such that y(0,w) = (v,n), X(¢t,y(s,w),0(s,w)) = y(t + s,w) for
all s < 0,0<t < —s, and

1
lim sup ; log ||y(—t,w) - Y(e(_taw))” < _)‘io—l'

t— 00

Fach unstable subspace U(w) of the linearized semiflow DX is
tangent at Y (w) to U(w), viz. Ty(w)fl(w) = U(w). In particular,
dim U(w) is finite and non-random.

Let y(-, (vi,n;),w),i = 1,2, be the history processes associated
with (vi,n:) = y(0, (vi, M), w) € U(w), i = 1,2. Then

su Hy(_t’ (Ulanl)’w) —y(—t, (UQan2)’w)|| .
[ p{ (01, m) — (v2,m0)] '

lim sup — log
t—00

(Ulanl) # (02,772), (Ui)ni) S Z/?(Cd),l = 1a2}] S _>\i0—1-

(Cocycle-invariance of the unstable manifolds):

There ezists To(w) > 0 such that

Uw) C X (¢, 0(—t,w)U(0(~t,w)))
19



for all t > 5(w). Also
DX(t,-0(=t,w)U(0(-t,w))) =U(w), t=0;
and the restriction
DX(t,-,0(=t,w)U(O(—t,w)) : U(0(=t,w)) = Uw), t=0,

1s a linear homeomorphism onto.

(9) The submanifolds U(w) and S(w) are transversal, viz.
My = Ty(w)d(w) Q% Ty(w)g(w).

Assume, in addition, that H,G are Cp°. Then the local stable
and unstable manifolds S(w), U(w) are C>.

Figure summarizes essential features of Stable Mani-
fold Theorem:

20



Stable Manifold Theorem

X(t,-,w)

t> Tl(w)

A picture is worth a 1000 words!
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Example

Affine linear sfde:
de(t) = H(z(t),z) dt + GdW(t), t>0
I//
z(0) =v € RY, zy = n e LQ([—T, O],Rd) } 1)

H : M, — R continuous linear map, G a fixed (dx p)-matrix,
and W p-dimensional Brownian motion. Assume that the
(d x d)-matrix-valued FDE

dy(t) = H o (y(t), ) dt
has a semiflow
T, : L(R%) x L*([-r,0], L(RY)) — L(R?) x L?([-r,0], L(R%)),t > 0,
which is uniformly asymptotically stable. Set
Y = /0 T_o(I,0)G dW (u) 2)

where I is the identity (d x d)-matrix. Integration by parts
and

W(t,0(t1,w)) =W(t+t,w) — W(t1,w), t,t1 €R, (3)

imply that Y has a measurable version satisfying (1). Y is

Gaussian and thus has finite moments of all orders. See
22



([Mo], Pitman Books, 1984, Theorem 4.2, Corollary 4.2.1,
pp. 208-217.) More generally, when H is hyperbolic, one
can show that a stationary point of (1) exists ([Mo]).

For general white-noise case with invariant measure,
get stationary point in M, by enlarging probability space.
Conversely, let Y : Q — M, be a stationary point indepen-
dent of the Brownian motion W(t), t > 0. Then p:= PoY ™!
(distribution of Y) is an invariant measure for the one-
point motion (by independence of Y and W).
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Outline of Proof

e By definition, a stationary random point Y (w) € M, is
invariant under the semiflow X; viz X(¢,Y) = Y (6(¢,-))
for all times t.

e Linearize the semiflow X along the stationary point
Y (w) in M,. By stationarity of Y and the cocycle prop-
erty of X, this gives a linear perfect cocycle (DX(t,Y),0(t,-))
in L(M,), where D = spatial (Fréchet) derivatives.

e Ergodicity of ¢ allows for the notion of hyperbolic-
ity of a stationary solution of (I) via Oseledec-Ruelle
theorem: Use local compactness of the semiflow for
times greater than the delay » ([M-S.4]), and apply
multiplicative ergodic theorem to get a discrete non-
random Lyapunov spectrum {); : i > 1} for the lin-
earized cocycle. Y is hyperbolic if \; # 0 for every
1.

o Assume that ||Y]< is integrable (for small ¢). Varia-
tional method of construction of the semiflow shows
that the linearized cocycle satisfies hypotheses of “per-
fect versions” of ergodic theorem and Kingman’s sub-
additive ergodic theorem. These refined versions give
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invariance of the Oseledec spaces under the continuous-
time linearized cocycle. Thus the stable/unstable
subspaces will serve as tangent spaces to the local
stable /unstable manifolds of the non-linear semiflow
X.

Establish continuous-time integrability estimates on
the spatial derivatives of the non-linear cocycle X in
a neighborhood of the stationary point Y. Estimates
follow from the variational construction of the sto-
chastic semiflow coupled with known global spatial
estimates for finite-dimensional stochastic flows.

Introduce the auxiliary perfect cocycle
Z(t,,w) =Xt () +Y(w),w) —Y(@0tw), teR' we.

Refine arguments in ([Ru.2], Theorems 5.1 and 6.1)
to construct local stable/unstable manifolds for the
discrete cocycle (Z(nr,-,w),0(nr,w)) near 0 and hence
(by translation) for X (nr,-,w) near Y (w) for all w sam-
pled from a 6(t,-)-invariant sure event in Q. This is
possible because of the continuous-time integrability
estimates, the perfect ergodic theorem and the per-
fect subadditive ergodic theorem. By interpolating

between delay periods of length » and further refining
25



the arguments in [Ru.2], show that the above mani-
folds also serve as local stable/unstable manifolds for
the continuous-time semiflow X near Y.

Final key step: Establish the asymptotic invariance of
the local stable manifolds under the stochastic semi-
flow X. Use arguments underlying the proofs of The-
orems 4.1 and 5.1 in [Ru.2] and some difficult esti-
mates using the continuous-time integrability prop-
erties, and the perfect subadditive ergodic theorem.
Asymptotic invariance of the local unstable manifolds
follows by employing the concept of a stochastic his-
tory process for X coupled with similar arguments to
the above. Existence of history process compensates
for the lack of invertibility of the semiflow.
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Outline

e« Theory of stochastic functional
differential equations (SFDE’s) in flat
space: Ito and Nisio ([IN], Kushner
([Ku]), Mohammed (|[Mo,|, [Mos])
and Mohammed-Scheutzow ([MoS,],
[MoS.)).

« Objective: to constrain the solution
to live on a smooth submanifold of

Euclidean space.

o Main difficulty: Tangent space along
a solution path is random (cf. unlike

flat case).



o Difficulty resolved by pulling back the
calculus on the tangent space at the
starting point of the initial semi-
martingale using stochastic parallel
transport. Get SFDE on a linear space
of semimartingales with values in the
tangent space at a given point on the

manifold.

« Solve SFDE on flat space by Picard’s
iteration method. (cf. Driver [Dr]).
But two levels of randomness:

(1) stochastic parallel transport over
initial semimartingale path;

(2) driving Brownian motion.
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Law of solution at a given time may
not be absolutely continuous with re-

spect to law of initial semimartingale.

Example of SDDE on the manifold
with a type of Markov property in

space of semimartingales.

Regularity of solution of SDDE in ini-
tial semimartingale: stochastic
Chen-Souriau calculus (Léandre [Le,],
[Les]). Requires Fréchet topology on

semimartingales.



The Existence Theorem

Notation:

M smooth compact Riemannian man-

ifold, dimension J.

Delay ¢ >0, T > 0.

(Q, F,,t > -0, P) filtered probability space-

usual conditions.

W : [-6,00) x Q — R? Brownian motion on
(Q, Fit > 6, P), W(—06) =0.

(p =1 for simplicity.)



N any smooth finite-dimensional Rie-

mannian manifold; = e v.

S([-6,T],N; —d,z) := space of all N-valued
(Fo)e>—s~adapted continuous semimartin-
gales

v:[=0,T]| xQ2— N

with v(-d) = z.



The Ito Map:

Fix z e m.
T(M) := tangent bundle over M.

Define the Ito map by

S([=6,T], M;—6,2) > v — 7 € S([—0,T],T:(M); =6, 0)
dy(t) = 7, 25(v) o dy(t)
(Stratonovich).

n_s(7) = (stochastic) parallel trans-

(1)

port from z = 4(-4) to ~(t) along semi-
martingale .(|E.E], [Em])

[to map is a bijection.



ST .= Hilbert space of all semimartin-

gales 7 € S([-4,T),T,(M); —5,0) such that

5(t) = /_ AGs) W (s) + /_ B)ds, <i<T
(2)

and

1512 = E] / AGS) ds] + ] / B ds) <00 (3

A(s), B(s)eT,(M) adapted previsible
processes-characteristics of 5 (or y).
|- . gives slightly different topology

than traditional semi-martingale topolo-
gies (|D.M]).

ST .= inverse image of ST under the Ito

map with induced topology.

8



Let vesT, te[-6T1]. Set
Vi(s) :==~v(sAt), s€[=5T].

Then (1) = (3)t.

Evaluation map

e:[0,T) x S — LY(Q, M)

Vector bundle Lo, T(M)) over L°(Q, M)

with fiber over z e L@, M) given by

LY, T(M))z :={Y : Y(w) € Tz, )M a.a. w € Q}

e*L0(Q, T(M) := pull-back bundle of

LO(Q, T(M)) over [0,7] x ST by e.
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A SFDE on M is a map
F:[0,T] xS - L°(Q,T(M))

such that F(t,~4) e T, (M) a.s. for all
vesT, o<t<T. l.e. Fis a section of

e*LO(Q, T(M)).

Consider SFDE
dr(t) =F(t,x*) o dW (t), t> 0}

20 =0

Pullback SFDE (4) over 7,(um).
Then:

10



(t.9) = F(t,7) == 1, 5(7)F(t,y) can be viewed

as a functional

0,T] x 85 — L°(Q, T (M))
on the flat space s7,

Use Stratonovich correction AF(t,4) and
impose “boundedness” and “Lipschitz
condition” on F in terms of F to get

existence and uniqueness:

11



Hypothesis (H):

(i) “Boundedeness”. There exists a

deterministic constant ¢; such that
[F(t,7")] + |AF(t,7)| < C1 <00, a&.S.  (6)

for all (¢,7) €0, 7] x ST.

“Local Lipschitz property”’. Suppose
7,4 € 8T have characteristics (4(.),B(.)
and (4'(.),B'(.)) respectively which are
a.s. bounded by a deterministic con-

stant R. Then

E[|F(t,3") — F(t, (")) P+HAF(tA") — AF(t, (7))

12



Examples:

1. x .= a smooth section of x-frame bun-

dle L(R*, T(M)) - M.
SDDE:
dz(t) = e1—s(x) X (x(t —0)), t>0  (8)
with
F(t,7) := T,e—s(7) X (v(t = 0));

and

F(t,7) = 7,5 _s(M)X (v(t = 9)). (8"

F satisfies (H)(i) because parallel trans-

port is a rotation and M is compact.
13



2. X;,X, .= smooth sections of k-frame

bundle LR, T(M)) — M.

SFDE:

t
dxc,t — {/ Tt,s(xc,.>X1 (xc,s>d3 + X2($c,t>} o dwt>
t—6
(9)

foro<t<T.

For (H)(ii) embed m (isometrically)
into RY and extend the Riemannian
structure over RrRY: the Riemannian
metric has bounded derivatives of all
orders and is uniformly non-degenerate.
Extend the Levi-Civita connection
over M to a connection which
preserves the metric over rY on the
trivial tangent bundle of rY with

14



Christoffel symbols having bounded
derivatives of all order. The pair (y(2),
7,_s) corresponds to a process i(t) e
RY xR¥*d" which solves the Stratonovitch
SDE:

di(t) = Z((t)) o A(t) dW (t) + Z(&(t))B(t) dt}

f(—é) = (a:, IdTm(M))
(10)

on R% x R¥xd
Z is smooth (and hence has deriva-

tives of all orders bounded over the

range of existence of z).

(10) in It6 form:
di(t) = Z(2(¢)A(t) dW (t) + Y (2(t)) A(¢)? dt}
+ Z(&(t))B(t) dt
(11)

15



In (11), A@t) € T.(M), but we consider
the one-dimensional case d = 1 for sim-

plicity.

v satisfies same hypotheses as the vec-
tor field Z.

#(A, B) denotes dependence of z on 4

and B.

Lemma 1.

Suppose
[A@®)] + [B#)| + [A'(®)] + |B' ()] < R,

a.s. for allt € [—0,T] and some deterministic R > 0.

16



Then there exists a constant K(R) > 0 such that:

E[ sup_[#(4,B)(s) — #(4, B')(s)|%]
< K(R)E[/ (|A(s) = A'(s)]* + |B(s) — B'(s)[*) ds]
- (12)

Proof.
Follows from (11) by Burkholder’s in-

equality and Gronwall’s lemma. O

Put + =0 in Lemma to show that
SFDE’s (8) and (9) satisfy (H)(ii).

Theorem 1.

Assume hypotheses (H).
Suppose that v € SY has characteristics (A(t), B(t)), t €

[—6,0], a.s. bounded by a deterministic constant C > 0.

17



Then the SFDE (4) has a unique global solution x such

that x|[—6,T| € ST for every T > 0.

Proof.

Sufficient to prove theorem for the
SFDE (5) in flat space.

Define z" inductively:
dz"TH(t) = F(t, 2™ dW (t) + AF(t, 2™ dt, t> 0}

£n+1,0 — ;}'/0

By (H)(i),(ii),
|zt — gt < / e — s (14)
0

By induction:

cnt"

- (15)

Jan it — g <

18



This gives existence.

For uniqueness, take two solutions !, 72
of (5). By (H)(i), their characteristics

are a.s. bounded. Then

dzt(t) =F(t,#50) dW (t) + AF(t,z5%) dt )

dz(t) =F(t,#%%) dW (t) + AF(t, %) dt (16)

1,0 _ ~2,0 _ 0

x
imply
||~1t 2t||2<0/ ||~ls_~2s|2d8 (17>

Hence ||zt — 72t2=0. O

19



Under the

Delay Condition:

the Stratonovich equation (5) now be-

comes also the [to6 equation:

dz(t) =F(t,z¢~9) dW(t)}
70 :&0

Existence and uniqueness hold by for-

ward steps of length .

20



Continuous dependence on initial

process:

Theorem 2.

Assume hypotheses (H). Let BT C SI' be the family of
all v € ST with characteristics (A, B) a.s. uniformly
bounded on [—06,0] by a deterministic constant. De-
note by x(4Y) the unique solution of SFDE (4) with initial

semimartingale v0 € BY. Then the mapping
B 54— 2(y") e BT

18 continuous.

21



Proof.

Let 7°,(3)° have characteristics (4, B),
(4’,B") uniformly bounded on [-40 by
a deterministic constant. Let z(4, B) and
#(4’, B') be corresponding solutions of (5).
By Burkholder’s inequality and (H)(ii):

|17°(A, B) — &' (A", B')|I3

t
<5 = ()12 + K / 13°(4, B) — & (A", B')||3ds
(18)

By Gronwall’s lemma:

|2(A, B) —2(A", Bz < CII3° = (¥)°ll;  (19)
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Example-Markov Behavior.

Consider the SDDE:
de(t) = 74 15 () X (2(t — 6)) dW(t)}
0 0 (20)

=7

with 10(=6) =z € M.

Replace = by a random variable z € L°(Q, M)

independent of of w(),t> —s.

Fix ¢, > 0. The process z(t),t > t, solves the
SDDE:

de'(t) = T 1—s(2) X (2" (t — 9)) dW (2),t > 1o
} (21)

z'(s) = xz(s), s € [to — 0, to]

23



z(to — 6) 18 independent of aw(t), ¢t > ¢, — 6,
and parallel transport in (20) depends
only on the path between ¢ -4 and :.

Uniqueness implies

x'(t) = x(t), t > tp.
For any semi-martingale (t), t > —¢ in M,
let ~, :=~|[t —d,1].

z(-)(v*)(W) := solution of (20) with initial

condition A°.

Then
z(t) (V)W) = a(t — ') (xp (V) (W (' + ), t > (22)
W (t + ) := Brownian shift

s—W({t' +s)—W(t.
24



Differentiability in Chen-Souriau Sense:

Consider family of SDDE’s:

dz(t)(u) = 74— s (2" (w) X (z(t — §)(u)) o dW (t),t > 0}

(23)

parametrized by « € U, open subset of R".
Embed v into RrRY.

Seek differentiability of z(¢)(v) in . Can
use Kolmogorov’s lemma, Sobolev’s imbed-

ding theorem because « is finite-dimensional.

Flat version of (23) given by SDDE (8')

with an added parameter .
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For a parametrized semimartingale ~(u)

on M, the couple

(y(u), 7 —s(y(u))) = 24

satisfies an Ito SDE depending on the

parameter u:

di(t) = Z(2(t) A(u)(t) dW (t) + Y (2 () Au)(t)? dt

+Z(2(t))B(u)(t) dt
(24)
Z and Y are smooth.
Introduce family of norms:
Il = 21| AP ds + / IB@Pds (25

on the space SZ of all semimartingales

5/ < S([_57 T]aTx(M); _57 O)
26



where 5(t) = [*, A(s)dW(s) + [*, B(s)ds, 0<t<T

and ||, is finite for every p > 1.

Suppose A(u)(-) and B(u)(-) are bounded by
a deterministic constant ¢ independent

of v, and

wi= (A(u) (), B(u)(+))

is Fréchet smooth in the Fréchet space

ST defined by the family of norms |- |,.

27



Theorem 3.

Constider the parametrized SDDE’s:
dz(t)(u) = 1—s(x" (u) X (2(t — 6)(u)) o dW (t),t > 0,}

£°(u) = ° ()
(26)

where X is smooth and +°(u) is smooth in u as above.

Then x(t)(uw) has a version which is a.s. smooth in u.

Theorem also holds if noise has a smooth

parameter u:
dx(t)(u)

= Ty (@' (w) X ((t — 6))(0A(u)(t) AW (1) + BW? d;)
27

with initial conditions #°(u) = °(uw).
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Proof of Theorem 3-Qutline.
a:= (a1, o) Multi-index.

D> := partial derivatives of order
k
o = Z ;.
1=1

o For a parametrized semimartingale ~(u)

on M, the couple

(v(w), 7, Z5(v(w))) = 2(t)(u)

satisfies an Ito SDE depending on the

parameter u:

di(t)(u) = Z(&(t)(u)) A(u) (t) AW (t)

+ Y (&(t)(w)) A(u) (1) dt + Z(2(t) (u) B(u)(t) dt

Since the inverse of the parallel trans-

port is bounded, then Z and v have
29



bounded derivatives of all orders. If
v(u) € ST has a.s. bounded character-
istics (A(w), B(v)) which are smooth in
v into the Fréchet space sZ, then the
pair i(t)(u) :== (v(u), 7, *5(y(v))) has characetris-
tics Fréchet smooth in «. Follows by
differentiating above SDE and apply-
ing Burkholder’s inequality and Gron-

wall’s lemma.

Write the SDDE

dr(t)(u) = 7 4—s(z" (u) X (z(t — 8)(u)) o dW (t),t > O,}

(26)



where i(t) .= (z(t), 7, 5(2)),

g(y,2) = zX(y), and z represents parallel
transport (orthogonal matrix), y e M.
Then 4 1s bounded and has bounded
derivatives of all orders.

3(t) = ' A%u)dw, + [T, B%s for t < 0
Where A%(w)(") and B°u)(-) are bounded
independently of « and differentiable
in « in all the r semi-martingale norms
-1l

Hence 5(t)°(w) has u-derivatives of all
orders in all L» semi-martingale norms.
Follows from Kolmogorov’s lemma and

Burkholder’s inequality.
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e For te<|0,6], #(t)(v) 1s a.s. differentiable

il’l U and

dD*%(t)(u)

— Dg(#(t — 8)(u)) D% (t — 8)(u) dW (t) + L.o.

where 1.0. are terms containing lower-

order derivatives of z(t)(u).

o Get estimate:

sup [[Dz(-)(u)l[, < C(p, @)
uclU

o Use forward steps of length ¢ to prove
that #(t)(v) has a smooth version in «

for all ¢ € [0, 7).
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