
International Scholarly Research Network
ISRN Computational Mathematics
Volume 2012, Article ID 264040, 9 pages
doi:10.5402/2012/264040

Research Article

High Performance Gibbs Sampling for IRT Models Using
Row-Wise Decomposition

Yanyan Sheng1 and Mona Rahimi2

1 Educational Measurement and Statistics, Department of Educational Psychology & Special Education,
Southern Illinois University Carbondale, Carbondale, IL 62901-4618, USA

2 Department of Computer Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA

Correspondence should be addressed to Yanyan Sheng, ysheng@siu.edu

Received 15 October 2012; Accepted 4 November 2012

Academic Editors: L. S. Heath, R. Tuzun, and P. B. Vasconcelos

Copyright © 2012 Y. Sheng and M. Rahimi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Item response theory (IRT) is a popular approach used for addressing statistical problems in psychometrics as well as in other
fields. The fully Bayesian approach for estimating IRT models is computationally expensive. This limits the use of the procedure
in real applications. In an effort to reduce the execution time, a previous study shows that high performance computing provides
a solution by achieving a considerable speedup via the use of multiple processors. Given the high data dependencies in a single
Markov chain for IRT models, it is not possible to avoid communication overhead among processors. This study is to reduce
communication overhead via the use of a row-wise decomposition scheme. The results suggest that the proposed approach
increased the speedup and the efficiency for each implementation while minimizing the cost and the total overhead. This further
sheds light on developing high performance Gibbs samplers for more complicated IRT models.

1. Introduction

Item response theory (IRT) is a popular approach used
for describing probabilistic relationships between correct
responses on a set of test items and continuous latent
traits (see [1–4]). In addition to educational and psy-
chological measurement, IRT models have been used in
other areas of applied mathematics and statistical research,
including US Supreme Court decision-making processes
[5], alcohol disorder analysis [6–9], nicotine dependency
[10–12], multiple-recapture population estimation [13], and
psychiatric epidemiology [14–16], to name a few.

IRT has the advantage of allowing the inference of
what the items and persons have on the responses to
be modeled by distinct sets of parameters. As a result, a
primary concern associated with IRT research has been
on parameter estimation, which offers the basis for the
theoretical advantages of IRT. Specifically, of concern are the
statistical complexities that can often arise when item and

person parameters are simultaneously estimated (see [1, 17–
19]). More recent attention has focused on the fully Bayesian
estimation where Markov chain Monte Carlo (MCMC, [20,
21]) simulation techniques are used. In spite of the many
advantages, the fully Bayesian estimation is computationally
expensive, which further limits its actual applications. It is
hence important to seek ways to reduce the execution time.
A suitable solution is to use high performance computing
via the Message Passing Interface (MPI) standard, which
employs supercomputers and computer clusters to tackle
problems with complex computations.

The implementation of parallel computing is, however,
not straightforward due to the high data dependencies in
a single Markov chain for an IRT model, such as the
dependency of one state of the chain to the previous state
and the dependencies among the data within the same
state. Patsias et al. [22] developed a parallel algorithm to
implement Gibbs sampling [23], one of the most efficient
MCMC algorithms, to the two-parameter normal ogive



2 ISRN Computational Mathematics

(2PNO, [24]) IRT model. In their study, the implementation
of parallel computing was realized through decomposition
of data matrices and item parameters into columns while
minimizing the communication overhead among proces-
sors. In their implementation, the person parameters were
communicated between the root and the processor nodes.
Given that the fully Bayesian estimation of IRT models
requires a minimum of 20 or 30 times more subjects than
test items, which typically occurs in a test situation, it is
believed that one can reduce the communication overhead
if item parameters are communicated instead of person
parameters. Hence, an alternative approach is to decompose
data matrices and person parameters into rows. The present
study is to develop such a high performance computing
algorithm for the 2PNO model and further demonstrate its
utility by comparing it with that developed in [22].

The remainder of the paper is organized as follows.
Section 2 reviews the 2PNO IRT model, the Gibbs sampler,
and the decomposition scheme used in [22]. Section 3
illustrates the approach we propose in the present study
to parallelize the serial algorithm. In Section 4, the perfor-
mance of the developed parallel algorithm is investigated by
comparing it with the serial algorithm and further with the
parallel algorithm developed in [22].

2. Preliminaries

The 2PNO IRT model provides a fundamental framework in
modeling the person-item interaction by assuming one latent
trait. Let y = [yi j] denote a matrix of n responses to k items
where yi j = 1 (yi j = 0) if the ith person answers the jth item
correctly (incorrectly) for i = 1, . . . ,n and j = 1, . . . , k. The
probability of person i obtaining correct response for item j
is then defined for the 2PNO model as

P
(
yi j = 1

)
= Φ

(
αjθi − βj

)
=
∫ αjθi−βj

−∞
1√
2π

e−t
2/2dt, (1)

where the scalars αj and βj denote item parameters, θi
denotes the continuous person trait parameter, and Φ
denotes the unit normal cdf.

The Gibbs sampler involves updating three sets of param-
eters in each iteration, namely, an augmented continuous
variable Zij (which is positive if yi j = 1 and negative if
yi j = 0), the person parameter θi, and the item parameters
ξ j , where ξ j = (αj ,βj)

′ from their respective full conditional
distributions, namely,

Zij | · ∼
⎧⎨
⎩
N(0,∞)

(
αjθi − βj

)
, if yi j = 1

N(−∞,0)

(
αjθi − βj

)
, if yi j = 0,

(2)

θi | · ∼ N

⎛
⎝
∑

j

(
Zij + γj

)
αj + μ

1/σ2 +
∑

j α
2
j

,
1

1/σ2 +
∑

j α
2
j

⎞
⎠, (3)

ξ j | · ∼ N
(

(x′x)−1x′Z j , (x′x)−1
)
I
(
αj > 0

)
, (4)

where x = [θ,−1], assuming θi ∼ N(μ, σ2), αj > 0 and
p(βj) ∝ 1 (see, e.g., [25, 26]).

Hence, with starting values θ(0) and ξ(0),
observations(Z(l), θ(l), ξ(l)) can be simulated from the
Gibbs sampler by iteratively drawing from their respective
full conditional distributions as specified in (2), (3), and (4).
To go from (Z(l−1), θ(l−1), ξ(l−1)) to (Z(l), θ(l), ξ(l)), it takes
three transition steps:

(1) draw Z(l) ∼ p(Z|θ(l−1), ξ(l−1));

(2) draw θ(l) ∼ p(θ|Z(l), ξ(l−1));

(3) draw ξ(l) ∼ p(ξ|Z(l), θ(l)).

This iterative procedure produces a sequence of (θ(l), ξ(l)),
l = 0, . . . ,L. To reduce the effect of the starting values,
early iterations in the Markov chain are set as burn-ins to
be discarded. Samples from the remaining iterations are then
used to summarize the posterior density of item parameters
ξ and ability parameters θ. For more detailed examples of the
Gibbs sampler, interested readers should refer to Cassella and
George [27].

Since a large number of iterations are needed for the
Markov chain to reach convergence, the algorithm is com-
putationally intensive and requires a considerable amount
of execution time, especially with large datasets [26]. In an
effort to achieve a speedup, Patsias et al. [22] developed a
parallel algorithm where they used domain decomposition
to divide the updating tasks into blocks. In particular, their
approach was to assign each processor a column block of
the data matrix (y) so that they could update a block
of Z and item parameters (ξ). This scheme is depicted
in Figure 1 and is now called column-wise decomposition.
Since θ is of size n × 1 (a column vector), it could not
be decomposed. Therefore, in each iteration, all processor
nodes need to send their portions of Z and ξ to the root
for it to update θ and consequently send back to the rest
of the nodes to proceed. The approach of [22] is certainly
limited in situations where n is large because the number of
communications is increased. Given that test data typically
involve less k than n, it is reasonable to believe that if the
domain decomposition is done differently, such as the one
depicted in Figure 2, one can achieve a greater speedup. The
present study focuses on the development of the parallel
algorithm using such a row-wise decomposition.

3. Methodology

The study was performed using the Maxwell Linux cluster,
a cluster with 106 processing nodes. Maxwell uses the
message-passing model via the MPICH MPI framework
implementation. One of the 106 nodes acted as the root
node, while the rest of the nodes acted as slave nodes. The
root node was responsible for generating and partitioning
the matrix y, transmitting the submatrices, updating and
broadcasting item parameters, and recording execution time,
in addition to assuming the same duties as the slave nodes.

Each node on the cluster has an Intel Xeon dual CPU
quad-core processor clocked at 2.3 GHz, 8 GB of RAM,
90 TB storage, and Linux 64 bit operating system. MPICH
allows the user to choose how many nodes to use before



ISRN Computational Mathematics 3

P0 P1 P2 P3 P4

P0 P1 P2 P3 P4

P0 P1 P2 P3 P4

n

g g g g g

g g g g g

g g g g g

k

k

k

αj =

βj =
y =

Figure 1: Domain decomposition of the input y matrix and item parameter vectors by column using five processing nodes.

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

nn

g

g

g

g

g g

g

g

g

g

k

θi =y =

Figure 2: Domain decomposition of the input y matrix and the person parameter vector by row using five processing nodes.

the execution of a program so that various numbers of
processing nodes may be used in every execution.

3.1. Parallel Gibbs Sampler. Given the decomposition of y
and θ that is illustrated in Figure 2, we see that each processor
is using a submatrix of y to update a block of Z (which is of
the same size of y) and θ. For instance, P0 is updating a block
of Z, Zp0 , from Z0,0 to Zn−1,g−1, and a block of θ, θp0 , from
θ0 to θg−1, where g = k/P and P is the number of processing
nodes.

Since α and β are each of size 1×k (a row vector), they are
not decomposed and hence have to be communicated among
processors. In order to minimize the communication cost,
after finishing updating θ in each iteration, each node needs
to calculate x′x and x′Z and send them to the root for it to
update ξ from

ξ j | · ∼ N

⎛
⎜⎝
⎛
⎝∑

p

x′x

⎞
⎠
−1⎛
⎝∑

p

x′Z j

⎞
⎠,

⎛
⎝∑

p

x′x

⎞
⎠
−1
⎞
⎟⎠I
(
αj > 0

)
.

(5)

This way, each processing node is sending a vector of size 2k+
2 to the root, which in return is broadcasting one message of

size 2k to each processing node. The total data transferred
between all the nodes for a single Markov chain involving L
iterations is

L((2k + 2)× P) + L(2k × P) = LP(4k + 2). (6)

The total data transferred between all the nodes using
column-wise decomposition is LP(2n + 1) [22, page 67].
In practice, n � 2k + 1. In addition, the sequential Gibbs
sampler described in Section 2 calls for larger n than k to
ensure (x′x)−1 in (4) exits so that item parameters can be
updated. Hence, as an example, if a multiple-choice test
consisting of 10 items is given to 500 examinees, the sample
item response data can be denoted using a binary data matrix
y of size 500 × 10. We can implement the high performance
Gibbs sampling algorithm to fit the 2PNO model, which
would reach convergence within 10,000 iterations. With five
processing nodes used, the total data transferred is 2.10×106

for row-wise decomposition and 5.005 × 107 for column-
wise decomposition. The difference would be even larger
with a larger sample size (which is very common in large-
scale testing situations), more processing nodes, and/or a
longer Markov chain. Hence, the total data transferred using
the column-wise decomposition are more than that of the
proposed approach.



4 ISRN Computational Mathematics

1 2 3 4 5 6 7 8

Number of processors

0

100

200

300

400

500

600

E
xe

cu
ti

on
 t

im
e 

(s
ec

on
ds

)

(a)

1 2 3 4 5 6 7 8

Number of processors

0

100

200

300

400

500

600

E
xe

cu
ti

on
 t

im
e 

(s
ec

on
ds

)

Exp 1
Exp 2

Exp 3
Exp 4

(b)

Figure 3: Execution time of the algorithm using (a) column-wise
and (b) row-wise decompositions for all the experiments with one
to eight processors.

3.2. Implementation. The proposed algorithm was imple-
mented in ANSI C and MPI with utilization of the
GNU Scientific Library (GSL) [28]. To achieve the parallel
computation as illustrated in the previous section, the
MPI Gather and MPI Bcast routines were used for collective
communications. For more detailed implementation, see the
appendix for part of the source code of the parallel algorithm
in updating the model parameters.

3.3. Performance Analyses. In order to investigate the advan-
tages of the proposed parallel solution over its serial coun-
terpart, and further over the parallel algorithm based on
column-wise decomposition, four experiments were carried
out in which the sample size (n), test length (k), and number
of iterations (L) were manipulated to vary:

Experiment 1: n = 2000, k = 50, L = 10,000,

Experiment 2: n = 5000, k = 50, L = 10,000,

Experiment 3: n = 2000, k = 100, L = 10,000,

Experiment 4: n = 2000, k = 50, L = 20,000.

In all these experiments, one (representing the serial algo-
rithm) to eight processing nodes were used to implement the

1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Number of processors

(a)

1 2 3 4 5 6 7 8

Number of processors

Exp 1
Exp 2

Exp 3
Exp 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

(b)

Figure 4: Relative efficiency of using parallel algorithm over
the serial algorithm using (a) column-wise and (b) row-wise
decompositions in all the experiments.

Gibbs sampler. They were evaluated using four performance
metrics in addition to the execution time. These metrics are
the total overhead, relative speedup, relative efficiency, and
cost.

(i) The total overhead is defined as

T = PTP − TS, (7)

where P is the number of available processing nodes,
TS is the fastest sequential algorithm execution time
and TP is the parallel algorithm execution time.

(ii) Relative speedup is the factor by which execution
time is reduced on P processors and it is defined as:

S = TS

TP
. (8)

(iii) Efficiency describes how well the algorithm manages
the computational resources. More specifically, it tells
us how much time the processors spend executing
important computations [29]. Relative efficiency is
defined as

E = TS

PTP
. (9)



ISRN Computational Mathematics 5

1 2 3 4 5 6 7 8

Number of processors

200

400

600

800

1000

1200

1400

C
os

t 
(s

ec
on

ds
)

(a)

1 2 3 4 5 6 7 8

Number of processors

200

400

600

800

1000

1200

1400

C
os

t 
(s

ec
on

ds
)

Exp 1
Exp 2

Exp 3
Exp 4

(b)

Figure 5: Cost of the algorithm using (a) column-wise and (b)
row-wise decompositions for all the experiments with one to eight
processors.

(iv) The definition of the cost of solving a problem on a
parallel system is the product of parallel runtime and
P. Consequently, cost is a quantity that reveals the
sum of individual processing node runtime.

4. Numerical Results

Results from the four experiments are summarized in Figures
3 to 7, where those based on the column-wise decomposition
are in (a) and those based on the row-wise decomposition are
in (b). Note that the values plotted represent the average of
ten replications. As expected, the execution time decreased
as the number of processing nodes increased, and row-wise
decomposition resulted in a much shorter execution time
than column-wise decomposition in all the experimented
conditions (see Figure 3).

In the case of column-wise decomposition, the commu-
nication overhead (see Figure 6(a)) incurred using six nodes
overshadowed the increase in computational speedup com-
pared to five nodes and hence at this point, some decrease in
the speedup (see Figure 7(a)) and increase in the execution
time (see Figure 3(a)) are observed. On the other hand,

1 2 3 4 5 6 7 8

Number of processors

0

100

200

300

400

500

600

700

800

900

O
ve

rh
ea

d 
(s

ec
on

ds
)

(a)

Exp 1
Exp 2

Exp 3
Exp 4

1 2 3 4 5 6 7 8

Number of processors

0

100

200

300

400

500

600

700

800

900

O
ve

rh
ea

d 
(s

ec
on

ds
)

(b)

Figure 6: Total overhead of using parallel algorithm over the serial
algorithm using (a) column-wise and (b) row-wise decompositions
in all the experiments.

when seven nodes were used, the computational speedup
overpowered the increase in communication overhead and
speedup was higher than that with five nodes. A similar
scenario is observed when we compare the performance
using eight nodes with that using seven or five nodes. In
addition, because the communication size in column-wise
decomposition depends only on n, not k, Experiment 3
(where k = 100) maintained a higher speedup (Figure 7(a))
and was more efficient (Figure 4(a)) compared to the other
experiments where k = 50. This agrees with the findings by
[22].

With respect to row-wise decomposition, the communi-
cation overhead using eight nodes dominated the increase of
the computational speedup by adding one more executing
processor in experiments where k = 50 and n = 2000.
Hence, there was less speedup by increasing the number of
processors from seven to eight in these experiments (see
Figure 7(b)). This can be further illustrated by profiling the
time necessary for carrying out individual sections of the
codes. In particular, as is shown in the appendix, the parallel
algorithm using row-wise decomposition involves six tasks
in each iteration of the Markov chain: (1) update Z, (2)
update θ, (3) update x′x and x′Z, (4) send x′x and x′Z



6 ISRN Computational Mathematics

1 2 3 4 5 6 7 8

Number of processors

1

2

3

4

5

6

Sp
ee

du
p

(a)

1 2 3 4 5 6 7 8

Number of processors

1

2

3

4

5

6

Sp
ee

du
p

Exp 1
Exp 2

Exp 3
Exp 4

(b)

Figure 7: Relative speedup of using parallel algorithm over
the serial algorithm using (a) column-wise and (b) row-wise
decompositions in all the experiments.

2 3 4 5 6 7 8

Number of processors

0

0.002

0.004

0.006

0.008

0.01

T
im

e 
(s

ec
on

ds
)

Task 1
Task 2
Task 3

Task 4
Task 5
Task 6

Figure 8: Execution time for completing each task within one
iteration of the Markov chain using two to eight processing nodes
using row-wise decomposition for n = 2000 and k = 50
(Experiments 1 and 4).

2 3 4 5 6 7 8

Number of processors

Task 1
Task 2
Task 3

Task 4
Task 5
Task 6

0

0.005

0.01

0.015

0.02

0.025

T
im

e 
(s

ec
on

ds
)

Figure 9: Execution time for completing each task within one
iteration of the Markov chain using two to eight processing nodes
using row-wise decomposition for n = 5000 and k = 50
(Experiment 2).

Task 1
Task 2
Task 3

Task 4
Task 5
Task 6

0

0.005

0.01

0.015

0.02

0.025

0.03

T
im

e 
(s

ec
on

ds
)

2 3 4 5 6 7 8

Number of processors

Figure 10: Execution time for completing each task within one
iteration of the Markov chain using two to eight processing nodes
using row-wise decomposition for n = 2000 and k = 100
(Experiment 3).

to the root, (5) update α and β, and (6) broadcast α and
β. The time for completing each task in a single iteration
was hence recorded and plotted in Figure 8 using two to
eight processing nodes for the experiments where k = 50 and
n = 2000. One can see that when more processing nodes
were used, the time for updating Z, θ, x′x, and x′z (tasks
1 to 3) decreased, and the time for updating α and β (task
5) remained the same, whereas the time for sending x′x and
x′Z to the root (task 4) varied depending on the number
of processing nodes. This communication overhead was the
largest with 5 nodes and the smallest with 4 or 7 nodes.



ISRN Computational Mathematics 7

// Start iteration:

for (m = 0; m < l; m++){
count++;

update Z(Z, y, TH, A, G, r);

update TH(TH, THV, Z, A, G, r);

update KSI AR(KSI array, Z, TH);

MPI Gather (KSI array, (2∗k)+2, MPI DOUBLE, KSI rec, (2∗k) + 2, MPI DOUBLE, ROOT, MPI COMM WORLD);

if(rank == ROOT){
double XX00=0.0; // XX00 = XX[0][0]
double XX01=0.0; // XX01 = XX[0][1]
double XZ00=0.0; // XZ0 = XZ0[0][0]
double XZ10=0.0; // XZ1 = XZ1[1][0]

// Retrieve x′x and x′Z from KSI rec::

for(i = 0; i< size; i++) {
XX00 += KSI rec[2∗k+(2∗k+2)∗i];
XX01 += KSI rec[(2∗k+1)+(2∗k+2)∗i];

}
gsl matrix set(XX, 0, 0, XX00);

gsl matrix set(XX, 0, 1, XX01);

gsl matrix set(XX, 1, 0, XX01);

gsl matrix set(XX, 1, 1, n);

for(j = 0; j < k; j++) {
XZ00=0.0;

XZ10=0.0;

for(i = 0; i< size; i++) {
XZ00 += KSI rec[2∗ j + (2∗ k + 2)∗ i];
XZ10 += KSI rec[(2∗ j + 1) + (2∗ k + 2)∗ i];

}
gsl matrix set(XZ, 0, 0, XZ00);

gsl matrix set(XZ, 1, 0, XZ10);

}
update A G(A, G, AV, GV, XX, XZ, unif, count, r);

// Transfer A and G data into a buffer so that they can be broadcasted:

for(i = 0; i < k; i++){
A G array[i] = gsl vector get(A, i);

A G array[i+k] = gsl vector get(G, i);}
}

MPI Bcast(A G array, 2∗k, MPI DOUBLE, ROOT, MPI COMM WORLD);

// Transfer A and G received to a vector structure:

for(i = 0; i < k; i++){
gsl vector set(A,i,A G array[i]);
gsl vector set(G,i,A G array[i+k]);
}

}// End iteration

Pseudocode 1

Hence, given that the algorithm with seven nodes involved
reduced communication overhead and computation time,
it resulted in a much improved speedup and efficiency for
Experiments 1 and 4.

In addition, as we noted earlier, the communication size
for this approach depends on k, not n. Hence, although
Experiment 2 (where n = 5000) had the largest input size
(5000 × 50 = 250,000), its overhead was close to, or even
smaller than, Experiments 3 and 4 (where n = 2000) with
the use of the parallel algorithm (see Figure 6). But due to
the reason of the large matrix size, the time used for each
slave node to calculate their blocks of Z and θ increased,
and consequently Experiment 2 had only a slight advantage

in speedup and efficiency than the other experiments. To
further understand this, we can also look at the time for
completing each task within one iteration of the Markov
chain for Experiments 2 and 3 (see Figures 9 and 10). A
comparison of Figures 8 to 10 indicates that Experiment 2
involved more calculation due to the larger input size, but
in spite of this, it had less communication overhead (e.g., by
sending x′x and x′Z to the root) than Experiment 3.

With both decomposition schemes, the communication
overhead increased more than the computational speedup
when a certain number of processors are used. As a result, the
speedup does not increase with increasing number of pro-
cessors and, consequently, the cost increases (see Figure 5).



8 ISRN Computational Mathematics

However, a comparison of the two parallel algorithms clearly
indicates that row-wise decomposition involves much less
computational overhead than column-wise decomposition
in all the experimented conditions (see Figure 6) and hence
is a more efficient approach in terms of enhancing speedup
(Figure 7) and efficiency (Figure 4) while reducing cost
(Figure 5).

5. Conclusion

This study developed a high performance Gibbs sampling
algorithm for the 2PNO IRT model with the purpose of
achieving a shorter execution time possible using a row-wise
decomposition scheme. The algorithm was implemented
using the ANSI C programming language and the message-
passing interface. Experiments were performed to empiri-
cally evaluate its performance with varying sample sizes, test
lengths, and chain lengths.

Results indicated that the proposed parallel algorithm
using row-wise decomposition (for the given problem size)
performed much better compared with that using column-
wise decomposition. Regarding the number of processing
nodes, the algorithm worked relatively better, in terms of
efficiency and cost, using two to seven processing nodes. On
the other hand, in the experiments with relatively large input
matrix sizes (e.g., Experiments 2 and 3), it had the smallest
execution time when eight processing nodes were used,
which was the largest number of processing nodes used in the
experiments. Therefore, given the high data dependencies in
the Gibbs sampler for IRT models, such as the dependency
of one state of the chain to the previous states, and the
dependencies between the data within the same state, it is
not possible to completely avoid communications among
processors in each iteration of the chain. By changing
the domain decomposition scheme from column-wise to
row-wise, we managed to reduce the size of the data
communicated so that a speedup was achieved. This further
sheds light on developing high performance Gibbs sampler
for more complicated IRT models. In the IRT literature, the
model can be more complex by assuming multiple latent
traits, where row-wise decomposition is theoretically more
appealing than column-wise decomposition.

This study achieved parallelization through a row-wise
decomposition and the use of all-to-one and one-to-all
broadcast schemes. Further studies can be undertaken to
increase the speedup and the efficiency and minimize the cost
and the total overhead. For example, an all-to-all broadcast
scheme may be adopted in order to achieve a smaller
communication overhead.

Appendix

The pseudocode for updating the values of Z, θ, x′x, x′Z,
α, and β is shown in Pseudocode 1. First of all, Z and θ
are updated through the functions update Z and update TH,
respectively. Then, update KSI AR is called to update x′x
and x′Z, and MPI Gather is called to send x′x and x′Z to
the root. The root receives x′x and x′Z and calls update A G

to update α and β. It then broadcasts α and β by calling
MPI Bcast. In order to reduce communication overhead,
x′x and x′Z are sent in the same message. To achieve that,
an array of size 2k + 2 is set up, where the first 2k entries
consist of the elements of x′Z and entries 2k + 1 and 2k + 2
consist of elements for x′x (the name of this array in the code
is KSI array) (See Pseudocode 1).

References

[1] R. D. Bock and M. Aitkin, “Marginal maximum likelihood
estimation of item parameters: application of an EM algo-
rithm,” Psychometrika, vol. 46, no. 4, pp. 443–459, 1981.

[2] R. J. Mislevy, “Estimation of latent group effects,” Journal of the
American Statistical Association, vol. 80, no. 392, pp. 993–997,
1985.

[3] R. J. Patz and B. W. Junker, “A straightforward approach
to markov Chain Monte Carlo Methods for item response
models,” Journal of Educational and Behavioral Statistics, vol.
24, no. 2, pp. 146–178, 1999.

[4] R. K. Tsutakawa and H. Y. Lin, “Bayesian estimation of item
response curves,” Psychometrika, vol. 51, no. 2, pp. 251–267,
1986.

[5] J. Bafumi, A. Gelman, D. K. Park, and N. Kaplan, “Practical
issues in implementing and understanding Bayesian ideal
point estimation,” Political Analysis, vol. 13, no. 2, pp. 171–
187, 2005.

[6] C. S. Martin, T. Chung, L. Kirisci, and J. W. Langenbucher,
“Item response theory analysis of diagnostic criteria for alco-
hol and cannabis use disorders in adolescents: implications for
DSM-V,” Journal of Abnormal Psychology, vol. 115, no. 4, pp.
807–814, 2006.

[7] U. Feske, L. Kirisci, R. E. Tarter, and P. A. Pilkonis, “An
application of item response theory to the DSM-III-R criteria
for borderline personality disorder,” Journal of Personality
Disorders, vol. 21, no. 4, pp. 418–433, 2007.

[8] C. L. Beseler, L. A. Taylor, and R. F. Leeman, “An item-response
theory analysis of DSM-IV Alcohol-Use disorder criteria and
“binge” drinking in undergraduates,” Journal of Studies on
Alcohol and Drugs, vol. 71, no. 3, pp. 418–423, 2010.

[9] D. A. Gilder, I. R. Gizer, and C. L. Ehlers, “Item response the-
ory analysis of binge drinking and its relationship to lifetime
alcohol use disorder symptom severity in an American Indian
Community sample,” Alcoholism: Clinical and Experimental
Research, vol. 35, no. 5, pp. 984–995, 2011.

[10] A. T. Panter and B. B. Reeve, “Assessing tobacco beliefs among
youth using item response theory models,” Drug and Alcohol
Dependence, vol. 68, no. 1, pp. S21–S39, 2002.

[11] D. Courvoisier and J. F. Etter, “Using item response theory
to study the convergent and discriminant validity of three
questionnaires measuring cigarette dependence,” Psychology of
Addictive Behaviors, vol. 22, no. 3, pp. 391–401, 2008.

[12] J. S. Rose and L. C. Dierker, “An item response theory analysis
of nicotine dependence symptoms in recent onset adolescent
smokers,” Drug and Alcohol Dependence, vol. 110, no. 1-2, pp.
70–79, 2010.

[13] S. E. Fienberg, M. S. Johnson, and B. W. Junker, “Classical
multilevel and Bayesian approaches to population size estima-
tion using multiple lists,” Journal of the Royal Statistical Society
A, vol. 162, no. 3, pp. 383–405, 1999.

[14] M. Reiser, “An application of the item-response model to
psychiatric epidemiology,” Sociological Methods and Research,
vol. 18, no. 1, pp. 66–103, 1989.



ISRN Computational Mathematics 9

[15] M. Orlando, C. D. Sherbourne, and D. Thissen, “Summed-
score linking using item response theory: application to
depression measurement,” Psychological Assessment, vol. 12,
no. 3, pp. 354–359, 2000.

[16] A. Tsutsumi, N. Iwata, N. Watanabe et al., “Application of
item response theory to achieve cross-cultural comparability
of occupational stress measurement,” International Journal of
Methods in Psychiatric Research, vol. 18, no. 1, pp. 58–67, 2009.

[17] A. Birnbaum, “Statistical theory for logistic mental test models
with a prior distribution of ability,” Journal of Mathematical
Psychology, vol. 6, no. 2, pp. 258–276, 1969.

[18] F. B. Baker and S. H. Kim, Item Response Theory: Parameter
Estimation Techniques, Dekker, New York, NY, USA, 2nd
edition, 2004.

[19] I. W. Molenaar, “Estimation of item parameters,” in Rasch
Models: Foundations, Recent Developments, and Applications,
G. H. Fischer and I. W. Molenaar, Eds., pp. 39–51, Springer,
New York, NY, USA, 1995.

[20] A. F. M. Smith and G. O. Roberts, “Bayesian computation
via the Gibbs sampler and related Markov chain Monte Carlo
methods (with discussion),” Journal of the Royal Statistical
Society B, vol. 55, no. 1, pp. 3–23, 1993.

[21] L. Tierney, “Markov chains for exploring posterior distribu-
tions,” The Annals of Statistics, vol. 22, no. 4, pp. 1701–1728,
1994.

[22] K. Patsias, M. Rahimi, Y. Sheng, and S. Rahimi, “Parallel
computing with a Bayesian item response model,” American
Journal of Computational Mathematics, vol. 2, no. 2, pp. 65–
71, 2012.

[23] S. Geman and D. Geman, “Stochastic relaxation, Gibbs
distributions, and the Bayeisan restoration of images,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
6, no. 6, pp. 721–741, 1984.

[24] F. M. Lord and M. R. Novick, Statistical Theories of Mental Test
Scores, Addison-Wesley, Boston, Mass, USA, 1968.

[25] J. H. Albert, “Bayesian estimation of normal ogive item
response curves using Gibbs sampling,” Journal of Educational
Statistics, vol. 17, no. 3, pp. 251–269, 1992.

[26] Y. Sheng and T. C. Headrick, “An algorithm for implementing
Gibbs sampling for 2PNO IRT models,” Journal of Modern
Applied Statistical Methods, vol. 6, no. 1, pp. 341–349, 2007.

[27] G. Casella and E. I. George, “Explaining the Gibbs sampler,”
The American Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[28] M. Galassi, J. Davies, J. Theiler et al., GNU Scientific Library
Reference Manual, Network Theory, Bristol, UK, 3rd edition,
2009.

[29] I. Foster, Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering, Addison-Wesley,
Boston, Mass, USA, 1995.


