The Stable Manifold Theorem for SDE's (Probability Seminar, University of California, Irvine)

Salah-Eldin A. Mohammed

Southern Illinois University Carbondale, salah@sfde.math.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_misc

Part of the Mathematics Commons

Probability Seminar; March 3, 1998; University of California, Irvine

Recommended Citation

http://opensiuc.lib.siu.edu/math_misc/26

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Miscellaneous (presentations, translations, interviews, etc) by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
THE STABLE MANIFOLD THEOREM

FOR SDE’S

Salah-Eldin A. Mohammed

Southern Illinois University
Carbondale, IL 62901–4408 USA

and

MSRI, Berkeley

Web site: http://salah.math.siu.edu
Outline

• Formulate a *Local Stable Manifold Theorem* for stochastic differential equations (SDE’s) (Stratonovich or Itô SDE’s-driven by Brownian motion or spatial Kunita-type semimartingales with stationary ergodic increments.)

• Start with the existence of a stochastic flow for SDE.

• Concept of a hyperbolic stationary trajectory. The stationary trajectory is a solution of the forward /backward anticipating SDE for all time (Stratonovich case).

• Existence of a stationary random family of asymptotically invariant stable and unstable manifolds within a stationary neighborhood of the hyperbolic stationary solution.

• The stable and unstable manifolds are dynamically characterized using forward and backward solutions of anticipating versions of the (Stratonovich) SDE.

• Proof based on Ruelle-Oseledec (non-linear) multiplicative ergodic theory and anticipating stochastic calculus.
Formulation of The Theorem

Stratonovich SDE

\[dx(t) = h(x(t)) \, dt + \sum_{i=1}^{m} g_i(x(t)) \circ dW_i(t), \]

(I)

on \(\mathbb{R}^d \) driven by \(m \)-dimensional Brownian motion \(W := (W_1, \cdots, W_m) \).

\((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}}, P) := \) canonical filtered Wiener space.

\(\Omega := \) space of all continuous paths \(\omega : \mathbb{R} \to \mathbb{R}^m, \omega(0) = 0 \), in Euclidean space \(\mathbb{R}^m \), with compact open topology;

\(\mathcal{F} := \) Borel \(\sigma \)-field of \(\Omega \);

\(\mathcal{F}_t := \) sub-\(\sigma \)-field of \(\mathcal{F} \) generated by the evaluations \(\omega \to \omega(u), \ u \leq t, \ t \in \mathbb{R} \).

\(P := \) Wiener measure on \(\Omega \).

\(h, g_i : \mathbb{R}^d \to \mathbb{R}^d, 1 \leq i \leq m, \) vector fields on \(\mathbb{R}^d \). For some \(k \geq 1, \delta \in (0,1), h \) is \(C^{k,\delta}_b \), viz. \(h \) has all derivatives \(D^j h, 1 \leq j \leq k \), continuous and globally bounded, \(D^k h \) Hölder continuous with exponent \(\delta \).

\(g_i, 1 \leq i \leq m, \) globally bounded and in \(C^{k+1,\delta}_b \).

\(\theta : \mathbb{R} \times \Omega \to \Omega \) is the (ergodic) Brownian shift

\[\theta(t, \omega)(s) := \omega(t+s) - \omega(t), \quad t, s \in \mathbb{R}, \omega \in \Omega. \]
Let $\phi : \mathbb{R} \times \mathbb{R}^d \times \Omega \to \mathbb{R}^d$ be the stochastic flow generated by (I) $(\phi(t, \cdot, \omega) = [\phi(-t, \cdot, \theta(t, \omega))]^{-1}, t < 0)$. Then ϕ is a perfect cocycle:

$$
\phi(t + s, \cdot, \omega) = \phi(t, \cdot, \theta(s, \omega)) \circ \phi(s, \cdot, \omega),
$$

for all $s, t \in \mathbb{R}$ and all $\omega \in \Omega$ ([I-W], [A-S], [A]).

Figure illustrates the cocycle property. Vertical solid lines represent random fibers consisting of copies of \mathbb{R}^d. (ϕ, θ) is a “random vector-bundle morphism” over the “base” probability space Ω.
The Cocycle

$\Omega \xrightarrow{\phi(t_1, \cdot, \omega)} R^d \xrightarrow{\phi(t_2, \cdot, \theta(t_1, \omega))} R^d \xrightarrow{\phi(t_1 + t_2, \cdot, \omega)} R^d$

$\Omega \xleftarrow{\theta(t_1, \cdot)} \xrightarrow{\theta(t_2, \cdot)} \xrightarrow{\theta(t_1 + t_2, \cdot)}$

$t = 0 \quad \omega \quad \theta(t_1, \omega) \quad \theta(t_1 + t_2, \omega)

\begin{align*}
\phi(t_1, x, \omega) \\
\phi(t_1, x, \omega)
\end{align*}
Definition

The SDE (I) has a stationary trajectory if there exists an \(\mathcal{F} \)-measurable random variable \(Y : \Omega \rightarrow \mathbb{R}^d \) such that

\[
\phi(t, Y(\omega), \omega) = Y(\theta(t, \omega))
\]

for all \(t \in \mathbb{R} \) and every \(\omega \in \Omega \). Denote stationary trajectory (1) by \(\phi(t, Y) = Y((\theta(t)) \).

If (1) holds on a sure event \(\Omega_t \) that may depend on \(t \), then there are “perfect” versions of the stationary random variable \(Y \) and of the flow \(\phi \) such that (1) and the cocycle property hold for all \(\omega \in \Omega \) ([Sc]).

Let \(\phi(t, Y) \) be a stationary solution of (I). Cocycle property of \(\phi \) implies that the linearization

\[
(D_2\phi(t, Y(\omega), \omega), \theta(t, \omega))
\]

along the stationary solution is also a \(d \times d \)-matrix-valued cocycle. Using Kolmogorov’s theorem, the random variables

\[
\sup_{x \in \mathbb{R}^d} \frac{|D_2\phi(t, x)|}{(1 + |x| \gamma)}, \gamma > 0,
\]
have moments of all orders. If $E \log^+ |Y| < \infty$, then $E \log^+ |D_2\phi(1,Y)| < \infty$. Apply Oseledec’s Theorem to get a non-random finite Lyapunov spectrum:

$$\lim_{n \to \infty} \frac{1}{n} \log |D_2\phi(n,Y(\omega),\omega)(v(\omega))|, \quad v \in L^0(\Omega,\mathbb{R}^d).$$

Spectrum takes finitely many values $\{\lambda_i\}_{i=1}^p$ with non-random multiplicities q_i, $1 \leq i \leq p$, and $\sum_{i=1}^p q_i = d$ ([Ru.1], Theorem I.6).

Definition

Stationary trajectory $\phi(t,Y)$ of (I) is hyperbolic if $E \log^+ |Y(\cdot)| < \infty$, and if the linearized cocycle $(D_2\phi(n,Y(\omega),\omega),\theta(n,\omega))$ has a non-vanishing Lyapunov spectrum

$$\{\lambda_p < \cdots < \lambda_{i_0+1} < \lambda_{i_0} < 0 < \lambda_{i_0-1} < \cdots < \lambda_2 < \lambda_1\}$$

i.e. $\lambda_i \neq 0$ for all $1 \leq i \leq p$.

Define $\lambda_{i_0} := \max\{\lambda_i : \lambda_i < 0\}$ if at least one $\lambda_i < 0$. If all $\lambda_i > 0$, set $\lambda_{i_0} = -\infty$. (This implies that λ_{i_0-1} is the smallest positive Lyapunov exponent of the linearized flow, if at least one $\lambda_i > 0$; in case all λ_i are negative, set $\lambda_{i_0-1} = \infty$.)
Let $\rho \in \mathbb{R}^+, x \in \mathbb{R}^d$.

$B(x, \rho) := \text{open ball in } \mathbb{R}^d, \text{ center } x \text{ and radius } \rho$;

$\bar{B}(x, \rho) := \text{corresponding closed ball};$

$\mathcal{C}(\mathbb{R}^d) := \text{the class of all non-empty compact subsets of } \mathbb{R}^d$ with Hausdorff metric d^*:

$d^*(A_1, A_2) := \sup\{d(x, A_1) : x \in A_2\} \vee \sup\{d(y, A_2) : y \in A_1\} \text{ where } A_1, A_2 \in \mathcal{C}(\mathbb{R}^d)$;

$d(x, A_i) := \inf\{|x - y| : y \in A_i\}, \ x \in \mathbb{R}^d, \ i = 1, 2$;

$\mathcal{B}(\mathcal{C}(\mathbb{R}^d)) := \text{Borel } \sigma\text{-algebra on } \mathcal{C}(\mathbb{R}^d)$ with respect to the metric d^*.
Theorem 1 (The Stable Manifold Theorem) (M. + Scheutzow, 1997)

Assume that the coefficients of SDE (I) satisfy the given hypotheses. Suppose \(\phi(t,Y) \) is a hyperbolic stationary trajectory of (I) with \(E \log^+ |Y| < \infty \).

Fix \(\epsilon_1 \in (0, -\lambda_{i_0}) \) and \(\epsilon_2 \in (0, \lambda_{i_0 - 1}) \). Then there exist

(i) a sure event \(\Omega^* \in \mathcal{F} \) with \(\theta(t, \cdot)(\Omega^*) = \Omega^* \) for all \(t \in \mathbb{R} \),

(ii) \(\mathcal{F} \)-measurable random variables \(\rho_i, \beta_i : \Omega^* \to [0, \infty), \beta_i > \rho_i > 0, i = 1, 2 \), such that for each \(\omega \in \Omega^* \), the following is true:

There are \(C^{k,\epsilon} (\epsilon \in (0, \delta)) \) submanifolds \(\tilde{S}(\omega), \tilde{U}(\omega) \) of \(\bar{B}(Y(\omega), \rho_1(\omega)) \) and \(\bar{B}(Y(\omega), \rho_2(\omega)) \) (resp.) with the following properties:

(a) \(\tilde{S}(\omega) \) is the set of all \(x \in \bar{B}(Y(\omega), \rho_1(\omega)) \) such that

\[
|\phi(n, x, \omega) - Y(\theta(n, \omega))| \leq \beta_1(\omega) e^{(\lambda_{i_0} + \epsilon_1)n}
\]

for all integers \(n \geq 0 \). Furthermore,

\[
\limsup_{t \to \infty} \frac{1}{t} \log |\phi(t, x, \omega) - Y(\theta(t, \omega))| \leq \lambda_{i_0} \quad (2)
\]

for all \(x \in \tilde{S}(\omega) \). Each stable subspace \(S(\omega) \) of the linearized flow \(D_2\phi \) is tangent at \(Y(\omega) \) to the submanifold \(\tilde{S}(\omega) \), viz. \(T_{Y(\omega)}\tilde{S}(\omega) = S(\omega) \). In particular, \(\dim \tilde{S}(\omega) = \dim S(\omega) \) and is non-random.

9
(b) \[\limsup_{t \to \infty} \frac{1}{t} \log \left(\sup_{\substack{x_1 \neq x_2 \\ x_1, x_2 \in \tilde{S}^i(\omega)}} \left\{ \frac{|\phi(t, x_1, \omega) - \phi(t, x_2, \omega)|}{|x_1 - x_2|} \right\} \right) \leq \lambda_{i_0}.\]

(c) (Cocycle-invariance of the stable manifolds):

There exists \(\tau_1(\omega) \geq 0\) such that

\[\phi(t, \cdot, \omega)(\tilde{S}(\omega)) \subseteq \tilde{S}(\theta(t, \omega)), \quad t \geq \tau_1(\omega). \tag{3}\]

Also

\[D_2\phi(t, Y(\omega), \omega)(S(\omega)) = S(\theta(t, \omega)), \quad t \geq 0. \tag{4}\]

(d) \(\tilde{U}(\omega)\) is the set of all \(x \in \tilde{B}(Y(\omega), \rho_2(\omega))\) with the property that

\[|\phi(-n, x, \omega) - Y(\theta(-n, \omega))| \leq \beta_2(\omega) e^{(-\lambda_{i_0-1} + \epsilon_2)n} \tag{5}\]

for all integers \(n \geq 0\). Also

\[\limsup_{t \to \infty} \frac{1}{t} \log |\phi(-t, x, \omega) - Y(\theta(-t, \omega))| \leq -\lambda_{i_0-1}. \tag{6}\]

for all \(x \in \tilde{U}(\omega)\). Furthermore, the unstable subspace \(U(\omega)\) of \(D_2\phi\) is the tangent space to \(\tilde{U}(\omega)\) at \(Y(\omega)\), viz. \(T_{Y(\omega)}\tilde{U}(\omega) = U(\omega)\). In particular, \(\dim \tilde{U}(\omega) = \dim U(\omega)\) and is non-random.

(e) \[\limsup_{t \to \infty} \frac{1}{t} \log \left(\sup_{\substack{x_1 \neq x_2 \\ x_1, x_2 \in \tilde{U}(\omega)}} \left\{ \frac{|\phi(-t, x_1, \omega) - \phi(-t, x_2, \omega)|}{|x_1 - x_2|} \right\} \right) \leq -\lambda_{i_0-1}.\]
(f) (Cocycle-invariance of the unstable manifolds):

There exists $\tau_2(\omega) \geq 0$ such that

$$\phi(-t, \cdot, \omega)(\tilde{U}(\omega)) \subseteq \tilde{U}(\theta(-t, \omega)), \quad t \geq \tau_2(\omega). \quad (7)$$

Also

$$D_2\phi(-t, Y(\omega), \omega)(U(\omega)) = U(\theta(-t, \omega)), \quad t \geq 0. \quad (8)$$

(g) The submanifolds $\tilde{U}(\omega)$ and $\tilde{S}(\omega)$ are transversal, viz.

$$\mathbb{R}^d = T_{Y(\omega)}\tilde{U}(\omega) \oplus T_{Y(\omega)}\tilde{S}(\omega). \quad (9)$$

(h) The mappings

$$\Omega \to C(\mathbb{R}^d), \quad \Omega \to C(\mathbb{R}^d),$$

$$\omega \mapsto \tilde{S}(\omega) \quad \omega \mapsto \tilde{U}(\omega)$$

are $(\mathcal{F}, \mathcal{B}(C(\mathbb{R}^d)))$-measurable.

Assume, further, that $h, g_i, 1 \leq i \leq m$, are C^∞_b. Then the local stable and unstable manifolds $\tilde{S}(\omega), \tilde{U}(\omega)$ are C^∞.
$t > \tau_1(\omega)$

A picture is worth a 1000 words!
\[
\begin{align*}
\theta(t, \omega) &
\quad \Omega \\
\tilde{S}(\theta(t, \omega)) &
\quad \mathbb{R}^d \\
\tilde{U}(\theta(t, \omega)) &
\quad \mathbb{R}^d \\
\phi(t, \omega) &
\quad \phi(-t, \cdot, \omega)
\end{align*}
\]

\[t > \tau_2(\omega)\]
Sketch of Proof

Linearization and Substitution

Assume regularity conditions on the coefficients h, g_i. By the Substitution Rule, $\phi(t, Y(\omega), \omega)$ is a stationary solution of the anticipating Stratonovich SDE

$$
\begin{align*}
\phi(0, Y) &= Y.
\end{align*}
$$

Linearize the SDE (I) along the stationary trajectory. By substitution, match the solution of the linearized equation with the linearized cocycle $D_2\phi(t, Y(\omega), \omega)$. Hence $D_2\phi(t, Y(\omega), \omega), t \geq 0$, solves the SDE:

$$
\begin{align*}
\phi(0, Y) &= Y. \\

D_2\phi(0, Y) &= I.
\end{align*}
$$

I, D denotes spatial (Fréchet) derivatives.

Similarly, the backward trajectories

$$
\phi(t, Y), D_2\phi(t, Y), t < 0,
$$
solve the corresponding backward Stratonovich SDE’s:

\[
\begin{align*}
\frac{d\phi(t, Y)}{dt} &= -h(\phi(t, Y)) dt - \sum_{i=1}^{m} g_i(\phi(t, Y)) \circ \hat{d}W_i(t), \quad t < 0 \\
\phi(0, Y) &= Y. \\
\frac{dD_2\phi(t, Y)}{dt} &= -Dh(\phi(t, Y)) D_2\phi(t, Y) dt \\
&\quad - \sum_{i=1}^{m} Dg_i(\phi(t, Y)) D_2\phi(t, Y) \circ \hat{d}W_i(t), \quad t < 0 \\
D_2\phi(0, Y) &= I.
\end{align*}
\]

Above SDE’s (II)-(III) give dynamic characterizations of the stable and unstable manifolds.

The following lemma is used to construct the shift-invariant sure event appearing in the statement of the local stable manifold theorem. Gives “perfect versions” of the ergodic theorem and Kingman’s subadditive ergodic theorem.

Lemma 1

(i) Let \(h : \Omega \to \mathbb{R}^+ \) be \(\mathcal{F} \)-measurable and such that

\[
\int_{\Omega} \sup_{0 \leq u \leq 1} h(\theta(u, \omega)) \, dP(\omega) < \infty.
\]
Then there is a sure event $\Omega_1 \in \mathcal{F}$ such that $\theta(t, \cdot)(\Omega_1) = \Omega_1$ for all $t \in \mathbb{R}$, and

$$
\lim_{t \to \infty} \frac{1}{t} h(\theta(t, \omega)) = 0
$$

for all $\omega \in \Omega_1$.

(ii) Suppose $f : \mathbb{R}^+ \times \Omega \to \mathbb{R} \cup \{-\infty\}$ is a measurable process on $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying the following conditions

(a) $E \sup_{0 \leq u \leq 1} f^+(u) < \infty$, $E \sup_{0 \leq u \leq 1} f^+(1 - u, \theta(u)) < \infty$

(b) $f(t_1 + t_2, \omega) \leq f(t_1, \omega) + f(t_2, \theta(t_1, \omega))$ for all $t_1, t_2 \geq 0$ and all $\omega \in \Omega$.

Then there is sure event $\Omega_2 \in \mathcal{F}$ such that $\theta(t, \cdot)(\Omega_2) = \Omega_2$ for all $t \in \mathbb{R}$, and a fixed number $f^* \in \mathbb{R} \cup \{-\infty\}$ such that

$$
\lim_{t \to \infty} \frac{1}{t} f(t, \omega) = f^*
$$

for all $\omega \in \Omega_2$.

Proof

[Mo.1], Lemma 7. \square
Theorem 2 ([O], 1968)

Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(\theta : \mathbb{R}^+ \times \Omega \to \Omega\) a measurable family of ergodic \(P\)-preserving transformations. Let \(T : \mathbb{R}^+ \times \Omega \to L(\mathbb{R}^d)\) be measurable, such that \((T, \theta)\) is an \(L(\mathbb{R}^d)\)-valued cocycle. Suppose that

\[
E \sup_{0 \leq t \leq 1} \log^+ \|T(t, \cdot)\| < \infty, \quad E \sup_{0 \leq t \leq 1} \log^+ \|T(1 - t, \theta(t, \cdot))\| < \infty.
\]

Then there is a set \(\Omega_0 \in \mathcal{F}\) of full \(P\)-measure such that \(\theta(t, \cdot)(\Omega_0) \subseteq \Omega_0\) for all \(t \in \mathbb{R}^+\), and for each \(\omega \in \Omega_0\), the limit

\[
\lim_{n \to \infty} [T(t, \omega)^* \circ T(t, \omega)]^{1/(2t)} := \Lambda(\omega)
\]

exists in the uniform operator norm. Each \(\Lambda(\omega)\) has a discrete non-random spectrum \(e^{\lambda_1} > e^{\lambda_2} > e^{\lambda_3} > \cdots > e^{\lambda_p}\)

where the \(\lambda_i\)’s are distinct. Each \(e^{\lambda_i}\) has an eigen-space \(F_i(\omega)\) and a fixed non-random multiplicity \(m_i := \dim F_i(\omega)\). Define

\[
E_1(\omega) := \mathbb{R}^d, \quad E_i(\omega) := \left[\oplus_{j=1}^{i-1} F_j(\omega)\right]^\perp, \quad 1 < i \leq p.
\]

Then

\[
E_p(\omega) \subset \cdots \subset E_{i+1}(\omega) \subset E_i(\omega) \cdots \subset E_2(\omega) \subset E_1(\omega) = \mathbb{R}^d
\]
\[
\lim_{t \to \infty} \frac{1}{t} \log \|T(t, \omega)x\| = \lambda_i(\omega), \quad \text{if} \quad x \in E_i(\omega) \setminus E_{i+1}(\omega),
\]
and
\[
T(t, \omega)(E_i(\omega)) \subseteq E_i(\theta(t, \omega))
\]
for all \(t \geq 0, \ 1 \leq i \leq p. \)

Proof.

Based on the discrete version of Oseledec’s multiplicative ergodic theorem and Lemma 1. ([Ru.1], I.H.E.S Publications, 1979, pp. 303-304; cf. Furstenberg & Kesten (1960), [Mo.1]), “perfect” infinite-dimensional version and application to SFDE’s. \(\square \)
Spectral Theorem

\[T(t, \omega) \]

\[E_1 = \mathbb{R}^d \]

\[E_2(\omega) \]

\[E_3(\omega) \]

\[\theta(t, \cdot) \]

\[\Omega \]

\[\omega \]

\[\theta(t, \omega) \]
Apply Theorem 2 with \(T(t, \omega) := D_2\phi(t, Y(\omega), \omega) \). Then linearized cocycle has random invariant stable and unstable subspaces \(\{ S(\omega), U(\omega) : \omega \in \Omega \} : \)

\[
D_2\phi(t, Y(\omega), \omega)(S(\omega)) = S(\theta(t, \omega)),
\]
\[
D_2\phi(-t, Y(\omega), \omega)(U(\omega)) = U(\theta(-t, \omega)), \quad t \geq 0.
\]

[Mo.1].
Estimates on the non-linear cocyle

Theorem 3 (M. + Scheutzow [M-S.2])

There exists a jointly measurable modification of the trajectory random field of (I), denoted by \(\{ \phi_{s,t}(x) : -\infty < s, t < \infty, \ x \in \mathbb{R}^d \} \), with the following properties:

Define \(\phi : \mathbb{R} \times \mathbb{R}^d \times \Omega \to \mathbb{R}^d \) by

\[
\phi(t, x, \omega) := \phi_{0,t}(x, \omega), \quad x \in \mathbb{R}^d, \omega \in \Omega, t \in \mathbb{R}.
\]

Then for all \(\omega \in \Omega, \epsilon \in (0, \delta), \gamma, \rho, T > 0, 1 \leq |\alpha| \leq k \), \(\phi(t, \cdot, \omega) \) is \(C^{k, \epsilon} \), \(0 < \epsilon < \delta \), and the quantities

\[
sup_{0 \leq s, t \leq T, x \in \mathbb{R}^d} \frac{|\phi_{s,t}(x, \omega)|}{[1 + |x| (\log^+ |x|) \gamma]}, \quad \sup_{0 \leq s, t \leq T, x \in \mathbb{R}^d} \frac{|D_x^{\alpha} \phi_{s,t}(x, \omega)|}{(1 + |x| \gamma)},
\]

\[
\sup_{x \in \mathbb{R}^d} \sup_{0 \leq s, t \leq T, 0 < |x'-x| \leq \rho} \frac{|D_x^{\alpha} \phi_{s,t}(x, \omega) - D_x^{\alpha} \phi_{s,t}(x', \omega)|}{|x - x'| \epsilon (1 + |x|)^{\gamma}},
\]

are finite. The random variables defined by the above expressions have \(p \)-th moments for all \(p \geq 1 \).
\[\| \cdot \|_{k, \epsilon} := C^{k, \epsilon}-\text{norm on } C^{k, \epsilon} \text{ mappings } \bar{B}(0, \rho) \to \mathbb{R}^d. \]

Lemma 2

Assume that \(\log^+ |Y(\cdot)| \) is integrable. Then the cocycle \(\phi \) satisfies

\[
\int_{\Omega} \log^+ \sup_{-T \leq t_1, t_2 \leq T} \| \phi(t_2, Y(\theta(t_1, \omega)) + (\cdot), \theta(t_1, \omega)) \|_{k, \epsilon} dP(\omega) < \infty \tag{10}
\]

for any fixed \(0 < T, \rho < \infty \) and any \(\epsilon \in (0, \delta) \). Furthermore, the linearized flow \((D_2 \phi(t, Y(\omega), \omega), \theta(t, \omega)), \ t \geq 0 \), is an \(L(\mathbb{R}^d) \)-valued perfect cocycle and

\[
\int_{\Omega} \log^+ \sup_{-T \leq t_1, t_2 \leq T} \| D_2 \phi(t_2, Y(\theta(t_1, \omega)), \theta(t_1, \omega)) \|_{L(\mathbb{R}^d)} dP(\omega) < \infty \tag{11}
\]

for any fixed \(0 < T < \infty \). The forward cocycle \((D_2 \phi(t, Y(\omega), \omega), \theta(t, \omega), \ t > 0) \) has a non-random finite Lyapunov spectrum \(\{ \lambda_m < \cdots < \lambda_{i+1} < \lambda_i < \cdots < \lambda_2 < \lambda_1 \} \). Each Lyapunov exponent \(\lambda_i \) has a non-random multiplicity \(q_i, 1 \leq i \leq m \), and \(\sum_{i=1}^{m} q_i = d \). The backward linearized cocycle \((D_2 \phi(t, Y(\omega), \omega), \theta(t, \omega), t < 0) \), admits a “backward” non-random finite Lyapunov spectrum:

\[
\lim_{t \to -\infty} \frac{1}{t} \log |D_2 \phi(t, Y(\omega), \omega)(v(\omega))|, \quad v \in L^0(\Omega, \mathbb{R}^d),
\]

taking values in \(\{-\lambda_i\}_{i=1}^{m} \) with non-random multiplicities \(q_i, 1 \leq i \leq m \), and \(\sum_{i=1}^{m} q_i = d \).
The Auxiliary Cocycle

To apply Ruelle’s discrete non-linear ergodic theorem ([Ru.1], Theorem 5.1, p. 292), introduce the following auxiliary cocycle \(Z : \mathbb{R} \times \mathbb{R}^d \times \Omega \to \mathbb{R}^d \). This a “centering” of the flow \(\phi \) about the stationary solution:

\[
Z(t, x, \omega) := \phi(t, x + Y(\omega), \omega) - Y(\theta(t, \omega)) \tag{16}
\]

for \(t \in \mathbb{R}, x \in \mathbb{R}^d, \omega \in \Omega \).

Lemma 3

\((Z, \theta)\) is a perfect cocycle on \(\mathbb{R}^d \) and \(Z(t, 0, \omega) = 0 \) for all \(t \in \mathbb{R}, \) and all \(\omega \in \Omega \).

The proof of the local stable-manifold theorem (Theorem 1) uses a discretization argument that requires the following lemma.

Lemma 4

Suppose that \(\log^+ |Y(\cdot)| \) is integrable. Then there is a sure event \(\Omega_3 \in \mathcal{F} \) with the following properties:

(i) \(\theta(t, \cdot)(\Omega_3) = \Omega_3 \) for all \(t \in \mathbb{R} \),

(ii) For every \(\omega \in \Omega_3 \) and any \(x \in \mathbb{R}^d \), the statement

\[
\limsup_{n \to \infty} \frac{1}{n} \log |Z(n, x, \omega)| < 0 \tag{17}
\]

implies

\[
\limsup_{t \to \infty} \frac{1}{t} \log |Z(t, x, \omega)| = \limsup_{n \to \infty} \frac{1}{n} \log |Z(n, x, \omega)|. \tag{18}
\]
Ruelle’s Non-linear Ergodic Theorem

Theorem 4 ([Ru.1], 1979)

Let $\Omega \ni \mapsto F_\omega \in C^{k,\epsilon}(\mathbb{R}^d, 0; \mathbb{R}^d, 0)$ be measurable such that $E \log^+ \|F|B(0, 1)\|_{k,\epsilon} < \infty$. Set $F^n(\omega) := F_{\theta(n-1, \omega)} \circ \cdots \circ F_{\theta(1, \omega)} \circ F_\omega$. Suppose $\lambda < 0$ is not in the spectrum of the cocycle $(DF^n(0), \theta(n, \omega))$. Then there is a sure event $\Omega_0 \in \mathcal{F}$ such that $\theta(1, \cdot)(\Omega_0) \subseteq \Omega_0$, and measurable functions $0 < \alpha(\omega) < \beta(\omega) < 1, \gamma(\omega) > 1$ with the following properties:

(a) If $\omega \in \Omega_0$, the set

$$V_\omega^\lambda := \{x \in B(0, \alpha(\omega)) : |F^n_\omega(x)| \leq \beta(\omega)e^{n\lambda} \text{ for all } n \geq 0\}$$

is a $C^{k,\epsilon}$ submanifold of $B(0, \alpha(\omega))$.

(b) If $x_1, x_2 \in V_\omega^\lambda$, then

$$|F^n_\omega(x_1) - F^n_\omega(x_2)| \leq \gamma(\omega)|x_1 - x_2|e^{n\lambda}$$

for all integers $n \geq 0$. If $\lambda' < \lambda$ and $[\lambda', \lambda]$ is disjoint from the spectrum of $(DF^n_\omega(0), \theta(n, \omega))$, then there exists a measurable $\gamma'(\omega) > 1$ such that

$$|F^n_\omega(x_1) - F^n_\omega(x_2)| \leq \gamma'(\omega)|x_1 - x_2|e^{n\lambda'}$$

for all $x_1, x_2 \in V_\omega^\lambda$ and all integers $n \geq 0$.

Proof

[Ru.1], Theorem 5.1, p. 292.
Construction of the Stable/Unstable Manifolds

- Use auxiliary cocycle \((Z, \theta)\). Set \(\tau := \theta(1, \cdot) : \Omega \to \Omega\). Define maps \(F_\omega, F^n_\omega : \mathbb{R}^d \to \mathbb{R}^d\):

\[
F_\omega(x) := Z(1, x, \omega) \quad x \in \mathbb{R}^d
\]
\[
F^n_\omega := F_\tau^{n-1}(\omega) \circ \cdots \circ F_\tau(\omega) \circ F_\omega
\]
for all \(\omega \in \Omega\). Then cocycle property for \(Z\) gives \(F^n_\omega = Z(n, \cdot, \omega)\) for each \(n \geq 1\). \(F_\omega\) is \(C^{k,\epsilon}\) (\(\epsilon \in (0, \delta)\)) and \((DF_\omega)(0) = D_2\phi(1, Y(\omega), \omega)\).

- Integrability of the map \(\omega \mapsto \log^+ \|D_2\phi(1, Y(\omega), \omega)\|_{L(\mathbb{R}^d)}\) (Lemma 2) implies discrete cocycle \((DF^n_\omega)(0), \theta(n, \omega), n \geq 0\) has same non-random Lyapunov spectrum as that of linearized continuous cocycle \((D_2\phi(t, Y(\omega), \omega), \theta(t, \omega), t \geq 0)\), viz. \(\{\lambda_m < \cdots < \lambda_{i+1} < \lambda_i < \cdots < \lambda_2 < \lambda_1\}\), where each \(\lambda_i\) has fixed multiplicity \(q_i, 1 \leq i \leq m\) (Lemma 2).

- If \(\lambda_i > 0\) for all \(1 \leq i \leq m\), then take \(\tilde{S}(\omega) := \{Y(\omega)\}\) for all \(\omega \in \Omega\). Theorem is trivial in this case. Hence assume there is at least one \(\lambda_i < 0\).

- Use discrete non-linear ergodic theorem of Ruelle (Theorem 4) and its proof to obtain a sure event \(\Omega^*_1 \in \mathcal{F}\) such that \(\theta(t, \cdot)(\Omega^*_1) = \Omega^*_1\) for all \(t \in \mathbb{R}\), \(\mathcal{F}\)-measurable positive random variables \(\rho_1, \beta_1 : \Omega^*_1 \to (0, \infty), \rho_1 < \beta_1\), and a random family of \(C^{k,\epsilon}\) (\(\epsilon \in (0, \delta)\)) submanifolds of \(\bar{B}(0, \rho_1(\omega))\) denoted by \(\tilde{S}_d(\omega), \omega \in \Omega^*_1\), and satisfying the following properties for each \(\omega \in \Omega^*_1\): \(\tilde{S}_d(\omega)\) is the set of all \(x \in \bar{B}(0, \rho_1(\omega))\) such that

\[
|Z(n, x, \omega)| \leq \beta_1(\omega)e^{(\lambda_{i_0} + \epsilon_1)n}, \quad n \in \mathbb{Z}^+ \quad (21)
\]
\(\tilde{S}_d(\omega) \) is tangent at 0 to the stable subspace \(S(\omega) \) of the linearized flow \(D_2\phi \), viz. \(T_0\tilde{S}_d(\omega) = S(\omega) \). Therefore \(\dim \tilde{S}_d(\omega) \) is non-random by ergodicity of \(\theta \). Also

\[
\limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{x_1 \neq x_2, x_1, x_2 \in \tilde{S}_d(\omega)} \frac{|Z(n, x_1, \omega) - Z(n, x_2, \omega)|}{|x_1 - x_2|} \right) \leq \lambda_{i_0}.
\]

(22)

The \(\theta(t, \cdot) \)-invariant sure event \(\Omega_1^* \in \mathcal{F} \) is constructed using the ideas in Ruelle’s proof (of Theorem 5.1 in [Ru.1], p. 293), combined with the estimate (10) of Lemma 2 and the subadditive ergodic theorem (Lemma 1 (ii)).

• For each \(\omega \in \Omega_1^* \), let \(\tilde{S}(\omega) \) be as defined in part (a) of the theorem. Then by definition of \(\tilde{S}_d(\omega) \) and \(Z \):

\[
\tilde{S}(\omega) = \tilde{S}_d(\omega) + Y(\omega).
\]

(23)

Since \(\tilde{S}_d(\omega) \) is a \(C^{k, \epsilon} \) submanifold of \(\bar{B}(0, \rho_1(\omega)) \), then \(\tilde{S}(\omega) \) is a \(C^{k, \epsilon} \) submanifold of \(\bar{B}(Y(\omega), \rho_1(\omega)) \). Furthermore, \(T_Y(\omega) \tilde{S}(\omega) = T_0\tilde{S}_d(\omega) = S(\omega) \). Hence \(\dim \tilde{S}(\omega) = \dim S(\omega) = \sum_{i= i_0}^{m} q_i \), and is non-random.

• (22) implies that

\[
\limsup_{n \to \infty} \frac{1}{n} \log |Z(n, x, \omega)| \leq \lambda_{i_0}
\]

(24)

for all \(\omega \) in \(\Omega_1^* \) and all \(x \in \tilde{S}_d(\omega) \). Lemma 4 implies there is a sure event \(\Omega_2^* \subseteq \Omega_1^* \) such that \(\theta(t, \cdot)(\Omega_2^*) = \Omega_2^* \) for all \(t \in \mathbb{R} \), and

\[
\limsup_{t \to \infty} \frac{1}{t} \log |Z(t, x, \omega)| \leq \lambda_{i_0}
\]

(25)
for all $\omega \in \Omega_2^*$ and all $x \in \tilde{S}_d(\omega)$. Therefore (2) holds.

- To prove (b), let $\omega \in \Omega_1^*$. By (22), there is a positive integer $N_0 := N_0(\omega)$ (independent of $x \in \tilde{S}_d(\omega)$) such that $Z(n, x, \omega) \in \bar{B}(0, 1)$ for all $n \geq N_0$. Let $\Omega_4^* := \Omega_2^* \cap \Omega_3$, where Ω_3 is the shift-invariant sure event defined in the proof of Lemma 4. Then Ω_4^* is a sure event and $\theta(t, \cdot)(\Omega_4^*) = \Omega_4^*$ for all $t \in \mathbb{R}$. By cocycle property, Mean-Value theorem and the ergodic theorem (Lemma 1(i)), we get (b).

- To prove the invariance property (4), apply the Oseledec theorem to $(D_2\phi(t, Y(\omega), \omega), \theta(t, \omega))$. Get a sure $\theta(t, \cdot)$-invariant event, also denoted by Ω_1^*, such that $D_2\phi(t, Y(\omega), \omega)(S(\omega)) \subseteq S(\theta(t, \omega))$ for all $t \geq 0$ and all $\omega \in \Omega_1^*$. Equality holds because $D_2\phi(t, Y(\omega), \omega)$ is injective and $\dim S(\omega) = \dim S(\theta(t, \omega))$ for all $t \geq 0$ and all $\omega \in \Omega_1^*$.

- To prove the asymptotic invariance property (3), use ideas from Ruelle’s Theorems 5.1 and 4.1 in [Ru.1], to pick random variables ρ_1, β_1 and a sure event (also denoted by) Ω_1^* such that $\theta(t, \cdot)(\Omega_1^*) = \Omega_1^*$ for all $t \in \mathbb{R}$, and for any $\epsilon \in (0, \epsilon_1)$ and every $\omega \in \Omega_1^*$, and the inequalities

$$
\rho_1(\theta(t, \omega)) \geq \rho_1(\omega)e^{(\lambda_{i_0} + \epsilon_1)t}, \\
\beta_1(\theta(t, \omega)) \geq \beta_1(\omega)e^{(\lambda_{i_0} + \epsilon_1)t}
$$

hold for all $t \geq 0$ and every $\omega \in \Omega_1^*$. Use (b) to obtain a sure event $\Omega_5^* \subseteq \Omega_4^*$ such that $\theta(t, \cdot)(\Omega_5^*) = \Omega_5^*$ for all
\(t \in \mathbb{R}\), and for any \(0 < \epsilon < \epsilon_1\) and \(\omega \in \Omega^*_4\), there exists \(\beta(\omega) > 0\) (independent of \(x\)) with

\[
|\phi(t, x, \omega) - Y(\theta(t, \omega))| \leq \beta(\omega)e^{(\lambda_0 + \epsilon)t}
\]

(27)

for all \(x \in \tilde{S}(\omega), t \geq 0\). Fix \(t \geq 0, \omega \in \Omega^*_5\) and \(x \in \tilde{S}(\omega)\). Let \(n\) be a non-negative integer. Then the cocycle property and (27) imply that

\[
|\phi(n, \phi(t, x, \omega), \theta(t, \omega)) - Y(\theta(n, \theta(t, \omega)))| = |\phi(n + t, x, \omega) - Y(\theta(n + t, \omega))| \\
\leq \beta(\omega)e^{(\lambda_0 + \epsilon)(n + t)} \\
\leq \beta(\omega)e^{(\lambda_0 + \epsilon)t}e^{(\lambda_0 + \epsilon_1)n}.
\]

(28)

If \(\omega \in \Omega^*_5\), then it follows from (26), (27), (28) and the definition of \(\tilde{S}(\theta(t, \omega))\) that there exists \(\tau_1(\omega) > 0\) such that \(\phi(t, x, \omega) \in \tilde{S}(\theta(t, \omega))\) for all \(t \geq \tau_1(\omega)\). This proves asymptotic invariance.

• Prove (d), the existence of the local unstable manifolds \(\tilde{U}(\omega)\), by running both the flow \(\phi\) and the shift \(\theta\) backward in time getting the cocycle \((\tilde{Z}(t, \cdot, \omega), \tilde{\theta}(t, \omega), t \geq 0)\):

\[
\tilde{\phi}(t, x, \omega) := \phi(-t, x, \omega), \quad \tilde{Z}(t, x, \omega) := Z(-t, x, \omega), \quad \tilde{\theta}(t, \omega) := \theta(-t, \omega)
\]

for all \(t \geq 0, \omega \in \Omega\). The linearized flow \((D_2\tilde{\phi}(t, Y(\omega), \omega), \tilde{\theta}(t, \omega), t \geq 0)\) is an \(L(\mathbb{R}^d)\)-valued perfect cocycle with a non-random finite Lyapunov spectrum \(-\lambda_1 < -\lambda_2 < \cdots < -\lambda_i < -\lambda_{i+1} < \cdots < -\lambda_m\) where \(\{\lambda_m < \cdots < \lambda_{i+1} < \lambda_i < \cdots < \lambda_2 < \lambda_1\}\) is the Lyapunov spectrum of the forward linearized flow.
Apply first part of the proof to get stable manifolds for the backward flow $\tilde{\phi}$ satisfying assertions (a), (b), (c). This gives unstable manifolds for the original flow ϕ, and (d), (e), (f) automatically hold.

- Measurability of the stable manifolds follows from the representations:

$$\tilde{S}(\omega) = Y(\omega) + \tilde{S}_d(\omega)$$ \hspace{1cm} (29)

$$\tilde{S}_d(\omega) = \lim_{n \to \infty} \bar{B}(0, \rho_1(\omega)) \cap \bigcap_{i=1}^{n} f_i(\cdot, \omega)^{-1}(\bar{B}(0, 1))$$ \hspace{1cm} (30)

$$f_i(x, \omega) := \beta_1(\omega)^{-1} e^{-(\lambda_{i_0} + \epsilon_1)i} Z(i, x, \omega), \quad x \in \mathbb{R}^d, \omega \in \Omega^*_1,$$

for all integers $i \geq 0$. (Above limit is taken in the metric d^* on $C(\mathbb{R}^d)$.) Use joint continuity of translation and measurability of Y, f_i, ρ_1, finite intersections and the continuity of the maps

$$\mathbb{R}^+ \ni r \mapsto \bar{B}(0, r) \in C(\mathbb{R}^d).$$

$$\text{Hom}(\mathbb{R}^d) \ni f \mapsto f^{-1}(\bar{B}(0, 1)) \in C(\mathbb{R}^d).$$

- For h, g_i in C_b^∞, can adapt above argument to give a sure event in \mathcal{F}, also denoted by Ω^* such that $\tilde{S}(\omega), \tilde{U}(\omega)$ are C^∞ for all $\omega \in \Omega^*$.
Examples of Stationary Solutions

1. Fixed points:

\[d\phi(t) = h(\phi(t)) \, dt + \sum_{i=1}^{m} g_i(\phi(t)) \circ dW_i(t) \]

\[h(x_0) = g_i(x_0) = 0, \quad 1 \leq i \leq m \]

Take \(Y(\omega) = x_0 \) for all \(\omega \in \Omega \).

2. Linear affine case \(d = 1 \):

\[d\phi(t) = \lambda \phi(t) \, dt + dW(t) \]

\(\lambda > 0 \) fixed, \(W(t) \in \mathbb{R} \). Take

\[Y(\omega) := -\int_{0}^{\infty} e^{-\lambda u} \, dW(u), \]

\[\theta(t, \omega)(s) = \omega(t + s) - \omega(t). \]

Check that \(\phi(t, Y(\omega), \omega) = Y(\theta(t, \omega)) \), using integration by parts and variation of parameters.

3. Affine linear SDE in \(d = 2 \):

\[d\phi(t) = A\phi(t) \, dt + GdW(t) \]

with \(A \) a fixed hyperbolic \(2 \times 2 \)-diagonal matrix; \(G \) a constant matrix.

4. Non-linear transforms of (3) under a global diffeomorphism.
References

[Nu] Nualart, D., Analysis on Wiener space and anticipating stochastic calculus (to appear in) *St. Flour Notes*.

