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Abstract  

HepaRG is a proliferative human hepatoma-derived cell line that can be differentiated into 

hepatocyte-like and biliary-like cells. Differentiated HepaRG cultures maintain key hepatic 

functions including drug transporters and xenobiotic-metabolizing enzymes. To gain insight into 

proliferative and differentiated HepaRG metabolism we profiled various bioenergetic parameters 

and investigated cell culture levels of adenosine triphosphate (ATP), lactate, and lactate 

dehydrogenase (LDH) activity. Compared to differentiated-derived HepaRG, cells from 

proliferative cultures had increased basal and ATP-linked respiration and decreased maximal and 

spare respiratory capacities. Basal ATP levels but not lactate or LDH activity were increased in 

samples from proliferative-derived compared to differentiated-derived HepaRG. Further 

extracellular acidification rate (ECAR) experiments revealed parameters associated with 

glycolysis and oxidative phosphorylation. Under basal conditions, cells derived from both 

cultures had similar ECARs; however, under stressed conditions, proliferative-derived HepaRG 

had increases in ECAR capacity and apparent glycolytic reserve. The biguanide metformin has 

been reported to protect differentiated HepaRG against acetaminophen (APAP)-induced cell 

injury, as well as offer protection against bioenergetic deficiencies; therefore, we studied the 

outcome of exposure to these drugs in both culture conditions. Proliferative- and differentiated-

derived cells were found to have distinct mitochondrial bioenergetic alterations when exposed to 

the hepatotoxic drug APAP. Metformin offered protection against loss of APAP-induced cellular 

viability and prevented APAP-induced decreases in bioenergetics in differentiated- but not 

proliferative-derived HepaRG. Distinguishingly, treatment with metformin alone reduced ATP-

linked respiration, maximal respiratory capacity, and basal respiration in proliferative-derived 
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HepaRG. Our results support that HepaRG represents an appropriate model to study drug-

induced bioenergetic dysfunction. 
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Introduction:  

 Extracellular flux analysis is an important tool to quantitate cellular bioenergetic diversity 

in a wide variety of primary, stem, cancer, and immortalized cell lines (1-3). Measuring 

bioenergetic parameters by extracellular flux analysis has been utilized to assess metabolic 

inhibition by mitochondrial-targeted anticancer compounds (3-5) and by compounds with off-

target effects on mitochondrial function (6-8). Off-target effects of drugs and environmental 

toxicants causing mitochondrial dysfunction are important factors to consider in toxicity studies 

and human cell lines have served as useful models for these experiments (6-8). The use of in 

vitro human cell culture models in toxicity testing is becoming increasingly attractive due to the 

small quantities of compounds needed for testing, shortened experimental timelines, increased 

throughput to evaluate toxicants, and reduced number and suffering of animals (9, 10). Primary 

human hepatocytes isolated from liver and liver-derived immortalized cell lines are widely used 

as models for toxicological studies as the liver is the primary source of drug metabolism and 

biotransformation (9). In hepatotoxicity cases, primary human hepatocytes are a desirable 

pertinent model; however, organ donors are scarce, the interdonor function is variable, and 

primary hepatocytes undergo early phenotypic changes in vitro (11). Additionally, in culture, 

many human hepatocyte cell lines lack liver-specific functions including cytochrome P450-

related enzyme activities (12). The HepaRG cell line was originally derived from a liver tumor 

obtained from a patient suffering from hepatitis C infection and hepatocarcinoma (13). 

Following the establishment of the cell line, the presence of the hepatitis C virus genome was no 

longer detectable but HepaRG supports hepatitis B virus (HBV) infection and is a useful tool to 

study mechanisms of HBV infectivity (13). HepaRG is a proliferative human hepatoma-derived 

cell line that can be differentiated into hepatocyte-like and biliary-like cells (11, 12). 
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Differentiated HepaRG cultures have been demonstrated to display toxicity towards compounds 

metabolized via cytochrome P450s (12). In addition to cytochrome P450s (CYP1A1, 1A2, 2A2, 

3A4, CYP4A11, 7A1, 2B6, 2C8, 2C9, 2C19, 2E1, 4F3), differentiated HepaRG cultures express 

phase II drug metabolizing genes (UGT1A1, GSTA1, GSTA4, GSTM1), membrane transporters 

(e.g. bile salt export pump), and transcription factors, PXR, CAR, PPARD, and AhR (11, 12, 14, 

15). In terms of mitochondrial bioenergetic studies, differentiated HepaRG has been validated to 

mimic primary human hepatocyte bioenergetics utilizing the OROBOROS® Oxygraph 2K, (16). 

 Acetaminophen (APAP) and aflatoxin B1 have been demonstrated to be cytotoxic to 

differentiated HepaRG and toxicity of these two compounds is mediated via the formation of 

toxic metabolites generated by cytochrome P450s (12). An overdose of APAP leads to an excess 

of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes glutathione 

and binds to proteins (17). Inhibition of mitochondrial respiration following APAP overdose is 

hypothesized to be caused in part by the formation of NAPQI adducts on oxidative 

phosphorylation (OXPHOS) proteins and peak levels of adducts have been detected in 

differentiated HepaRG at 6 hours after exposure to 20 mM APAP (17). The biguanide metformin 

was previously demonstrated to protect differentiated HepaRG against APAP-induced cell injury 

and to attenuate APAP-induced mitochondrial bioenergetic deficiencies when cells were treated 

with 0.5 or 1 mM metformin 6 hours after exposure to 20 mM APAP (18). Furthermore, 

metformin attenuated APAP-induced mitochondrial oxidant stress and dysfunction in mice (18). 

Metformin is a drug widely used to treat diabetes and fertility and has been reported to decrease 

mitochondrial respiration in proliferative cell types such as normal immortalized fallopian tube 

secretory epithelial cells (FTSECs) and in high-grade serous ovarian cancer (HGSC) cells (19-

21).  
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 To gain insight into both proliferative and differentiated HepaRG metabolism we profiled 

various bioenergetic parameters utilizing the Seahorse XFp and investigated cell culture levels of 

adenosine triphosphate (ATP), lactate, and lactate dehydrogenase (LDH) activity. Proliferative 

and differentiated HepaRG cultures were also separately exposed to APAP, APAP + metformin, 

or metformin to determine effects on cellular viability and mitochondrial bioenergetics. To our 

knowledge, this is the first bioenergetic comparison examining HepaRG cells derived from both 

proliferative and differentiated cultures.  

Materials and Methods 

Cell Culture 

 The proliferating HepaRGTM hepatoma-derived cell line was purchased from Biopredic 

International (Saint-Grégoire, France). Cells were cultured and differentiated according to 

Biopredic International standard operating procedure and as previously described (12, 13). When 

proliferating HepaRGTM (proliferative HepaRG) are initially seeded at low density and then 

subjected to the differentiation process, differentiated cultures harbor both hepatocyte-like and 

biliary-like cells (11, 12). In this study, proliferative HepaRG were initially seeded at a low 

density of 2 x 104 cells/cm2 prior to the differentiation process; therefore, differentiated HepaRG 

cultures harbor both hepatocyte- and biliary-like cells as opposed to selectively detaching and re-

seeding hepatocyte-like cells as has been described (22).  

 Briefly, proliferative HepaRG were grown in Working Growth Medium (WGM) 

consisting of William's E Medium (Thermo Fisher Scientific), 2 mM GlutaMAXTM (Thermo 

Fisher Scientific) with the addition of HepaRGTM Growth Medium Supplement (Lonza). Cells 

were grown at 37oC, 5% CO2 in a humidified incubator and media was refreshed every three 

days. For day-to-day examination of cell culture, a Leica DMi1 inverted microscope with 10 and 
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20x phase contrast objectives was used. Images were collected on a Leica DMi8 with a 20x 

phase contrast objective. Proliferative HepaRG cells were passaged between days 12 and 15 post 

seeding by washing with pre-warmed Dulbecco's phosphate-buffered saline (DPBS) followed by 

gentle trypsinization and neutralization with pre-warmed WGM. Tissue culture dishes were 

seeded with 2 x 104 proliferative cells/cm2 and cells were not passaged more than 18 times, P18. 

William's Differentiation Medium (WDM) consisted of William's E Medium (Thermo Fisher 

Scientific), 2 mM GlutaMAXTM (Thermo Fisher Scientific) with the addition of HepaRGTM 

Differentiation Medium Supplement (Lonza). The differentiation process was started two weeks 

after passaging proliferative HepaRG cells. WGM was replaced with Combination Medium 

(CM), consisting of a 1:1 mixture of WGM to WDM, and three days later CM was replaced with 

WDM. The medium was renewed every three days for two weeks and after two weeks cells 

attained differentiated hepatocyte-like morphology. Following treatment with pre-warmed 

trypsin and neutralization with pre-warmed medium, HepaRG viable cell counts were 

determined utilizing the TC20 Automated Cell Counter (Bio-Rad) and the trypan blue exclusion 

method.  

Seahorse XFp extracellular flux analysis  

 Seahorse (SH) XFp cell culture miniplates, sensor cartridges with utility plates, and all 

reagents for Mito Stress and ECAR Stress tests (Glycolysis Stress tests), with the exception of 

oligomycin (Alfa AesarTM), were obtained from Agilent Technologies Cell Analysis Division 

(Lexington, MA, USA). The SH XFp Extracellular Flux Analyzer was used to simultaneously 

measure real-time oxygen (O2) consumption rates (OCR) and extracellular acidification rates 

(ECAR) of adherent proliferative- and differentiated-derived HepaRG cells in 8-well cell culture 

miniplates. The eight wells on SH XFp cell culture miniplates (referred to here as miniplates) are 
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designated wells A through H. Each XFp disposable sensor cartridge contains eight probe 

sleeves with embedded pairs of fluorescence biosensors for measuring the extracellular flux 

changes of oxygen (532 nm excitation /650 nm emission) and pH (470 nm excitation/ 530 nm 

emission) in the medium surrounding cells seeded in each well of the miniplate. OCR is reported 

in the unit of picomoles (pmol) O2 per minute and ECAR in milli-pH (mpH) units per minute 

(23). Additionally, four injector ports (ports A, B, C, & D) are adjacent to each sensor/probe 

sleeve such that miniplate wells A - H are equipped to receive four compounds during the course 

of the experiment. The applicable assay template file (*.asyt) was initiated during the 1-hour 

miniplate incubation period (see Replacement of miniplate well WGM or WDM with assay 

medium below) and the utility plate and sensor cartridge were loaded into the XFp. Following 

calibration of the sensor cartridge, the utility plate was replaced with the appropriate miniplate. 

Unless otherwise indicated, the XFp Cell Mito Stress Test protocol was run and consisted of 

equilibration, basal OCR/ECAR measurement (3 cycles), injection of oligomycin port A (3 

cycles), injection of FCCP port B (3 cycles), and injection of a mixture of rotenone/antimycin A 

port C (3 cycles). In some experiments, such as optimizing cell-seeding density, the assay 

medium was loaded into the sensor cartridge compound injection ports instead of stressors. 

Miniplate wells A and H never received cells (background correction) but were treated 

identically to wells with cells during XFp analyses and protein normalization (see below) 

receiving growth media, assay media, and buffers during growth incubations, washes, and cell 

lysis. 

 Day 1 - To maintain cell adherence, miniplate wells were treated with a sterile solution of 

0.1% gelatin (EMD MilliporeTM), parafilm was wrapped around the edges of the miniplates to 

prevent evaporation, and plates were stored at room temperature overnight.  
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 Day 2, Part I - Hydrate sensor cartridge and seeding miniplates. First, 200 Pl of tissue 

culture grade water (TC H2O) was added to each well of the XFp sensor cartridge utility plate 

and 400 Pl of TC H2O was added to each moat chamber. Second, the sensor cartridge was placed 

on top of the utility plate and incubated overnight in a humidified 37oC incubator without CO2 

along with a 20 ml aliquot of XF Calibrant. Finally, the gelatin solution was removed from the 

miniplates. The appropriate number of proliferative- or differentiated-derived HepaRG cells was 

resuspended in 80 Pl per well of fresh WGM or WDM respectively. Cells were seeded in 

duplicate or triplicate into miniplate wells (0.106 cm2) for each cell type, see Day 2 Part II 

below. Miniplates were examined using a DMi1 microscope to ensure cells were evenly 

distributed and approximately 50-70% confluent and then incubated overnight in a 37oC, 5% 

CO2 incubator. Cellular confluency between 50-70% yielded OCR readings that were within the 

range recommended by the manufacturer, 20 to 150 pmol O2/minute. Lastly, the XFp was turned 

on to allow the chamber to stabilize at 37oC overnight.  

Day 2, Part II - Optimizing cell-seeding density. Miniplates were seeded the day before an 

experiment. To optimize differentiated-derived HepaRG cell-seeding density cells were seeded 

in duplicate on miniplates at 8.9 x 104, 1.3 x 105, and 1.9 x 105 viable cells/cm2 (9.4 x 103, 1.34 x 

104, and 2 x 104 cells per well respectively). On separate miniplates proliferative cells were 

seeded in duplicate at 4.4 x 104, 6.3 x 104, and 9.4 x 104 viable cells/cm2 (4.7 x 103, 6.7 x 103, 

and 1 x 104 cells per well respectively). For these cell-seeding tests, basal OCR values ranged 

from 37 to 115 pmol O2/minute while basal ECAR values ranged from 2 to 20 mpH/minute. For 

each experiment, two miniplates were run and the well with the highest basal rate (pmol 

O2/minute for OCR and mpH/minute for ECAR) was set to 100% baseline. The other wells were 

normalized relative to 100% baseline.  
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 Unless otherwise described, an optimal seeding density of 9.4 x 104 viable proliferative-

derived cells/cm2  (1 x 104 cells/well) was used and seeding densities of 9.4 x 104 or 1.9 x 105 

viable differentiated-derived cells/cm2 (1 x 104 or 2 x 104 cells/well respectively) were used to 

obtain OCR readings within the recommended range of the XFp. Following normalization of 

data obtained from miniplates seeded with either 9.4 x 104 or 1.9 x 105 differentiated-derived 

cells/cm2, the calculated bioenergetic parameters were comparable (Table 1, the inter-

experimental coefficients of variation for parameters were at most ~16%). Note, 1.9 x 105 viable 

differentiated-derived cells/cm2 resulted in high basal OCR readings, 120 ± 12 pmol O2/minute 

(mean value ± SD; n = 3); therefore, differentiated cells were not plated at the high-density of 4.5 

x 105 cells/cm2 described elsewhere (11, 12) as OCR values exceeded the XFp recommended 

upper limit of detection, 150 pmol O2/minute. Thus, we refer to the cells studied here as 

differentiated-derived cells. Furthermore, as we studied differentiated cells at a seeding density 

greater than 1.5 x 105 cells/cm,2 a density that has been demonstrated to support unipotent 

hepatocyte-like behavior, it is unlikely the cells underwent transdifferentiation (24). In addition, 

we did not observe reversion to a homogenous population of epithelial-like cells during visual 

inspection of miniplates following seeding of differentiated cells. However, it is important to 

note that transdifferentiation has been observed when differentiated HepaRG are seeded at low 

densities such as 1 x 103 cells/cm2 and that hepatocyte-like cells proliferate when seeded in 

WGM at 5-7 x 104 cells/cm2 (22, 24). Finally, the total cellular protein content for each well was 

determined for all experiments (see Protein normalization below). 

 Day 3 - The TC H2O in the XFp sensor cartridge utility plate wells/moats was removed 

and replaced with equal volumes of prewarmed XF Calibrant then returned to humidified 37oC 

incubator without CO2 for at least one hour. Next, the appropriate assay medium was prepared 
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and pre-warmed to 37oC. Mito Stress test assay medium consisted of XF Base Medium (0 mM 

glucose, Agilent Technologies) supplemented with 1 mM pyruvate, 2 mM glutamine, and 10 

mM glucose. ECAR Stress test assay medium consisted of XF Base Medium (Agilent 

Technologies) supplemented with 2 mM glutamine, 0.5 PM hydrocortisone (Sigma-Aldrich), and 

5 Pg/ml recombinant human insulin (Sigma-Aldrich). Assay medium pH was adjusted to 7.4 ± 

0.1 using 1 N NaOH then the medium was sterilized by filtering through a 0.2 Pm filter. Assay 

medium was stored at 4oC if not used immediately otherwise it was pre-warmed at 37oC for 15 

minutes before use.  

 Replacement of miniplate well WGM or WDM with assay medium - Prior to replacing the 

80 Pl of WGM or WDM per miniplate well, assay medium was pre-warmed to 37oC. Sixty 

microliters of WGM or WDM was removed from each well. Subsequently, wells were gently 

washed twice by adding and removing 200 Pl of assay medium from each well position. 

Following the second wash, 160 Pl of assay medium was added to each well to give a final well 

volume of 180 Pl. Miniplates were observed utilizing an inverted phase contrast microscope to 

ensure cells were not dislodged from the well bottom and to confirm cellular confluency was 

about 50-70%. The miniplate was placed in a humidified 37oC incubator without CO2 for 1 hour 

prior to running a bioenergetic assay.  

 Optimization of OXPHOS stressors. Oligomycin - A 25.3 mM stock solution of 

oligomycin was prepared in dimethyl sulfoxide (DMSO), aliquoted, and stored at -80oC. 

Differentiated- and proliferative-derived HepaRG cells were tested in separate miniplates, i.e. 

one cell type was seeded at equal density into wells B - G of a miniplate, and wells A and H were 

used for background correction. The day of XFp experiments during the 1-hour miniplate 

incubation period, a vial of oligomycin was thawed on ice and diluted in Mito Stress test assay 
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medium to 160 PM. The 160 PM stock solution was diluted to 40 PM then subsequent 2-fold 

serial dilutions were made to 20 and 10 PM in Mito Stress test assay medium. To determine the 

effect of oligomycin on HepaRG OCRs, various concentrations of oligomycin were loaded into 

the sensor cartridge and a Mito Stress test was performed. A hydrated sensor cartridge was 

removed from the non-CO2 incubator then loaded with 20 Pl of 10, 20, and 40 PM oligomycin 

into port A of wells B & C, D & E, and F & G respectively to obtain final well concentrations of 

1, 2, and 4 PM. For each experiment, two miniplates were run successively and the well with the 

highest rate (pmol O2/minute/Pg cellular protein) measured just prior to oligomycin injection 

was set to 100% baseline and the other wells were normalized relative to it. For both 

proliferative- and differentiated-derived HepaRG maximal decreases in OCRs were observed 

with 2�PM oligomycin; therefore, this concentration was used for subsequent experiments. 

 Titration of carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP) - FCCP 

titrations were carried out according to the manufacturer's protocol using Agilent Technologies' 

sourced FCCP. Briefly, differentiated- and proliferative-derived HepaRG cells were tested in 

separate miniplates and cells were seeded at equal densities in wells B - G leaving wells A and H 

for background correction. Stock solutions of oligomycin (160 PM) and FCCP (50 PM) were 

made in Mito Stress test assay medium. A hydrated sensor cartridge was removed from the non-

CO2 incubator. Oligomycin was diluted to 20 PM as described above and 20 Pl was loaded into 

all A ports of the sensor cartridge. Sensor cartridges were divided into two groups to assess low 

range and high range concentrations of FCCP via 5-point titration curves. The low range final 

well concentrations tested were 0.125, 0.25, and 0.5 PM (Ports B, C, and D of wells A - D 

respectively) while the high range final well concentrations tested were: 0.5, 1.0, and 2.0 PM 

(Ports B, C, and D of E - H respectively). FCCP was diluted 5-fold in assay medium to 10 PM 
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then 2-fold serial dilutions were made to 5, 2.5, and 1.25 PM. Ports B, C, and D of wells A to D 

were loaded with 22, 28, and 30 Pl of 1.25, 1.25, and 2.5 PM FCCP. Ports B, C, and D of wells E 

to H were loaded with 22, 28, and 30 Pl of 5, 5, and 10 PM FCCP. The XFp Cell 

Characterization (FCCP Titration) protocol was run and consisted of equilibration, basal 

OCR/ECAR measurement (3 cycles), injection of oligomycin port A (3 cycles), injection of 

FCCP-1 port B (3 cycles), injection of FCCP-2 port C (3 cycles), and injection of FCCP-3 port D 

(3 cycles). The well with the highest rate (pmol O2/minute/Pg cellular protein) measured prior to 

2 PM oligomycin injection was set to 100% baseline and the other wells were normalized 

relative to it. Peak increases in proliferative- and differentiated-derived OCRs were observed at 

1�PM FCCP; therefore, this concentration was used for subsequent experiments. 

 Mito Stress tests and sensor cartridge loading - Stock solutions of stressors were made 

and diluted in Mito Stress test assay medium. A 160 PM oligomycin stock solution was made as 

described above then diluted 8-fold to 20 PM. A hydrated sensor cartridge was removed from the 

non-CO2 incubator and 20 Pl of 20 PM oligomycin was loaded into all A ports. A 50 PM FCCP 

stock solution was made then diluted 1 in 5 to 10 PM and 22 Pl was loaded into all B ports. A 25 

PM rotenone + 25 PM antimycin A stock solution was made then diluted 1 in 5 to 5 PM of both 

rotenone and antimycin A then 25 Pl was loaded into all C ports. For side-by-side comparisons 

of differentiated- and proliferative-derived HepaRG during a Mito Stress test each cell type was 

seeded/technically replicated in triplicate in miniplate wells. Replacement of WGM and WDM 

with Mito Stress test assay medium and the XFp Cell Mito Stress Test protocol were carried out 

as described above. Independent experiments were run on different days using different 

passages/preparations of cells.  
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 Equations used to calculate mitochondrial respiration parameters - Mitochondrial 

respiration parameters were calculated as follows: I. Basal respiration = (Last rate before the 

first injection) − (Non-mitochondrial respiration rate), II. Proton leak = (Minimum rate after 

oligomycin injection) − (Non-mitochondrial respiration rate), III. Maximal respiratory capacity 

= (Maximum rate after FCCP injection) − (Non-mitochondrial respiration rate), IV. Spare 

respiratory capacity or reserve respiratory capacity = (Maximal respiratory capacity) − (Basal 

respiration), V. Non-mitochondrial respiration = Minimum rate after rotenone + antimycin A 

injection, VI. ATP-linked respiration = (Last rate before oligomycin injection) − (Minimum rate 

after oligomycin injection), VII. Spare respiratory capacity as a percent = (Maximal respiratory 

capacity) / (Basal respiration) * 100, VIII. Coupling efficiency = (ATP-linked respiration) / 

(Basal respiration), IX. Ratio of ATP-linked respiration to maximal respiration = (ATP-linked 

respiration) / (Maximal respiratory capacity) (25). 

 ECAR Stress tests and sensor cartridge loading - Stock solutions of glucose and stressors 

were made and diluted in ECAR Stress test assay medium. Twenty microliters of a 100 mM 

glucose stock solution was loaded into all A ports. Next, a 160 PM oligomycin stock solution 

was made as described above then diluted 1 in 8 to 20 PM and 22 Pl was loaded into all B ports. 

A 500 mM 2-deoxyglucose (2-DG) stock solution was made then 25 Pl was loaded into all C 

ports. For side-by-side comparisons of differentiated- and proliferative-derived HepaRG during 

an ECAR Stress test each cell type was seeded/technically replicated in duplicate or triplicate in 

miniplate wells. WGM or WDM were replaced with ECAR Stress test assay medium as 

described above. The ECAR Stress test protocol was run and consisted of equilibration, basal 

OCR/ECAR measurement (3 cycles), injection of glucose port A (3 cycles), injection of 
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oligomycin port B (3 cycles), and injection of 2-DG port C (3 cycles). Independent experiments 

were run on different days using different passages/preparations of cells. 

 Equations used to calculate ECAR bioenergetic parameters - ECAR bioenergetic 

parameters were calculated as follows: I. Glucose-stimulated ECAR = (Maximum rate before 

oligomycin injection) − (Last rate before glucose injection), II. ECAR capacity = (Maximum rate 

after oligomycin injection) − (Last rate before glucose injection), III. Apparent glycolytic reserve 

= (ECAR capacity) − (Glucose-stimulated ECAR), IV. Basal ECAR = Last rate measurement 

before glucose injection.  

Protein normalization 

 Following each SH XFp experiment, OCR and ECAR values were normalized to total 

cellular protein as has been described (1, 26-28). Briefly, total cellular protein content in each 

miniplate well was measured using the PierceTM bicinchoninic acid (BCA) protein assay kit 

(Thermo Scientific). Assay medium was removed from all wells, including background 

correction wells A and H, and each well was gently washed with 200 Pl DPBS pre-warmed to 

37oC. Next, the miniplate was inspected under a phase contrast microscope to assure cells 

remained adherent to the wells and miniplates were incubated overnight at -80oC to assist with 

cell lysis. The next day miniplates were removed from the freezer, stored on ice, and cells were 

lysed in ice-cold RIPA lysis buffer supplemented with 1 in 101 dilution of HALTTM protease 

inhibitor cocktail (Thermo Fisher Scientific) by pipetting up and down ten times. The miniplate 

was inspected under a phase contrast microscope to assure that cells were removed from the 

bottom of the wells and that cell lysis was complete. A range of 0 to 20 Pg bovine serum 

albumin (BSA) standards diluted in RIPA lysis buffer + HALT were run in parallel with 10 Pl 

samples on flat bottom 96-well polystyrene plates (Fisher Scientific). The sample to working 
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reagent ratio was 1 to 20. Plates were mixed on a microplate shaker for 1 minute, incubated at 

37oC for 30 minutes, then cooled to room temperature prior to measuring the absorbance at 

562nm on a Synergy H1 microplate reader (BioTek). R-squared values for linear regression of 

BSA standards were consistent between experiments and the average R-squared value for all 

experiments was 0.99. For 9.4 x 104 proliferative-derived cells/cm2 seeded, the average protein 

content measured by the BCA assay was 3.3 ± 0.4 Pg per well (n = 12, triplicate wells from two 

independent Mito Stress tests and two independent ECAR Stress tests run on different days with 

different preparations of cells). For 9.4 x 104 and 1.9 x 105 differentiated-derived cells/cm2 

seeded, average protein contents measured by BCA assay were 3.0 ± 0.4 and 5.5 ± 0.6 Pg per 

well respectively (n ≥ 5 for each, duplicate or triplicate wells from independent Mito Stress and 

ECAR Stress tests run on different days with different preparations of cells).  

Quantitation of cell culture L-lactate levels 

 Total cell culture lactate levels were estimated using the Lactate-GlowTM Assay 

(Promega) according to the manufacturer's recommendations for detecting extracellular + 

intracellular lactate. Proliferative and differentiated HepaRG cells were seeded side-by-side on 

Corning 96-well flat clear-bottom white-walled polystyrene microplates in 100 Pl WGM and 

WDM respectively and the plates were incubated overnight at 37oC, 5% CO2. Replicate 96-well 

plates were seeded with identical concentrations of cells in parallel to normalize lactate data to 

total cellular protein and plate wells were processed as described above for miniplates under 

Protein normalization. Each cell density was replicated in 7 wells of the 96-well plates and 

growth media without cells was loaded into empty wells to determine background relative light 

units, RLUs (negative controls).  
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 The next day, lactate standards were prepared on ice in Glucose-supplemented ECAR 

Stress test assay medium (ECAR Stress test assay medium as described above supplemented 

with 10 mM glucose) and contained 0.244, 0.98, 3.906, or 15.625 PM lactate. Growth media was 

removed from all wells of a 96-well plate including the negative controls and the wells were 

gently washed with pre-warmed 100 Pl Glucose-supplemented ECAR Stress test assay medium. 

Next, 40 Pl of Glucose-supplemented ECAR Stress test assay medium was carefully added to 

each well and thereafter 40 Pl of each lactate standard was loaded into empty wells on the plate 

in triplicate followed by incubation at 37oC without CO2 for 20 minutes. The lactate detection 

reagent was prepared according to the manufacturer's instruction using the components in the kit. 

To block lactate production, 5 Pl of inactivation solution (0.6 N HCl, 0.25% 

dodecyltrimethylammonium bromide, DTAB) was added to each well, including negative 

control and lactate standard wells, and then the plate was mixed for 5 minutes on a microplate 

shaker. Next, to each well 5 Pl of neutralization solution (1 M Tris base) was added, the plate 

was mixed for 1 minute, and 50 Pl of lactate detection reagent was added. The plate was mixed 

for 1 minute followed by a 1-hour incubation at room temperature in the dark, and RLUs were 

measured on a Synergy H1 microplate reader (BioTek). Linear regression of mean luminescent 

values (RLUs) versus lactate standard concentrations generated consistent R-squared values of 

0.99. RLU values for the 0.244 PM lactate standard, (0.2 PM following addition of inactivation 

and neutralization solutions) produced the lowest sample signals on the plate and were at most 2-

fold above background.  

 Within the range of lactate standard RLUs, a linear increase in RLUs was detected for 

each experiment utilizing differentiated-derived HepaRG seeded at 8.9 x 104, 1.3 x105, and 1.9 x 

105 viable cells/cm2 when plotting RLUs vs. cell seeded (R-squared values of 0.97 and 0.98 for 
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two independent experiments run on different days using different preparations of cells and 7 

replicate wells of each cell density) and utilizing proliferative-derived HepaRG seeded at 4.4 x 

104, 6.3 x 104, 9.4 x 104, and viable cells/cm2 (R-squared values of 0.99 and 0.98 for two 

independent experiments as described for differentiated HepaRG). Proliferative HepaRG seeded 

at 4.4 x 104 cells/cm2 produced the lowest RLUs, which were at least 4-fold above background 

luminescence. The concentration of lactate in wells containing cells (corrected for background 

luminescence) were estimated from standard curves generated using the background corrected 

lactate standard RLU values.  

 The values presented in Figure 4 A are normalized to total cellular protein and are mean 

± SD of n = 42 replicates for each of proliferative- and differentiated-derived HepaRG (3 cell 

densities x 7 replicate wells x 2 independent experiments). For both cell types, the RLUs/Pg 

cellular protein inter-experimental coefficients of variation were at most 22%. 

Quantitation of cell culture LDH enzymatic activity  

 Relative amounts of proliferative- and differentiated-derived HepaRG cellular LDH 

activity were estimated by lysing cells in the presence of Triton X-100 followed by the detection 

of LDH activity in lysates utilizing the CytoTox-ONETM Homogeneous Membrane Integrity 

Assay (Promega). The day before the experiment proliferative- and differentiated-derived 

HepaRG cells were seeded side-by-side on Corning 96-well flat clear-bottom black-walled 

polystyrene microplates in 100 Pl WGM and WDM respectively and plates were incubated 

overnight at 37oC, 5% CO2. Replicate 96-well plates were seeded with identical concentrations 

of cells in parallel to normalize relative fluorescence units (RFUs) to total cellular protein using 

the procedure described above for miniplates under Protein normalization. Differentiated-

derived HepaRG cells were seeded at 8.9 x 104, 1.3 x105, and 1.9 x 105 viable cells/cm2 and 
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proliferative-derived HepaRG cells were seeded at 4.4 x 104, 6.3 x 104, and 9.4 x 104 viable 

cells/cm.2 Each cell density was replicated in 8 wells of 96-well plates and for each density half 

of the wells were treated with Triton X-100 and the other half with vehicle. Growth media 

without cells was loaded into empty wells to serve as negative controls to determine background 

RFUs.  

 The day after seeding 96-well plates growth media was removed from all wells, including 

the negative controls, and wells were gently washed with 100 Pl Glucose-supplemented ECAR 

Stress test assay medium. Next, 100 Pl Glucose-supplemented ECAR Stress test assay medium 

was added to each well and the plate was incubated at 37oC without CO2 for 45 minutes. 

CytoTox-ONE Reagent was prepared and protected from light according to the manufacturer's 

instruction using the components in the kit. The 96-well plate and the CytoTox-ONE Reagent 

were equilibrated to room temperature for 20 minutes. Next, 10 Pl of 1.8% Triton X-100 

(weight/volume) in water was added to four of the eight replicate wells for each cell density 

while 10 Pl of vehicle was added to the remaining four wells for each density. The plate was 

mixed on a microplate shaker. Cell lysis due to Triton X-100 exposure and lack of cell lysis due 

to vehicle treatment was confirmed by visual inspection of wells using a Leica DMi1 inverted 

microscope. One volume (110 Pl) of CytoTox-ONE Reagent was added to each well, the plate 

was mixed for 30 seconds, and then incubated in the dark for 10 minutes. To each well 55 Pl of 

Stop solution was added, the plate was mixed for 10 seconds, and fluorescence was immediately 

recorded using 560nm excitation and 590nm emission on a Synergy H1 microplate reader 

(BioTek). 

 Following exposure to Triton X-100, linear increases in RFUs were detected by plotting 

RFUs versus differentiated- or proliferative-derived HepaRG at the aforementioned seeding 



 17 

densities. Utilizing linear regression analysis, R-squared values of 0.99 were consistently 

obtained between experiments for both cell types; quadruplicates of each cell density for two 

independent experiments run on different days using different preparations of cells. For Triton 

X-100 treated samples, proliferative cells seeded at 4.4 x 104 cells/cm2 produced the lowest 

RFUs, which were a least 3-fold above background fluorescence. Both cell types treated with 

vehicle produced even lower RFUs, which were at most 2-fold above background fluorescence 

when seeded at the highest densities for each cell type described above.  

 The experiment was performed twice on different days using different preparations of 

both proliferative- and differentiated-derived cells. Following subtraction of background 

fluorescence (negative control wells), RFUs were normalized to total cellular protein in the well; 

thus, the values presented for total LDH activity obtained from lysates (Figure 4 B) were 

normalized to total cellular protein and are the mean ± SD of n = 24 replicates for each cell type 

(3 cell densities x 4 replicate wells x 2 independent experiments). The inter-experimental 

coefficients of variation were 20% and 30% for proliferative- and differentiated-derived HepaRG 

respectively.  

Quantitation of cell culture ATP levels  

 Relative levels of cellular adenosine triphosphate (ATP) were estimated using the 

CellTiter-Glo® 2.0 Assay (Promega) as per the manufacturer's recommendations. The day before 

the experiment, proliferative- and differentiated-derived HepaRG were seeded into Corning 96-

well flat clear-bottom white-walled polystyrene microplates for protein normalization and for 

quantitation of ATP levels. Differentiated-derived cells were seeded at 8.9 x 104, 1.3 x105, and 

1.9 x 105 viable cells/cm2 and proliferative-derived HepaRG were seeded at 4.4 x 104, 6.3 x 104, 
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and 9.4 x 104 viable cells/cm.2 Each cell density was replicated in 8 wells. Growth media without 

cells was loaded into empty wells to serve as negative controls to determine background RLUs. 

 The day after seeding the 96-well plates, growth media was removed from all wells, 

including the negative controls. Wells were gently washed with 100 Pl Mito Stress test assay 

medium then 100 Pl Mito Stress test assay medium was added to each well. The plate was 

incubated at 37oC without CO2 for 45 minutes and thereafter the plate was equilibrated to room 

temperature for 20 minutes. Next, 100 Pl of CellTiter-Glo 2.0 reagent was added to each well, 

the plate was mixed for 4 minutes, and then incubated at room temperature for 8 minutes. During 

this incubation time, cell lysis was quickly confirmed by visual inspection of wells under the 

microscope. Luminescence was measured on the Synergy H1 microplate reader (BioTek). Linear 

increases in luminescence were detected by plotting RLUs versus differentiated- or proliferative-

derived HepaRG at the aforementioned seeding densities. Utilizing linear regression analysis, R-

squared values of 0.99 were consistently obtained between experiments for both cell types; 8 

replicates of each cell density for two independent experiments run on different days using 

different preparations of cells. Proliferative cells seeded at 4.4 x 104 cells/cm2 produced the 

lowest RLUs, which were a least 40-fold above background luminescence.  

 The values presented for cellular ATP in Figure 4 C are normalized to total cellular 

protein in the well and are mean RLU/Pg values ± SD of n = 48 replicates (3 cell densities x 8 

replicate wells x 2 experiments). The RLUs/Pg cellular protein inter-experimental coefficients of 

variation for both proliferative- and differentiated-derived HepaRG were at most 17%. 

Acetaminophen (APAP) and metformin treatment of HepaRG  

 APAP (Alfa Aesar) was dissolved in William's E Medium, 2 mM GlutaMAX and filter 

sterilized with a 0.22 Pm filter into a sterile bottle then Growth Medium Supplement was added 
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as described above in Cell Culture to give a final concentration of 20 mM APAP in WGM as 

previously described (17). To expose proliferative HepaRG cultures to drugs, tissue culture 

dishes were separately treated with WGM containing 20 mM APAP, 1 mM metformin (EMD 

Millipore), 20 mM APAP + 1 mM metformin, or vehicle control 7 days post-seeding. Briefly, 

growth medium was removed from tissue culture dishes then prewarmed WGM + APAP was 

initially added to half of the dishes while WGM vehicle was added to the other half. All samples 

were incubated at 37oC, 5% CO2, time point 0 hours. After a 6 hour incubation period, half of the 

WGM + APAP and half of the WGM vehicle treated dishes were removed from the incubator 

and media was replaced with prewarmed WGM + APAP + metformin and WGM + metformin 

respectively. The rationale for adding metformin 6 hours later has been described (18). The 

dishes were returned to the 37oC, 5% CO2 incubator and incubated overnight. Twenty-four hours 

after the initial APAP treatment (time point 0 hours), media was aspirated from all of the culture 

dishes, the dishes were washed with DPBS, trypsinized, and neutralized with pre-warmed WGM 

and then the numbers of viable cells were determined via the trypan blue exclusion method as 

described above. Viable cell counts were used to seed XFp miniplates. Miniplate wells were 

seeded with 9.4 x 104 or 1.9 x 105 proliferative-derived cells/cm,2 Mito Stress tests were run, and 

respiration parameters (OCR values) were normalized to total cellular protein as described 

above.  

 Confluent HepaRG were differentiated in tissue culture dishes as described above in Cell 

Culture. Differentiated cultures were separately treated with vehicle and drugs (APAP, 

metformin, and APAP + metformin) in WGM as DMSO has been demonstrated to prevent 

APAP-induced hepatotoxicity (12, 29). Drug treatments, harvesting, and counting of viable 

differentiated-derived cells were conducted as described above for proliferative-derived cells. 
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Miniplate wells were seeded with 1.9 x 105 differentiated-derived cells/cm,2 Mito Stress tests 

were run, and respiration parameters (OCR values) were normalized to total cellular protein as 

described above.  

 The drug exposure experiments were performed at least twice on different days using 

different preparations of cells. For each experiment at least two SH miniplate were run for each 

treatment. Following normalization of bioenergetic OCR parameter values to Pg cellular protein 

(pmol O2/min/Pg cellular protein), vehicle controls were set to 100% and data are presented 

relative to vehicle control (%OCR).  

Statistical analyses  

 All data presented are mean values ± standard deviations (SDs). Statistical significance 

between two parametric groups was determined using a Student's or a Welch's t-test while 

significance between two non-parametric groups was determined using a Mann-Whitney U test. 

Comparisons of more than two groups of parametric data were assessed by one-way analysis of 

variance (ANOVA) followed by Tukey's test or Welch's ANOVA with Games-Howell post hoc. 

Comparisons of greater than two groups of non-parametric data were assessed by Kruskal-Wallis 

tests followed by Dunn's post hoc test. P-values less than 0.05 were considered significant. 

Results: 

Optimization of HepaRG cell seeding density for extracellular flux analysis  

 To better understand the usefulness of HepaRG to study alterations in bioenergetics we 

cultivated HepaRG cells in proliferative and differentiated cultures then harvested cells for 

bioenergetic analyses. To differentiate HepaRG, tissue culture vessels were initially seeded with 

cells in the proliferative phase of growth. Proliferative HepaRG initially appeared homogenously 

epithelial-like in morphology and were maintained for two weeks in growth medium followed by 



 21 

additional maintenance in medium supplemented with 2% DMSO to induce differentiation (13, 

24), Figure 1 A. Following the differentiation process HepaRG cells morphologically resemble 

two distinct populations of hepatocyte-like and biliary- (epithelial-) like cells (12, 15, 24), Figure 

1 B. HepaRG cells were observed daily using a phase contrast microscope and recognizable 

hepatocyte-like cells, epithelial-like cells, and bile canaliculus-like structures were noted as 

previously described (13). Cells derived from both proliferative and differentiated HepaRG 

cultures were seeded onto specialized 8-well cell culture miniplates (miniplates) for XFp 

Extracellular Flux analysis. Oxygen (O2) consumption rates (OCRs) and extracellular 

acidification rates (ECARs) were initially monitored by testing various cell densities. 

Proliferative cells were seeded at 47% (4.7 x 103 cells), 67% (6.7 x 103 cells), and 100% (1 x 104 

cells per well) and differentiated cells were seeded at 47% (9.4 x 103 cells), 67%, (1.34 x 104 

cells), and 100% (2 x 104 cells per well). Linear correlations between OCRs and ECARs versus 

cell density were observed for both cell types (Figure 1). Following these tests, miniplate wells 

were washed with DPBS, examined under a phase contrast microscope to ensure cells were not 

washed away, and total cellular protein per well was determined by bicinchoninic acid (BCA) 

assay. In agreement with the number of cells seeded per well as described above, the protein 

concentration measured in wells seeded with proliferative cells was 51% ± 4%, 61% ± 2%, and 

93% ± 10% and for differentiated cells was 39 ± 9%, 62% ± 1%, and 94% ± 8%, mean values 

with errors as standard deviations (SDs) are reported (n = 4, duplicate densities from two 

miniplates). These tests confirmed that HepaRG cells remain adherent to miniplates during 

measurement of basal extracellular OCRs and ECARs.  
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HepaRG from proliferative and differentiated cultures are sensitive to OXPHOS stressors  

 To determine mitochondrial bioenergetic profiles, cells are exposed to known 

pharmacological stressors of the OXPHOS machinery. Mitochondrial OXPHOS is the O2-

dependent process of coupling substrate oxidation to the production of the energy-rich molecule 

adenosine triphosphate (ATP). During OXPHOS molecular O2 is reduced to water (H2O). The 

XFp O2 biosensor measures the real-time rate at which cells convert O2 to H2O, the O2 

consumption rate (OCR). Empirical determination of the optimal concentrations for two 

stressors, oligomycin and FCCP, is important in order to achieve the greatest effect on OCR (30-

32). Excess FCCP may cause an abrupt reduction in OCRs (25); therefore, we investigated the 

optimal concentrations of these stressors utilizing HepaRG obtained from proliferative and 

differentiated cultures (Figure 2). Oligomycin is an inhibitor of the mitochondrial ATP synthase 

(complex V) and is used to estimate the proportion of basal respiration that is used to drive ATP 

synthesis (25), Figure 2 A. Upon treatment with oligomycin, a backup of protons builds in the 

intermembrane space causing a decrease in electron flow through the OXPHOS machinery and 

subsequent decrease in O2 consumption (31). By injecting 1, 2, or 4 PM oligomycin into 

miniplate wells seeded with proliferative or differentiated HepaRG cells, we tested extracellular 

OCR dose responses. For both cell types measurable decreases in OCRs were observed at 

concentrations of 2 PM oligomycin and higher; therefore, both cell types are sensitive to the 

complex V inhibitor and 2 PM oligomycin was used for subsequent experiments (Figure 2 B).  

 Taking advantage of the four-injection ports per well located on the XFp sensor cartridge, 

5-point FCCP titration curves were conducted (Figure 2 C and D). FCCP is a protonophore that 

can shuttle protons across the inner mitochondrial membrane and dissipate the proton-motive 

force (PMF), Figure 2 A. Following oligomycin injection, FCCP was added allowing protons 



 23 

that have been built up in the intermembrane space to dissipate back into the matrix and allowing 

electrons to resume their flow through the electron transport chain (ETC) to O2. Because 

mitochondrial respiration is coupled to ATP synthesis the process of moving protons back into 

the matrix independent of ATP synthesis is referred to as uncoupling and FCCP is typically 

referred to as an uncoupler (25). Sequential injection of 2 PM oligomycin followed by 0.125, 

0.25, and 0.5 PM FCCP final well concentrations (low range analysis) or 0.5, 1.0 and 2.0 PM 

FCCP final well concentrations (high range analysis) were performed and the effect of the 

stressors on OCRs were determined (Figure 2 C and D). Proliferative- and differentiated-derived 

HepaRG cells had peak OCRs when treated with 1 PM FCCP, thus both cell types are sensitive 

to the protonophore and 1 PM was chosen for further study. These results emphasize the 

importance of optimizing FCCP concentration to maximally activate OCRs following 

oligomycin injection, which is necessary to determine respiratory parameters (see below).  

Cells derived from proliferative and differentiated cultures have distinct bioenergetics  

 Seahorse XFp Mito Stress tests and ECAR Stress tests were carried out to determine 

bioenergetic parameters associated with OCRs and ECARs respectively. OCRs and ECARs are 

extracellular indicators of the chief energy-producing conduits in the cell, OXPHOS and 

glycolysis. To determine bioenergetic profiles, proliferative- and differentiated-derived HepaRG 

were analyzed side-by-side on XFp miniplates and exposed to stressors of the OXPHOS 

machinery. The compilation of mitochondrial parameters from Mito Stress tests are summarized 

in Table 1 and those from ECAR Stress tests are summarized in Table 2.  
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HepaRG from proliferative cultures have increased basal and ATP-linked respiration and 

decreased maximal and spare respiratory capacities 

 Mito Stress tests were conducted by sequentially injecting oligomycin, FCCP, and 

rotenone plus antimycin A. Rotenone and antimycin A are inhibitors of OXPHOS complexes I 

and III respectively and were the last stressors added during the experiment to terminate electron 

flow through the ETC and to enable calculation of oxygen consumption from non-mitochondrial 

oxidases, Figures 2 A and 3 A i (25, 33). Both proliferative- and differentiated-derived HepaRG 

cells were sensitive to rotenone and antimycin A as indicated by the acute inhibition of cellular 

OCRs following their injection (Figure 3 A). The non-mitochondrial respiration parameter is 

representative of the OCR remaining following rotenone plus antimycin A treatment. Non-

mitochondrial respiration was not significantly different between the two cell types (Table 1). 

For each cell type, the basal respiration parameter is the difference between the OCR measured 

just prior to oligomycin injection and the non-mitochondrial respiration parameter. Basal 

respiration represents the sum of the respiration used to power ATP production and respiration 

associated with proton leakage across the inner membrane. Basal respiration was slightly higher 

in cells derived from proliferative cultures in comparison to those derived from differentiated 

cultures (Table 1). Following injection of oligomycin to inhibit complex V, ATP production 

slows and respiration utilized to power ATP production decreases. The amount of basal OCR 

sensitive to oligomycin represents an estimation of ATP-linked respiration (25). A 1.4-fold 

increase in ATP-linked respiration was observed in HepaRG cells derived from proliferative 

cultures. The estimation of the fraction of basal respiration used to drive ATP synthesis (25, 28) 

also known as coupling efficiency was slightly increased 1.2-fold in proliferative-derived 

HepaRG. After subtracting the non-mitochondrial respiration rate, FCCP-stimulation of OCR 
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provides an estimate of the maximal respiratory capacity of cells and by extension the maximal 

capacity to oxidize substrates via the OXPHOS machinery. Next, the difference between 

maximal respiratory capacity and basal respiration was used to calculate spare respiratory 

capacity. Spare respiratory capacity has been defined as the extra mitochondrial capacity 

available to produce ATP during stress or increased work. Spare respiratory capacity has been 

suggested to be important for cellular function and long-term survival (34). In proliferative-

derived HepaRG, both maximal and spare respiratory capacities were decreased ~20% relative to 

differentiated-derived cells. Also, a ~30% relative decrease in proliferative- to differentiated-

derived HepaRG spare respiratory capacity as a percent was observed and this decrease is similar 

to that observed for spare respiratory capacity (Table 1). During substrate oxidation, a portion of 

the PMF is not utilized to drive ATP synthesis via complex V and some protons "leak" back into 

the matrix via inducible uncoupling proteins and through the presence (not the activity) of the 

inner membrane adenine nucleotide translocase (35). With regards to proton leak-linked 

respiration, or the remaining mitochondrial respiration in the presence of oligomycin, no 

significant difference between the two cell types was detected (Table 1).  

 As discussed earlier, the cell seeding density experiments demonstrated that the relative 

amount of total cellular protein measured in the wells was as would be expected based on the 

number of cells seeded. In agreement, when bioenergetic parameters are normalized to cells 

seeded, the relative changes between the two cell types remain similar to those observed when 

data is normalized to Pg cellular protein per well (compare fold-changes in Supplementary Table 

1 and Table 1). Furthermore, we can assess mitochondrial function utilizing internally 

normalized parameters that are calculated independently of cell number or total protein. Two of 

these parameters were discussed above, coupling efficiency and spare respiratory capacity as a 
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percent. Additionally, the ratio of ATP-linked respiration to maximal respiration can be used to 

estimate OXPHOS' ability to generate ATP relative to its maximum capacity. This parameter 

was increased nearly 2-fold in proliferative derived HepaRG (Table 1 and Supplementary Table 

1). 

HepaRG TCA cycle activity likely contributes to ECAR and 2-deoxyglucose inhibits 

extracellular acidification  

 A second XFp biosensor measures the extracellular acidification rate (ECAR) resulting 

from the cytoplasmic breakdown of glucose-derived pyruvate to lactate and the respiratory 

evolution of carbon dioxide (CO2). Glycolysis is the major cytosolic O2-independent metabolic 

pathway that converts glucose into two molecules of each of the following: pyruvate, ATP, and 

NADH. When pyruvate is shunted through the mitochondria to the pyruvate dehydrogenase 

complex (PDC) and subsequently through the tricarboxylic acid cycle (TCA), CO2 is generated. 

In solution, a molecule of CO2 can combine with a molecule of H2O forming carbonic acid that 

dissociates at physiological pH into the bicarbonate anion and a proton that contributes to 

medium acidification (25). ECAR Stress tests were conducted by sequentially injecting glucose, 

oligomycin, and 2-deoxyglucose (2-DG) into a glucose-free medium bathing either 

differentiated- or proliferative-derived HepaRG cells, Figure 3. Following sugar injection, 

oligomycin inhibits the OXPHOS machinery and allows estimation of ECAR parameters. As a 

competitive inhibitor of hexokinase, 2-DG inhibits the cell's ability to utilize free glucose to 

generate pyruvate via glycolysis and ECAR drastically decreases (31). When analyzed side-by-

side, proliferative- and differentiated-derived HepaRG cells were both sensitive to the 

hexokinase inhibitor as indicated by a reduction of ECARs following the last injections of 2-DG 

(Figure 3 B ii). Parameters such as basal ECAR, glucose-stimulated ECAR, ECAR capacity, and 
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apparent glycolytic reserve were determined (Table 2). Basal ECAR is the last of three ECARs 

measured immediately before sugar injection (Figure 3 B). Glucose-stimulated ECAR is the 

maximal rate following glucose injection (but before oligomycin injection) minus basal ECAR. 

Glucose-stimulated ECAR represents the total extracellular acidification from cellular pathways 

metabolizing free glucose including the production of cytoplasmic lactate and mitochondrial 

protons produced via CO2 hydration and dissociation.  

 In support of the presence of mitochondrial proton production in HepaRG cells, Mito 

Stress tests revealed decreases in ECAR following injection of the OXPHOS inhibitors rotenone 

and antimycin A. When ECARs are measured following rotenone and antimycin A injection (the 

twelfth time point at ~74 minutes) as compared to the rates obtained following oligomycin 

injection (the sixth time point at ~35 minutes), a difference of 10.2 ± 0.3 vs. 12.3 ± 0.4 

mpH/minute/Pg cellular protein respectively for proliferative- and 6.4 ± 0.5 vs. 9.5 ± 0.7 

mpH/minute/Pg cellular protein respectively for differentiated-derived cells were observed (n = 

6, mean values ± SD; triplicate determinations from two independent experiments, P-values < 

0.0001). Figure 3 A iii highlights ECAR data from a representative Mito Stress test. The further 

decrease in ECAR following blockage of complex I and III (relative to the increase caused by the 

upstream blockage of complex V) suggests that TCA activity is contributing modestly to ECAR 

in both cell types. However, as ECAR rates remain higher than initial basal rates for the two cell 

types following blockage of the ETC by rotenone and antimycin A, we hypothesize 

mitochondrial CO2 evolution is not the only contributing factor to ECAR (compare the twelfth 

time point at ~74 minutes to the third at ~15 minutes for both proliferative- and differentiated-

derived HepaRG, Fig. 3 A iii). Therefore, glycolysis is likely active in both cell types. In 

contrast, if ECAR remained constant or increased after exposure to rotenone and antimycin A 
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then this would suggest medium acidification results primarily from glycolysis as previously 

described (25).  

HepaRG from proliferative cultures have increased ECAR capacity and apparent glycolytic 

reserve 

 ECAR capacity is a measurement of the extracellular acidification including glucose-

stimulated ECAR and oligomycin-stimulated ECAR production, Figure 3 B. The apparent 

glycolytic reserve parameter is obtained by subtracting glucose-stimulated ECAR from ECAR 

capacity. Apparent glycolytic reserve is the estimated amount of unused glycolytic capability of 

the cell that could be utilized if cellular ATP demand was increased. Cells derived from 

proliferative and differentiated cultures did not have significant differences between their basal 

ECAR and glucose-stimulated ECAR parameters (Table 2). In contrast, when cells derived from 

both cultures are stressed with oligomycin, ECAR capacity and apparent glycolytic reserve both 

increased ~2-fold in proliferative- relative to differentiated-derived HepaRG. As part of the 

ECAR likely arises from mitochondrial protons as discussed above, the apparent glycolytic 

reserve parameter is an approximation of HepaRG glycolysis.  

Basal ATP levels but not lactate or LDH activity are increased in proliferative-derived 

compared to differentiated-derived cell cultures  

 To better understand the metabolic differences observed between proliferative- and 

differentiated-derived HepaRG via XFp analyses, we conducted follow up experiments to 

quantitate cell culture lactate, ATP, and lactate dehydrogenase (LDH) activity. Basal levels of 

proliferative- and differentiated-derived HepaRG cell culture lactate were determined utilizing 

the Lactate-GlowTM Assay (Promega), Figure 4 A. The lactate detection reagent consists of 

LDH, NAD+, reductase, pro-luciferin reductase substrate, and luciferase. This assay utilizes an 
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L-lactate selective LDH to oxidize lactate in biological samples to pyruvate and to generate 

NADH. In the presence of NADH, the reductase substrate is converted by reductase to luciferin, 

which in the presence of luciferase produces light. The luminescent signal that is produced is 

proportional to the amount of lactate in a sample. Luminescence was measured using a 

microplate reader and the concentration of lactate was estimated in each sample well of 96-well 

plates containing both cell types. Both proliferative- and differentiated-derived HepaRG 

produced ~0.3 PM lactate/Pg cellular protein, Figure 4. A.  

 To determine proliferative- and differentiated-derived HepaRG LDH activity levels, we 

separately lysed both cell types in Triton X-100 then measured LDH activity in the whole-cell 

lysates using the CytoTox-ONETM Homogeneous Membrane Integrity Assay (36). The CytoTox-

ONETM assay measures LDH with a coupled enzymatic reaction that results in the conversion of 

resazurin into the fluorescent resorufin, which is proportional to the amount of LDH. The 

fluorescent signals were then measured using a microplate reader. Cell lysates from both cell 

types harbored indistinguishable LDH activities, ~40,000 RFUs/Pg cellular protein.  

 Next, we examined proliferative- and differentiated-derived HepaRG cellular ATP levels 

utilizing the CellTiter-Glo® 2.0 Assay (Promega). The luciferase reaction for this assay generates 

a luminescent signal proportional to the amount of ATP present in the sample (37). A significant 

1.6-fold increase in proliferative-derived cellular ATP levels relative to differentiated-derived 

HepaRG levels was detected (Figure 4 C). 

Metformin prevents APAP-induced loss of cellular viability in differentiated HepaRG cultures 

 Both APAP and metformin have been reported to impair mitochondrial functions (17, 18, 

21). In mouse hepatocytes, it is generally accepted that APAP is hepatotoxic causing necrosis, 

and APAP overdose causing necrotic cell death has been proposed for differentiated HepaRG 
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(17). Metformin has traditionally been used to treat diabetes but more recently metformin has 

been associated with improved survival rates in cancer (21). To gain an understanding of drug 

effects on proliferative versus differentiated HepaRG hepatocarcinoma-derived cells we explored 

the effects of APAP, metformin, or both drugs on cellular viability and mitochondrial 

bioenergetics. Both types of cultures were separately exposed to 20 mM APAP, 1 mM 

metformin, or 20 mM APAP + 1 mM metformin. As formation of APAP-protein adducts peak at 

6 hours post-treatment, and to avoid potential metabolic activation of APAP, metformin was 

added 6 hours after APAP (17, 18). Proliferative HepaRG cultures displayed extreme sensitivity 

to APAP as indicated by ~50% decreases in cellular viability on treatment with APAP or APAP 

+ metformin (Figure 5 A). Relative to vehicle control treated cultures differentiated HepaRG 

treated with APAP had a 21% reduction in cellular viability (Figure 5 B). Exposure to metformin 

only did not have an effect on proliferative or differentiated cellular viability; however, the 

addition of metformin 6 hours post-APAP to differentiated HepaRG prevented APAP-induced 

loss of cellular viability (Figure 5 B).  

Distinct mitochondrial bioenergetic alterations in proliferative- and differentiated-derived 

HepaRG are associated with exposure to APAP  

 As incubation with APAP induced loss of cellular viability in both types of culture, and 

metformin offered protection against the loss of cellular viability in differentiated cultures, we 

examined the effects of APAP or APAP + metformin treatment on mitochondrial bioenergetics 

using the Seahorse XFp. Compared to vehicle control, proliferative-derived HepaRG separately 

treated with APAP and APAP + metformin had 1.7- and 1.6-fold increases in proton leak-linked 

respiration respectively, Figure 6 A. Additionally, both treatments resulted in 1.2-fold increases 

in the ratio of ATP-linked respiration to maximal respiration respectively and slight decreases in 
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percent spare respiratory capacity (~30% less for APAP and APAP + metformin) and coupling 

efficiency (~17% less for APAP and 14% less for APAP + metformin), Figure 6 A. 

Differentiated-derived cells exposed to APAP had an ~13% decrease in basal respiration and an 

~15% decrease in ATP-linked respiration, Figure 6 B. When metformin was added 6 hours post-

APAP treatment decreases in differentiated-derived HepaRG basal respiration and ATP-linked 

respiration were prevented, Figure 6 B.  

Metformin reduces ATP-linked respiration, maximal respiratory capacity, and basal 

respiration in proliferative-derived HepaRG 

 The effects of metformin on HepaRG mitochondrial bioenergetics were assessed by 

incubating cells with 1 mM metformin for 18 hours prior to seeding viable cells on SH 

miniplates. With the exception of coupling efficiency, significant differences on exposure to 

metformin were not detected for differentiated-derived HepaRG Mito Stress test parameters. In 

comparison to vehicle control treated cells, differentiated-derived HepaRG treated with 1 mM 

metformin had a slight decrease in coupling efficiency, 100 ± 4 to 94 ± 5 % (n ≥ 9, 

≥quadruplicate from two independent experiments with different preparations of cells; P<0.05). 

In proliferative-derived HepaRG, maximal respiratory capacity, ATP-linked respiration, and 

basal respiration were all reduced ~30% compared to vehicle control treated cells (Figure 7). 

Discussion 

 Use of animal models has been controversial due to the lack of efficacy and unexpected 

toxicity in some model systems including rodents (38). In one large study comparing human and 

animal drug toxicities, only 43% of rodent model cases correctly predicted human toxicity (39). 

The hepatoma-derived HepaRG cell line represents a useful alternative to animal models to study 

the differentiation process, carcinogenesis, hepatocyte toxicity, and drug metabolism (12, 15). To 



 32 

better understand the practicality of utilizing HepaRG to analyze the pharmacological inhibition 

of metabolic energy-producing pathways, the XFp Extracellular Flux Analyzer was employed. 

Evidence suggests that carbon source choice in tissue culture media affects cellular physiology 

and replacing glucose with galactose has been reported to increase the susceptibility of cells to 

mitochondrial toxicants (40-42). On the other hand, low glucose but not galactose has been 

reported to enhance oxidative mitochondrial metabolism (43). To ensure the preservation of the 

HepaRG phenotype that was carefully selected for by Gripon et al., and has been used in many 

studies thereafter, we strictly adhered to the published culture conditions that were also reiterated 

by the vendor, Biopredic International (11-13, 15). Following supplement additions to Williams' 

E Medium to make either WGM or WDM the final glucose concentrations were ~10 mM, which 

is similar to the human postprandial plasma level of ~9 mM (44).  

 Side-by-side comparisons of proliferative- and differentiated-derived HepaRG cells 

revealed that both cell types are sensitive to stressors of glycolysis (2-DG) and OXPHOS 

(oligomycin, FCCP, and rotenone plus antimycin A). Furthermore, distinct bioenergetic profiles 

were revealed by ECAR and mitochondrial OCR analyses. In comparison to differentiated-

derived cells, proliferative-derived cells had increases in the proportions of basal respiration and 

ATP-linked parameters and slight decreases in maximal and spare respiratory capacities (Table 

1). These results are in agreement with observations by Divakaruni et al., which suggest that 

other proliferative cells such as cortical astrocytes, C2C12 myoblasts, and A549 lung epithelial 

cells have lower spare capacities and proportionally higher ATP-linked respiration parameters in 

comparison to terminally differentiated cortical neurons, C2C12 myotubes, and white adipocytes 

respectively (25). In agreement with the 1.4-fold increase in proliferative-derived HepaRG ATP-

linked respiration (Table 1), we found 1.6-fold higher levels of ATP in proliferative-derived cell 
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cultures in comparison to differentiated-derived cultures (Figure 4 C). We hypothesize that an 

increase in proliferative cell ATP is likely due to higher biosynthetic demands required for cell 

division in comparison to differentiated cells. Differentiated cells exist in a quiescent stationary 

or contact inhibited phase (15, 45). Similar to other post-mitotic cells (25) differentiated-derived 

HepaRG had increased spare respiratory capacity suggesting differentiated cells maintain the 

ability to execute energy-demanding functions when the need arises.  

 Proliferative- and differentiated-derived cell culture lactate and LDH levels were 

comparable as were ECAR bioenergetic parameters: glucose-stimulated ECAR and basal ECAR 

(Table 2 and Figure 4). These results suggest that under basal conditions both cell types utilize 

glycolysis to a similar extent. However, recognizable differences were revealed by ECAR 

bioenergetic analysis of the two cell types. ECAR capacity and apparent glycolytic reserve were 

significantly increased in proliferative-derived HepaRG cells (Table 2). Comparing HepaRG 

following proliferative and differentiated culture conditions revealed distinct bioenergetic 

signatures with the ratio of ATP-linked respiration to maximal respiration and apparent 

glycolytic reserve having the largest differences among the sets of Mito Stress test and ECAR 

Stress test parameters. Our bioenergetic results support that proliferating HepaRG require a large 

amount of energy and in addition to increased ATP-linked respiration maintain an unused 

reserve of glycolytic capacity to quickly generate energy if required. Furthermore, glycolysis 

intermediates are necessary for biosynthesis of amino acids, nucleotides, and lipids all of which 

are required by actively cycling cells. Intracellular glycogen metabolism, which converts 

glycogen into pyruvate, does not require hexokinase; therefore, glycogenolysis may account for 

some of the observed basal ECAR and for extracellular acidification remaining following 2-DG 

injection (Figure 3 B ii). As mentioned previously, as pyruvate is metabolized through PDC and 
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the TCA cycle, molecules of CO2 are yielded that contributes to medium acidification as CO2 

hydrates and dissociates into bicarbonate anions and protons. Likewise, the TCA cycle 

intermediate D-ketoglutarate derived from glutamine anaplerosis can be utilized as a source of 

energy and may contribute to basal ECAR as Seahorse assay media contains 2 mM glutamine 

(26). Beta-oxidation of endogenous fatty acids to produce acetyl CoA, which feeds into the TCA 

cycle, could also contribute to basal ECAR levels.  

 After 24 hours of exposure to the hepatotoxic drug APAP, both proliferative- and 

differentiated-derived HepaRG had reduced viability (Figure 5). The 21% loss in differentiated 

HepaRG viability is in agreement with another study indicating that after 24 hours of exposure to 

20 mM APAP, differentiated HepaRG had a 29% increase in LDH release, which is an indicator 

of cell death (17). In addition to increased LDH release, differentiated HepaRG mitochondrial 

membrane potential was decreased (17). In another study, after exposing differentiated HepaRG 

cells for 24 hours to 10 mM APAP an ~20% LDH release has also been reported (46). Treatment 

of differentiated HepaRG cultures with metformin 6 hours after APAP exposure has been 

demonstrated to protected cells from APAP-induced cell injury (18). Similarly, when we 

examined differentiated HepaRG we observed metformin prevented the loss of APAP-induced 

cell viability. Distinguishingly, proliferative HepaRG were extremely sensitive to APAP 

treatment even in the presence of metformin (Figure 5).  

 Distinct mitochondrial bioenergetic profiles were observed for the two cell phases upon 

exposure to APAP. Metformin did not prevent APAP-induced alterations in proliferative-derived 

cell bioenergetics (Figure 6). Proliferative-derived HepaRG mitochondria responded to APAP or 

to APAP + metformin treatment by increasing proton leak and the ratio of ATP-linked 

respiration to maximal respiration. In addition, proliferative-derived HepaRG responded to 
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APAP or to APAP + metformin treatment by slightly decreasing percent spare respiratory 

capacity and coupling efficiency. Treatment of proliferative-derived cells with only 1 mM 

metformin reduced ATP-linked respiration, maximal respiratory capacity, and basal respiration 

(Figure 7); however, at this concentration, there was no effect on cellular viability (Figure 5). 

The decrease in proliferative-derived HepaRG basal respiration upon exposure to metformin is 

consistent with decreased basal OCRs observed with FTSECs and in HGSC cells treated with 

metformin (21). Interestingly, in 3 out of 5 HGSC cell lines 10 mM metformin completely 

inhibited proliferation (21). Upon exposure to APAP differentiated-derived HepaRG had reduced 

ATP-linked respiration and basal respiration and the addition of metformin prevented these 

decreases (Figure 6 B). Similarly, another study found that metformin prevented a decrease in 

APAP-induced coupled respiration in differentiated HepaRG (18). In contrast, we did not 

observe an effect of APAP on differentiated-derived HepaRG proton leak and postulate this 

could be due to differences in cell seeding densities between the two studies.  

 Evidence supports that mitochondria are vulnerable to attack by certain drug classes and 

it has been argued that these important organelles could be vulnerable to environmental toxicants 

(47). Drug classes such as antibiotics, thiazolidinediones, antivirals, statins, fibrates, and 

anticancer agents have been demonstrated to cause mitochondrial toxicity (6, 42). Recently, the 

HepG2 hepatocellular carcinoma cell line was utilized to screen unique environmental and drug-

like compounds and 913 compounds that disrupted mitochondrial membrane potential were 

identified (48). Potent compounds that were discovered include triethyltin bromide, 

carbocyanine, basic blue 7, and bryostatin. By selecting drugs or compounds known to disrupt 

mitochondrial functions, we suggest HepaRG could provide an important system to study 

mechanisms of mitochondrial function and dysfunction in proliferating and differentiated culture 
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phases. In conclusion, our results support that HepaRG represents an appropriate model system 

to study drug-induced bioenergetic dysfunctions.  
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Table 1. Proliferative- and differentiated-derived HepaRG mitochondrial parameters 
Bioenergetic parameter  Proliferative OCRsa 

(pmol O2/min/Pg cellular 
protein) 

Differentiated OCRsa 

(pmol O2/min/Pg cellular 
protein) 

Fold-
Change 

P-valueb 
(Fold-change) 

Basal respiration 22.00 ± 1.42 18.39 ± 2.41 1.2 < 0.02 
ATP-linked respiration 16.19 ± 0.61 11.38 ± 1.86 1.4 < 0.001 
Maximal respiratory capacity 97.46 ± 5.47 116.75 ± 8.98 0.8 < 0.002 
Spare respiratory capacity 75.46 ± 4.60 98.37 ± 6.89 0.8 < 0.0001 
Proton leak-linked respiration 5.81 ± 1.51 7.01 ± 0.65 0.8 0.2 
Non-mitochondrial respiration  8.91 ± 1.33 7.62 ± 0.70 1.2 0.06 
Spare respiratory capacity as a 
%c 

443.70% ± 21.28% 639.43% ± 45.56% 0.7 < 0.0001 

Coupling efficiencyc 0.74 ± 0.05 0.62 ± 0.02 1.2 < 0.003 
Ratio of ATP-linked respiration 
to maximal respirationc 

0.17 ± 0.01 0.10 ± 0.01 1.7 < 0.003 

aData are presented as mean ± SD, n = 6 (triplicate from two independent experiments performed on different days with different 
preparations of cells). 
bP-values < 0.05 were accepted as significantly different.  
cInternally normalized parameters that are independent of cell number. These parameters are useful when difficulties arise controlling 
cell number or total protein (25).  
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Table 2. Proliferative- and differentiated-derived HepaRG ECAR parameters 
Bioenergetic parameter  Proliferative ECARsa 

(mpH/min/Pg cellular 
protein) 

Differentiated ECARsa 

(mpH/min/Pg cellular 
protein) 

Fold-
Change 

P-valueb 
(Fold-

change) 
Glucose-stimulated ECAR 0.84 ± 0.34 1.14 ± 0.56 0.7  0.3 
ECAR capacity 7.32 ± 1.24  3.94 ± 0.78 1.9 < 0.0001 
Apparent glycolytic reserve 6.48 ± 1.4 2.80 ± 0.70 2.3 < 0.001 
Basal ECAR 3.97 ± 0.93 2.85 ± 0.93 1.4 0.08 
aData are presented as mean ± SD, n ≥ 5 (duplicate or triplicate from two independent experiments performed on different days with 
different preparations of cells). 
bP-values < 0.05 were accepted as significantly different.  
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Figure legends:  
 
Fig. 1. HepaRG morphology and optimization of cell seeding density for XFp analysis. A i. 

Proliferative & B i. Differentiated HepaRG cell cultures. Hepatocyte-like and epithelial-like cells 

are indicated by “h” and “e” respectively. The arrow emphasizes a bile canaliculus-like structure. 

Scale bars, 40 Pm. Various densities of viable cells per well were seeded into miniplate wells to 

determine basal oxygen consumption rates (OCRs) for A ii. Proliferative-derived and B ii. 

Differentiated-derived cells and basal extracellular acidification rates (ECARs) for A iii. 

Proliferative-derived and B iii. Differentiated-derived cells. Data are presented as mean ± SD, n 

= 4 (duplicates from two miniplates). R-squared values were ~0.99 as determined by linear 

regression analysis. 

 

Fig. 2. HepaRG cells are sensitive to OXPHOS metabolic stressors. A. Cartoon of the 

mitochondrial inner membrane OXPHOS machinery targeted by key stressors of the Agilent 

Seahorse XFp Cell Mito Stress Test. B. Optimization of the oligomycin concentration required to 

inhibit cellular OCRs. Data are presented as mean ± SD, n = 4 (duplicates from two miniplates). 

C & D FCCP dose-response tests to stimulate oxygen consumption are shown for C. 

proliferative-derived and D. differentiated-derived HepaRG. The three sequential injections of 

FCCP are represented by FCCP-1, -2, and -3 (C & D i). OCR responses to low range FCCP 

concentrations are represented by black circles (i) and dark grey bars (ii) while responses to high 

range FCCP concentrations are represented by black squares (i) and light grey bars (ii). Mean % 

of baseline OCR values measured immediately post FCCP injections are graphed in C & D ii to 

emphasize stimulation of oxygen consumption. Data in C & D are presented as mean ± SD, n = 
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6 (triplicate from two miniplates). For several data points, error bars are not shown as the error 

bars are shorter than the height of the symbol. A.A., antimycin A; OLIGO, oligomycin.  

 

Fig. 3. HepaRG cells derived from proliferative and differentiated cultures have distinctive 

bioenergetic parameters. A. Results from a representative Mito Stress test comparing 

proliferative- (Prolif.) and differentiated- (Diff.) derived HepaRG side-by-side on a cell culture 

miniplate. i. Description of mitochondrial bioenergetic parameters: basal respiration (Basal 

resp.), ATP-linked respiration (ATP-linked resp.), maximal respiratory capacity (Max. resp. 

cap.), spare respiratory capacity (Spare resp. cap.), proton leak, and non-mitochondrial 

respiration (Non-mito resp.). Metabolic stressors are injected sequentially from Ports A (2 PM 

oligomycin final well concentration), B (1 PM FCCP final well concentration), and C (0.5 PM 

antimycin A + 0.5 PM rotenone, final well concentrations). ii. OCR and iii. ECAR results for 

both cell types. B. Results from a representative ECAR Stress test comparing Prolif. and Diff.-

derived HepaRG side-by-side on a cell culture miniplate. i. Description of ECAR bioenergetic 

parameters: basal ECAR, Glucose-stimulated ECAR (Gluc.-Stim.), ECAR capacity (ECAR 

Cap.), and apparent glycolytic reserve (Glycolytic Reserve). First, final well concentrations of 10 

mM glucose were injected from A ports, followed by 2 PM oligomycin (B ports), and ~51 mM 

2-DG (C ports). ii. ECAR and iii. OCR results for both cell types. Data are presented as mean ± 

SD, n = 3. For several data points errors are not shown as the error bars are shorter than the 

height of the symbol. Oligo., oligomycin; Rot., rotenone; A.A., antimycin A; Gluc., glucose; 2-

DG, 2-deoxyglucose.  
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Fig. 4. Proliferative-derived HepaRG cell cultures have increased ATP levels. Quantitation of 

cell culture A. lactate, B. LDH activity, and C. ATP levels in proliferative (Prolif.)- and 

differentiated (Diff.)-derived HepaRG. Lactate, LDH activity, and ATP levels were determined 

with Lactate-Glow,TM CytoTox-ONE,TM and CellTiter-Glo® 2.0 assays respectively (****, 

P<0.0001). Data are presented as mean ± SD, n ≥ 24 (≥12 from two independent experiments 

performed on different days with different preparations of cells). 

 

Fig. 5. Metformin treatment of differentiated HepaRG blocks APAP-induced loss of cellular 

viability. Cells were treated with 20 mM APAP and 1 mM metformin (MET) was added 6 hours 

later. Cells were harvested 24 hours after the addition of APAP and cellular viability was 

determined by the trypan blue exclusion method. A. Proliferative HepaRG cells are sensitive to 

APAP-induced loss of cellular viability in the absence or presence of MET (****, P<0.0001 

compared with control; $$$$, P<0.0001 compared with MET). B. Differentiated HepaRG cells 

are sensitive to APAP-induced loss of cellular viability. In the presence of MET the APAP-

induced loss of viability is prevented (*, P<0.05 compared with control; $, P<0.05 compared 

with MET; #, P<0.05 compared with APAP + MET). In A. and B. the number of viable cells 

treated with vehicle (control) was set to 100%. Data are presented as mean ± SD, n ≥ 8 

(≥quadruplicate from two independent experiments performed on different days with different 

preparations of cells) relative to control.  

 

Fig. 6. Metformin treatment prevents APAP-induced alterations in differentiated-derived 

HepaRG mitochondrial bioenergetics but not in proliferative-derived cultures. A. Proliferative-

derived HepaRG were separately treated with media containing vehicle control, 20 mM APAP + 
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1 mM metformin, and 20 mM APAP then seeded into miniplate wells for comparative analysis 

of bioenergetic parameters. For each experiment, two consecutive Mito Stress tests were run. 

Data are presented as mean ± SD, n ≥ 7 (triplicate or quadruplicate from two independent 

experiments using different preparations of cells) relative to vehicle control (set to 100% OCR). 

B. Differentiated-derived cells were treated with drugs and seeded into miniplate wells as 

described in A. For each experiment, at least two consecutive Mito Stress tests were run. Data 

are presented as mean ± SD, n ≥ 14 (≥triplicate from three independent experiments using 

different preparations of cells) relative to vehicle control (set to 100% OCR); *, P<0.05 

compared with control. 

 

Fig. 7. Metformin reduced proliferative-derived HepaRG mitochondrial bioenergetics. 

Proliferative-derived cells were separately treated with media containing vehicle control or 1 

mM metformin then seeded into miniplate wells and Mito Stress tests were run. A. ATP-linked 

respiration (ATP-linked resp.), B. maximal respiratory capacity (Max. Resp. Cap.), and C. basal 

respiration (Basal Resp.). Data are presented as mean ± SD, n = 7 (triplicate and quadruplicate 

from two independent experiments using different preparations of cells) relative to vehicle 

control (set to 100% OCR); *, P<0.05 compared with control. 
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Supplementary Figure 1. Proliferative- and differentiated-derived HepaRG OCR and ECAR 
bioenergetic analyses. A. Mito Stress test (data presented are mean ± SD, n = 3) and B. ECAR 
Stress test (data presented are mean ± SD, n ≥ 2). The tests were conducted as described in the 
legend for Figure 3.  
 
Supplementary table 1. Proliferative- and differentiated-derived HepaRG mitochondrial 
parameters normalized to cells seeded 
Bioenergetic parameter  Proliferative OCRsa 

(pmol O2/min/cells 
seeded) 

Differentiated OCRsa 

(pmol O2/min/cells 
seeded) 

Fold-
Change 

Basal respiration 0.0069 ± 0.0008 0.0051 ± 0.0010 1.35 
ATP-linked respiration 0.0051 ± 0.0003 0.0032 ± 0.0007 1.59 
Maximal respiratory capacity 0.0307 ± 0.0028 0.0326 ± 0.0045 0.94 
Spare respiratory capacity 0.0238 ± 0.0021 0.0274 ± 0.0035 0.87 
Proton leak-linked respiration 0.0019 ± 0.0006 0.0020 ± 0.0003 0.95 
Non-mitochondrial respiration  0.0028 ± 0.0003 0.0021 ± 0.0003 1.33 
Spare respiratory capacity as a 
%b 

443.70% ± 21.28% 639.43% ± 45.56% 0.69 

Coupling efficiencyb 0.74 ± 0.05 0.62 ± 0.02 1.20 
Ratio of ATP-linked respiration 
to maximal respirationb 

0.17 ± 0.01 0.10 ± 0.01 1.70 

aData are presented as mean ± SD, n = 6 (triplicate from two independent experiments performed 
on different days with different preparations of cells). 
bInternally normalized parameters that are independent of cell number. 
 
Supplementary table 2. Proliferative- and differentiated-derived HepaRG ECAR parameters 
normalized to cells seeded 
Bioenergetic parameter  Proliferative ECARsa 

(mpH/min/cells seeded) 
Differentiated ECARsa 

(mpH/min/cells seeded) 
Fold-

Change 
Glucose-stimulated ECAR 0.00029 ± 0.00014 0.00034± 0.00016 0.85 
ECAR capacity 0.0024 ± 0.0002  0.0012 ± 0.0002 2.00 
Apparent glycolytic reserve 0.0021 ± 0.0002 0.0008 ± 0.0002 2.63 
Basal ECAR 0.0013 ± 0.0001 0.0008 ± 0.0002 1.63 

aData are presented as mean ± SD, n ≥ 5 (duplicate or triplicate from two independent 
experiments performed on different days with different preparations of cells).  
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