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Aging is a naturally occurring decline of physiological processes and biological pathways
that affects both the structural and functional integrity of the body and brain. These
physiological changes reduce motor skills, executive function, memory recall, and
processing speeds. Aging is also a major risk factor for multiple neurodegenerative
disorders including Alzheimer’s disease (AD). Identifying a biomarker, or biomarkers,
that signals the transition from physiological to pathological aging would aid in earlier
therapeutic options or interventional strategies. Considering the importance of glutamate
signaling in synaptic plasticity, motor movement, and cognition, this neurotransmitter
serves as a juncture between cognitive health and disease. This article discusses
glutamatergic signaling during physiological aging and the pathological changes
observed in AD patients. Findings from studies in mouse models of successful aging
and AD are reviewed and provide a biological context for this transition. Finally, current
techniques to monitor brain glutamate are highlighted. These techniques may aid in
elucidating time-point specific therapeutic windows to modify disease outcome.

Keywords: excitotoxcity, neurodegenerative disease, amyloid—beta, geroscience, biomarker, hippocampus,
neuroimaging, growth hormone receptor knockout

INTRODUCTION

Aging is a complex biological process accompanied by declines in physiological function leading to
increased susceptibility for disease and death (Carmona and Michan 2016). Aging is inevitable,
occurring in all organisms with time. Over the past decades, innovative improvements in medicine
have extended human life span and prolonged the aging process. But, a concomitant improvement to
geriatric health has not followed. This unprecedented aging of the human population in developed
nations has resulted in people living with multiple chronic health conditions (Barzilai et al., 2018).
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Maintaining their quality of life has created a significant socio-
economic burden on both family members and governments.
Accordingly, the geroscience hypothesis postulates that slowing
the rate of biological aging can prevent, delay, or ameliorate the
development of these chronic conditions leading to
successful aging.

Research over the past decades has elucidated nutritional,
genetic, and pharmacological interventions that can increase
life span of numerous model organisms such as yeast,
Caenorhabditis elegans, Drosophila melanogaster, and
mammals. Some of these life span extension mechanisms have
shown therapeutic potential in numerous model organisms of
neurodegenerative disorders including Alzheimer’s disease (AD)
(Soo et al., 2020). These beneficial effects have translated poorly
into human clinical trials. By the time chronic illness becomes
evident, the biological mechanisms governing healthy aging have
succumbed to the chronic condition. Intervening years before the
onset of chronic illness is ideal, but involves individual life style
modifications such as diet and exercise. Despite their known
health benefits long term adherence to these regimens is poor.
Identifying the juncture when physiological aging transitions into
a pathological disease state provides an opportune
pharmacological window to modify disease outcome before
onset of clinical symptoms.

Biomarkers are becoming increasingly common for use in
understanding the physiological processes that occur with age
and disease onset, (Crimmins et al., 2008). Biomarkers are
molecules present in blood, body fluid, and tissues that can be
quantitatively measured to directly assess disease onset or
progression. The continuous progression of molecular
diagnostics allows for accurate detection and quantification of
biomarkers for various uses. Biomarkers have been separated into
two types: biomarkers of exposure and biomarkers of disease. Our
laboratory focuses on biomarkers of disease with a goal of earlier

diagnosis and tighter monitoring of disease progression (Mayeux
2004). Within biomarkers of disease are functional biomarkers
which provide a direct measurement of target engagement. In
order to use a biomarker, there must be a distinguishable
quantifiable change in the amount of the marker present in
the healthy versus diseased population. For example, amyloid-
β42, phosphorylated tau, and neurofilament light chain provide
diagnostic utility when used in concert to evaluate AD
progression (Jack et al., 2016). Although these proteins
provide an indication of disease severity, they do not indicate
the initial change from physiological aging to pathological
disease. We propose examination of central nervous system
(CNS) glutamate levels as a functional biomarker due to its
role in procognitive changes before mild cognitive impairment
(MCI) and eventual onset of AD. The focus of this article is to
discuss changes in glutamatergic regulation as it relates to aging
and AD. Based on our work and the research of others, we believe
monitoring glutamate dynamics as a viable biomarker for
identifying the conversion from healthy physiological aging to
pathological dysfunctional aging.

OVERVIEW OF GLUTAMATERGIC
NEUROTRANSMISSION

Glutamate is the most abundant neurotransmitter in the CNS
with glutamate receptors present on more than 90% of neurons
and 40% of synapses (Bukke et al., 2020; Conway, 2020;
Gasiorowska et al., 2021). Currently, there are over 20
glutamate receptors identified within the CNS with each
individual receptor having multiple subtypes (Pankevich et al.,
2011). Glutamate homeostasis is critical for healthy aging and
reducing the risk for various neurological diseases including
epilepsy, addiction, amyotrophic lateral sclerosis, Parkinson’s
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disease, AD, and more (Scofield et al., 2016; Alcoreza et al., 2021).
Physiologically, glutamate plays a critical role in synaptic stability
and plasticity (Tapiero et al., 2002). The functional elements
encompassing glutamate neurotransmission are the pre and
postsynaptic neurons along with glial cells which are
conjunctionally defined as the “tripartite synapse,” (Halassa
et al., 2007; Lalo et al., 2021). The tripartite synapse functions
through both metabotropic and ionotropic receptors. A
comprehensive review of these receptors and their functions
are detailed elsewhere (Findley et al., 2019) and briefly
discussed below.

Glutamate is synthesized from glutamine by glutaminase in
presynaptic neurons where it is then transported to synaptic
terminals (Revett et al., 2013). While in the synaptic terminal,
glutamate is stored into vesicles by vesicular glutamate
transporters (VGLUT) 1–3 for immediate release upon
neuronal depolarization (Takamori et al., 2000; Fremeau et al.,
2004). Signaling is mediated through ionotropic and
metabotropic glutamate receptors (iGluR and mGluR) located
throughout the tripartite synapse. Signal transduction is
terminated by uptake into high-efficiency excitatory amino
acid transporters (EAATs) which are predominantly located
on astrocytes. Once in the astrocyte, glutamine synthetase
converts glutamate into glutamine where it can be released
back into the extracellular space for return to the presynaptic
terminal in a process referred to as the glutamate/glutamine cycle.
Together, iGluR, mGluR, and EAATs act as critical regulators of
the glutamatergic system through modulating signal strength and
extracellular concentrations of glutamate. Meticulous regulation
of extracellular glutamate is crucial to prevent persistent receptor
activation that can result in excitotoxicity and neuronal loss.

iGluRs are formed by heterotetrametric and homotetrameric
subunits and are voltage sensitive and fast acting due to the influx
of ions across the plasma membrane (Pankevich et al., 2011).
These receptors are expressed both pre- and post-synaptically
(Wisden and Seeburg 1993). There are three subtypes of
ionotropic receptors: N-methyl D-aspartate (NMDAr), α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPAr), and kainate receptors. The NMDAr and AMPAr
are colocalized on the postsynaptic membrane as they are
functionally dependent on one another during membrane
depolarization (Takumi et al., 1999). The quick activation of
AMPAr facilitates the NMDAr by depolarizing the membrane
and allowing for NMDAr to overcome the Mg2+ blockade.
However, NMDAr and AMPAr interact with glutamate
independently. NMDAr are comprised of subunits that
provide different functions. The NR2A and NR2B subunits
bind with glutamate and have been shown to mediate
excitotoxicity in cultured cortical neurons (Engelhardt et al.,
2007). The high density of NMDAr expressed on neurons and
astrocytes throughout the brain, and most notably in the
hippocampus, contribute to learning, memory, and synaptic
plasticity (Barco et al., 2006; Lee et al., 2010), but
overactivation drives neuronal loss. This dichotomy is due to
the cellular localization of these receptors. Synaptic NMDAr
activation drives calcium-mediated transcriptional changes to
promote neuronal health and resistance to cellular insults.

Extrasynaptic NMDAr activation is coupled to multiple
signaling pathways that reduces stress resistance and drives
apoptosis which may be an initiating factor for multiple
neurodegenerative disorders (Hardingham and Bading, 2010).

AMPAr interact with glutamate through four subunits
(GluA1–GluA4) that are highly homologous with conserved
transmembrane and extracellular domains (Collingridge et al.,
2004; Chater and Goda 2014). Presynaptically, AMPAr function
to promote synapse and spine formation (Isaac et al., 2007). The
functions of AMPAr in learning and memory are not well
characterized, however, AMPAr are suspected to play a role in
synaptic plasticity through augmentation of Ca2+ entry into
NMDAr (Chater and Goda 2014). AMPAr are also important
for potentiating other receptors in the cell signaling process.
iGluRs are important for mediating rapid neuronal
communication whereas metabotropic receptors gradually
mediate changes through signal transduction pathways.

mGluRs are slow acting signal transducers present on both
presynaptic and postsynaptic neurons (Revett et al., 2013). There
are three subgroups of mGluRs distinguishable by their
pharmacological and signaling properties. Group I is
comprised of postsynaptically expressed Gq-coupled receptors
while Groups II and III are Gi/o-coupled inhibitory auto
receptors expressed both presynaptically and postsynaptically
(Petralia and Wenthold 1996; Rudy et al., 2015). Dysregulated
mGluR signaling contributes to anxiety, depression, learning
impairments, cognitive decline, and choreas. mGluR1 and
mGluR5 are identified as Group I receptors and facilitate the
activity of various kinases (Ménard and Quirion 2012).
Activation of mGluR1 and mGluR5 has also been shown to
induce long term depression (LTD), a type of synaptic
plasticity that decreases responsiveness to glutamate.
Therefore, Group I receptors are important for memory
formation and learning processes (Kang and Kaang 2016).
Group II receptors include mGluR2 and mGluR3. These
receptors are inhibitory autoreceptors and play a critical role
in glutamate regulation as they are situated both presynaptically
and postsynaptically (Hascup et al., 2012). Group III receptors are
comprised of mGluR4, mGluR7, and mGluR8 in the cerebrum.
These three receptors have been established as neuroprotectants
with the capability to induce both long-lasting potentiation of
glutamatergic transmission and inhibition of glutamatergic
transmission (Neugebauer, et al., 1997; Schrader and Tasker
1997; Grueter and Winder 2005). The dual location of
mGluRs facilitates both suppression and increased glutamate
signaling (Swanson et al., 2005; Lesage and Steckler 2010). The
extensive distribution of mGluRs can help to monitor
extracellular glutamate levels and modulate the glutamatergic
tone. Therefore, the conservation of iGluRs and mGluRs and
their ability to modulate the glutamatergic system across aging
are important for maintaining cognitive health.

PHYSIOLOGICAL AGING

Aging is a naturally occurring decline of physiological
processes modifying various biochemical pathways
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throughout the life span of all organisms (Bartke 2021).
Physiological declines in motor movement, metabolism,
inflammation, and executive function are prevalent and vary
between individuals and sexes (Peters 2006). These declines
are attributed to numerous factors including sarcopenia,
adiposity, and arteriosclerosis. Aging also affects both
structural and functional integrity of the brain contributing
to these physiological declines.

GLUTAMATE REGULATION IN
PHYSIOLOGICAL AGING

The abundance of glutamate and glutamate receptors present
in the brain contribute to the desire to understand how the
glutamatergic system can contribute to the aging processes.
Brain morphological changes such as cortical thinning and
synaptic pruning are important aspects of brain development,
but these become more pronounced with age leading to altered
glutamatergic neurotransmission (Segovia et al., 2001;
Anderton 2002; Brans et al., 2010). These age-related
changes in glutamate occur in the hippocampus, prefrontal
cortex, and motor and sensory areas (Segovia et al., 2001;
Kaiser et al., 2005; Raininko and Mattsson 2010) that helps to
explain the subsequent cognitive, motor, and sensory decline
in healthy aging.

During healthy aging, there is general agreement that the
total pool for neuronal glutamate signaling decreases
(Gasiorowska et al., 2021). Examination of healthy
individuals between the ages of 24 and 68 found that older
subjects had lower glutamate concentrations in the motor
cortex as compared to younger subjects (Kaiser et al., 2005).
Similar age-related glutamate decline was seen in the striatum
but not the pons or cerebellum (Zahr et al., 2013). Two meta-
analyses of healthy aging humans using magnetic resonance
spectroscopy (MRS) revealed that brain glutamate
concentrations decrease in conjunction with brain volume
shrinkage (Roalf et al., 2020; Sydnor and Roalf 2020). These
physiological changes may start by midlife. Glutamate
concentrations decreased 0.33 mM/year in the medial
frontal cortex of 18–31 years-old study subjects (Marsman
et al., 2013). This decline occurred in combination with
grey matter thinning, but these anatomical changes may not
solely explain decreased glutamate levels. Additionally, men
more than women may be more affected by age-related brain
glutamate decreases (Sailasuta et al., 2008).

Despite the importance of glutamate signaling in health and
disease, this has yet to be evaluated in the oldest-old.
Nonagenarians and centenarians have demonstrated a
resiliency against the onset of age-related disease (Engberg
et al., 2009) and have been proposed as the optimal study
participants to identify genes related to successful aging
(Marcos-Pérez et al., 2021). A majority of these individuals
have normal cognitive and functional ability (Sachdev et al.,
2013). This suggests glutamate levels decrease at a slower rate
or other compensatory mechanisms occur to modulate
signaling.

GLUTAMATE REGULATION IN ANIMAL
MODELS OF NORMAL AGING

Similar to what has been observed in humans, rats and mice show
a subtle decrease in glutamatergic synapses and neurons during
aging—particularly when compared to pathological conditions
(Temido-Ferreira et al., 2019; Gasiorowska et al., 2021). This
causes an age-related shift in synaptic plasticity that favors LTD
over LTP (Kumar and Foster, 2019) that contributes to the
natural cognitive decline consistently observed in multiple
species across numerous behavioral tasks (Tanila et al., 1997).
Over the past 40 years researchers have studied hippocampal
glutamatergic changes to disentangle aging effects from disease
progression. Unless specifically stated, the studies discussed
below use rodents that were at least 24 months old.
Hippocampal glutamate protein content is reduced in Fisher
344 rats (Banay-Schwartz et al., 1989) and in the temporal
cortex of Sprague-Dawley rats (Jing et al., 2016). This lower
protein content contributes to reduced tonic and stimulus-evoked
glutamate release observed in the Fisher 344 rat model of aging
(Zhang et al., 1991; Stephens et al., 2011). Similar findings are
routinely reported in aging mouse models. C57BL/6 mice have
reduced neurometabolic activity and hippocampal glutamatergic
neurotransmitter cycling (Bahadur Patel et al., 2021) along with
reduced VGLUT1 protein concentration (Rozycka et al., 2019).
This longitudinally decreases cortical, striatal, and hippocampal
glutamate in both sexes of C57BL/6 mice as measured by MRS
(Duarte et al., 2014). Evoked hippocampal glutamate release is
reduced in 17 months old C57BL/6J mice compared to younger
(7 months) littermates (Minkeviciene et al., 2008). Changes to
glutamatergic receptor density are also prominent in aged rats,
mice, and nonhuman primates. 25–32 year old rhesus macques
show subregion specific declines in NMDAr subtype expression
that correlates with cognitive deficits (Hara et al., 2012).
Hippocampal NMDAr and AMPAr density was decreased in
Fisher 344 rats while EAATs remained consistent (Mitchell and
Anderson, 1998; Segovia et al., 2001). Additionally, glutamate
binding to NMDAr decreases with age in C57BL/6 and BALB/c
mice (Peterson and Cotman, 1989). The decreased glutamatergic
signaling across species can be interpreted as a biologically
conserved mechanism of aging similar to sarcopenia or
osteoporosis. Accordingly, this decline should be blunted or
delayed in models of successful aging.

GLUTAMATE REGULATION IN ANIMAL
MODELS OF LONGEVITY

Our laboratory is interested in the role of glutamatergic signaling
in healthy aging and how changes can drive the transition to
neurodegenerative disorders. Animal models of successful aging
are important in biogerontology research for understanding
mechanistic factors that contribute to the aging process.
Suppression of the growth hormone/insulin-like growth factor
1/insulin axis is known to positively influence life span and health
span through pleiotropic factors including protection against
neurodegeneration. Mice with disruption of the growth
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hormone receptor (GHRKO) have reduced insulin-like growth
factor 1 and elevated growth hormone that results in a diminutive
phenotype with exceptional longevity. Disruption of this
signaling pathway also increases neuronal differentiation and
increases cortical neuronal density (Turnley et al., 2002;
Ransome et al., 2004). Examination of CNS tissue by our
laboratory revealed conserved or reduced expression of
glutamatergic markers as GHRKO mice age (Hascup et al.,
2015). In particular, hippocampal VGLUT1, GluN2B, and
GluA1 expression levels decline with age that may provide
GHRKO mice protection against excitotoxicity. In a follow up
study, we examined hippocampal glutamatergic dynamics in
20–24 months old GHRKO and littermate control mice. To
monitor in vivo glutamate our laboratory uses an enzyme-
based microelectrode array with high spatial (micron) and
temporal (millisecond) resolution that cause minimal damage
to the surrounding parenchyma (Hascup et al., 2009; Hascup
et al., 2010). We found that aged GHRKO mice maintained
cognition and glutamate signaling throughout the
hippocampus compared with age-matched littermate controls
(Hascup et al., 2016). The GHRKO memory retention at
advanced age was similar to previous studies (Kinney et al.,
2001a) and may suggest the delayed cognitive aging in these
mice is conferred through glutamatergic regulation.

Ames Dwarf mice are homozygous deficient in the Prophet of
Pituitary Factor 1 gene an upstream regulator of Pituitary Factor
1 that confers deficiency in growth hormone, prolactin, and
thyroid stimulating hormone. Similar to GHRKO mice, this
mutation results in a diminutive size with an 1 year average
lifespan extension compared to littermates (Brown-Borg et al.,
1996). At 3 months of age, Ames Dwarf mice have higher
hippocampal NMDAr expression (Sharma et al., 2012) and
cAMP response element-binding protein (Sun et al., 2005) that
may contribute to their enhanced learning and memory at older
ages (Kinney et al., 2001b). Together, these animal models of
successful aging may suggest that healthy cognitive aging requires
maintenance of glutamatergic signaling throughout the aging
process. When disruption occurs, the mechanisms of healthy
aging are no longer conserved and may precipitate the onset of
neurodegenerative disorders (Li et al., 2021).

PATHOLOGICAL AGING

Deviations from healthy aging to pathological aging are the
driving force of age-related disease. The risk for cardiovascular
diseases, cancer, neurodegenerative diseases, autoimmune
diseases, and musculoskeletal issues increases significantly with
age (Li et al., 2021). Therefore, understanding the mechanisms
behind physiological aging could facilitate the direction of future
studies on the biological drivers of pathological aging. For
example, EAAT density and function decrease with age
(Segovia et al., 2001) leading to extrasynaptic glutamate
spillover. Activation of extrasynaptic glial NMDAr is a
contributing factor to excitotoxicity during pathological aging.
Our laboratory focuses on the glutamatergic system and its
contributions to AD. We propose alterations in brain

glutamate concentrations as a critical proponent for the
pathological aging processes.

ALZHEIMER’S DISEASE

AD is an age-related neurodegenerative disorder characterized by
progressive anterograde amnesia and the seventh leading cause of
death in the US (Ahmad and Anderson 2021). Aging is the
primary risk factor for developing AD, with 65 years of age
designated as the cutoff that defines early-onset versus late-
onset AD. Only 2%–10% of cases are categorized as early-
onset (Cacace et al., 2016) with one in nine individuals aged
65 years or older diagnosed with AD (Rajan et al., 2021).
Currently, an estimated 5.8 million Americans are diagnosed
with AD and this number is projected to double by 2050
(Alzheimer’s Association, 2020) posing a significant
socioeconomic burden. Despite onset differences, the structural
pathologies are similar with hippocampal atrophy being the most
prominent shared feature (Eckerström et al., 2018). The
mechanisms behind development of cognitive deficits are
numerous, but research has predominantly focused on
accumulation of misfolded protein aggregates.

The deposition of amyloid beta (Aβ)42 that aggregates into
extracellular plaques and hyperphosphorylated tau protein that
misfolds into intracellular neurofibrillary tangles (NFT) are the
hallmark pathological changes typically observed in postmortem
tissue. These proteinopathies are hypothesized to begin
abnormally accumulating in the brain 10–20 years prior to the
onset of overt symptoms (Giannakopoulos et al., 1995; Bateman
et al., 2012; Beason-Held et al., 2013). Various genetic and
environmental components have been identified as risk factors
contributing to these proteinopathies (Hascup and Hascup 2020).
The complexity of AD has made early detection and treatment
difficult. Current treatments are symptomatic with discordant
results towards disease modification for next generation
medications focused on plaque removal. This lack of efficacy
is often attributed to poor biomarker identification for earlier
interventional strategies. Current biomarkers do not adequately
identify asymptomatic AD nor disease progression making it
difficult to provide disease-stage specific treatments for optimal
efficacy. The identification of proteins associated with changes
occurring prior to the onset of symptoms could lead to the
potential to develop timepoint dependent therapeutics for
improved specificity.

GLUTAMATE DYSREGULATION IN
ALZHEIMER’S DISEASE PATIENTS

Various imaging techniques and postmortem tissue analyses have
shown dysregulation of the glutamatergic system throughout the
tripartite synapse. These changes vary across the continuum of
cognitive impairment in AD and are largely affected by protein
accumulation and aggregation status. Initially, either Aβ or
hyperphosphorylated tau contributes to neuronal excitability
that facilitates overexcitation and in turn leads to
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glutamatergic excitotoxicity (Huijbers et al., 2019; 2015).
Hyperactivity along with morphological changes in neuronal
structure are thought to be early contributors to AD pathology
and cognitive dysfunction (Ghatak et al., 2019). The persistent
overactivation of NMDAr perturbs recognition of physiological
signals thereby affecting memory consolidation and recall
(Danysz and Parsons, 2012). Later stages of AD are
contraindicative of hyperactivity and demonstrate markedly
decreased glutamate levels. This is attributed to neuronal loss
caused by either hyperphosphorylated tau microtubule
destabilization or the exposure to an excitotoxic environment.

Multiple receptors and transporters are responsible for altered
glutamate signaling that show biphasic changes across the AD
continuum. Presynaptically, soluble Aβ preferentially binds to
VGLUT1 potentiating release characteristics in the early stages
(Sokolow et al., 2012). While decreased VGLUT1 levels have been
found in later stages of post-mortem brain tissue (Kirvell et al.,
2006; Rodriguez-Perdigon et al., 2016). mGluR2 expression was
increased in hippocampal pyramidal neurons and associated with
hyperphosphorylated tau deposition in postmortem AD tissue
(Lee et al., 2004). Considering the autoinhibitory nature of Group
II receptors on synaptic signaling, this increase may be a
compensatory mechanism to attenuate extracellular glutamate
levels. Postsynaptically, AMPAr and NMDAr subunits change
during the AD continuum with upregulation seen early in disease
progression followed by downregulation in later disease stages
(Findley et al., 2019). These changes may serve to modulate the
strength of synaptic signaling to maintain cognitive processing
during receptor over activation. mGLUR5 is ubiquitously
expressed throughout the medial prefrontal cortex that
potentiates NMDAr function and expression. Aβ42 complexes
to mGluR5 along with cellular prion protein (Rammes et al., 2011;
Piers et al., 2012). This binding disrupts multiple signal
transduction pathways (Abd-Elrahman and Ferguson, 2022)
that subsequently reduces receptor expression in later disease
stages (Mecca et al., 2020). Glial EAATs are both downregulated
(Jacob et al., 2007; Hoshi et al., 2018; Kobayashi et al., 2018) and
have reduced transporter capacity due to altered splice variants
(Scott et al., 2011). Finally reduced γ-aminobutyric acid neuronal
density tips the excitatory/inhibitory scale to favor glutamate
release (Palop et al., 2007; Lauterborn et al., 2021).

Glutamate Dysregulation in Alzheimer’s
Disease Animal Models
Accumulation of Aβ42 is hypothesized to begin decades prior
to cognitive decline (Sperling et al., 2014) These soluble
isoforms are considered the neurotoxic species associated
with AD progression and have been shown to bind to the
alpha 7 nicotinic acetylcholine receptor (α7nAChR) (Wang
et al., 2002). Our laboratory and others have shown that
binding of soluble Aβ42 to this receptor elicits glutamate
release (Mura et al., 2012) from presynaptic receptors
(Hascup and Hascup 2016). Within the hippocampus, the
dentate (DG) and CA1 had the largest responses to the
lowest concentrations of Aβ42 applied. Considering our
laboratory is focused on understanding glutamatergic

dynamics during aging and its dysregulation in disease, we
have strived to understand these changes throughout disease
progression using an animal model of AD.

The APP/PS1 mouse is a transgenic amyloidogenic AD model
that initially develop plaque pathology and subtle cognitive
deficits at 6 months. By 12 months of age these mice have
plaques prevalent throughout the hippocampus and observable
cognitive deficits (Webster et al., 2014). While fast progressing
ADmodels reduce study duration, the slower progression of both
pathology and cognitive decline in APP/PS1 mice and other
models is ideal for several reasons. First, the slower onset of
amyloid deposition allows mice to naturally age. This is more
conducive to identifying dysregulated aging processes that
contribute to disease progression. Second, we can design early
interventional strategies without potential confounds from
developmental biology that have a greater potential to occur
with faster progressing models. Third, we can identify windows of
disease progression for improving the translational relevance of
disease-stage specific interventional strategies. Based on the
pathology and cognitive decline in the APP/PS1 mice
compared to their littermate control C57BL/6 mice, 6 months
of age corresponds with mild cognitie impairment while 12–15
and 18+ months correspond with mild-AD and AD, respectively.

We have shown that hippocampal basal and stimulus-evoked
glutamate signaling in APP/PS1 mice becomes hyperactive in a
subregion specific manner prior to onset of cognitive decline
(Hascup and Hascup 2015). The first changes are seen in the CA1
where stimulus-evoked glutamate release is markedly elevated by
3 months of age. At 6 months, when hippocampal plaque
accumulation begins, basal glutamate is elevated throughout
the hippocampus and continues to increase with age.
Glutamate release also increases in the DG at this age and
stays elevated throughout disease progression. CA3 evoked
glutamate release does not become elevated until 12 months of
age when plaque accumulation is more prominent (Hascup et al.,
2020a). We also observed that plaque deposition was
anatomically aligned, but temporally delayed with hyperactive
glutamate signaling (Hascup et al., 2020b), further supporting a
role of the glutamatergic system as a potential early biomarker
and therapeutic target. An increase in Aβ42 with age provides
mechanistic insight into the temporal profile of hippocampal
hyperglutamatergic signaling. In summary, dysregulation of
glutamatergic signaling followed a subregion specific pattern
with the CA1 > DG > CA3; not unlike the sensitivity of these
regions to locally applied soluble Aβ42 (Hascup and Hascup
2016).

By 12 months, all regions of the APP/PS1 hippocampus
routinely show hyperglutamatergic signaling. Figure 1
provides a grouped comparison of control APP/PS1 and
age-matched C57BL/6J cohorts taken with multiple studies
from our laboratory. The graphs depict the reproducibility of
elevated hippocampal basal glutamate and stimulus-evoked
release (Figures 1A–C) across multiple published datasets. We
have also observed that APP/PS1 mice have a compensatory
increase in glutamate clearance (Figures 1D,E) suggesting
either an upregulation to transporter density or function.
Despite the increased clearance, this still fails to modulate
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glutamate to nonpathological levels. Besides the aging
associated changes to Aβ42, we have also shown VGLUT1
density is elevated at 12 months in APP/PS1 mice (Hascup E.

R. et al., 2019). When taken together, the increases to both
presynaptic stimulation and glutamatergic vesicles accounts
for the elevated levels observed.

FIGURE 1 |Glutamate dynamics in APP/PS1 and C57BL/6J mice at 12 months. The figures were created using control 12–15 monthsmale C57BL/6J (white) and
APP/PS1 (gray) mice across multiple datasets (Hascup E. R. et al., 2019; Hascup K. N. et al., 2019; Hascup et al., 2020a). Graphs depict violin plots with median (blue
line) and quartiles (red line). (A) Basal glutamate levels were measured in the CA1, CA3, and the DG of the hippocampus using a microelectrode array (MEA). (B)
Glutamate release rate was calculated using the change in amplitude between the maximal response and baseline over the duration (s) to reach maximal response
after stimulation. (C) Average glutamate release was determined using the maximal change after stimulation from baseline. (D)Glutamate clearance followed first-order-
rate kinetics. A logarithmic slope for glutamate concentration decay (k−1) versus time (s−1) is estimated using regression analysis (R2 ≥ 0.9) to determine the uptake rate.
(E) T80 refers to the duration of time needed for 80% of the maximal glutamate signal to be cleared from the extracellular space. A two tailed t-test was used to compare
genotypes in each hippocampal subregion. **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 36–47.
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A couple of limitations should be considered when
interpreting these results. First, these studies were conducted
only in male mice. Others have shown that stimulus-evoked
hippocampal glutamate was decreased at 17 months of age in
female APP/PS1 mice (Minkeviciene et al., 2008). While this was
similar to our observations in the CA1 of male APP/PS1 mice,
additional research is required to determine if the glutamatergic
signaling profile differs during disease progression between sexes
of APP/PS1 mice. Second, we have only assayed glutamate
dynamics in a single model of cerebral amyloidosis. Multiple
laboratories have reported on these changes in other amyloid and
tau AD models, which are discussed below. To further address
these limitations, our laboratory is actively probing sex as a
biological variable to understand hippocampal glutamate
changes throughout disease progression of additional AD
models such as the APPNL-F/NL-F mice.

Similar glutamate signaling changes during disease
progression have been reported in other AD animal models
and summarized in Table 1. The rTg4510 mice express
human tau containing the P301L mutation. This model
develops neurofibrillary tangle, neuronal loss, and age-
dependent cognitive deficits. By 6 months, these mice also
have elevated hippocampal glutamate that correlated with
acquisition errors on the Barnes maze behavioral task
(Hunsberger et al., 2014; Hunsberger et al., 2015).
Hippocampal glutamate levels are also higher at 3 months of
age in the PS19 tauopathy AD model. As these mice continue to
age, the number of synapses, and neurons decrease causing a
corresponding reduction in glutamate levels. The elevated
glutamate early in life coupled with neuronal loss at later
stages suggests an excitotoxic mechanism (Crescenzi et al.,
2017). However, it should be noted that the human P301L
transgene insertion disrupts an endogenous mouse gene that
contributes to the molecular changes and cognitive decline
observed in this model (Gamache et al., 2019). The 3xTg AD
model contains familial mutations to the amyloid precursor
protein, presenilin 1, and microtubule associated protein tau
genes resulting in dual amyloid and tau pathology by
12 months of age. Persistent hyperactive glutamatergic
synapses were detected using electrophysiological techniques in
the entorhinal cortex at this age (Arsenault et al., 2011). 5xFAD

mice have multiple transgene insertions for human amyloid
precursor protein and presenilin 1 that causes rapidly
progressing amyloid accumulation starting at 6 weeks of age.
Whole-cell patch clamp recordings of CA1 pyramidal neurons
show higher spontaneous excitatory post synaptic currents at 2
and 4 months of age (Li et al., 2021). All together these studies
show that hyperactive glutamatergic signaling either precedes or
coincides with amyloid and/or tau accumulation.

The build-up of pathological proteins during disease
progression may initiate the transition from low glutamate
levels that are observed in healthy aging. These temporal
hippocampal glutamate changes could serve as a biomarker for
identifying a switch between physiological and pathological
aging. Understanding this progression would help provide
disease-stage specific interventions. For example, we treated
APP/PS1 mice with riluzole, a glutamate modulator, starting
when we first observed changes in the CA1. This treatment
not only attenuated both basal and evoked glutamate release,
but also provided procognitive effects (Hascup et al., 2020a).
Other laboratories have shown these effects are modulated
through EAAT2 as well as NMDAr subunit expression levels
(Pereira et al., 2017; Okamoto et al., 2018).

DIAGNOSTIC METHODS FOR IN VIVO
GLUTAMATE MONITORING

Increasing evidence supports the importance of modulating
glutamatergic signaling as a therapeutic treatment for AD.
Therefore, methods to monitor glutamate as it transitions
from physiological to pathological signaling are needed. The
following sections discusses minimally invasive and non-
invasive techniques that can be utilized in both humans and
preclinical AD models.

Cerebrospinal fluid (CSF) provides an indication of the brain
parenchyma and is currently used to measure deposition of
amyloid and tau while determining neuronal loss by
neurofilament light chain. Samples are collected and analyzed
after a lumbar puncture commonly referred to as a spinal tap.
During this 30–40 min procedure, the patient is given a local
anesthetic before a needle is inserted between two lumbar

TABLE 1 | The onset of pathological, cognitive and glutamatergic changes in AD mouse models.

Model Mutations Pathology onset Cognitive decline
onset

Hyperactive glutamate
signaling onset

Reference

APP/PS1 APP KM670/671NL Plaques: 4–6 mos 6–10 mos CA1: 2–3 mos Hascup et al. (2020b)
PSEN1dE9 DG & CA3: 6–8 mos

5xFAD APP KM670/671NL Plaques: 2 mos 3–6 mos CA1: 2.5 mos Li Y. et al. (2021)
APP I716V
APP V717I
PSEN1 M146L
PSEN1 L286V

3xTg APP KM670/671NL Plaques: 6 mos 4 mos Entorhinal Cortex: 12 mos Arsenault et al. (2011)
PSEN1 M146V
MAPT P301L Tangles: 12 mos

rTg4510 MAPT P301L Tangles: 2.5–4 mos 2.5–4 mos DG, CA1, and CA3: 5–7 mos Hunsberger et al., 2014, 2015
Tau P301S (Line PS19) MAPT P301S Tangles: 6 mos 6 mos Hippocampus: 3 mos Crescenzi et al. (2017)

Frontiers in Aging | www.frontiersin.org June 2022 | Volume 3 | Article 9294748

Cox et al. Glutamate in Aging and Alzheimer’s Disease

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


vertebrae to collect CSF. The lumbar puncture can be difficult to
perform and leave post-procedural issues including a “spinal
headache.” Several studies have analyzed glutamate in the CSF
of MCI and AD patients indicating increases or decreases
compared to healthy aging (Madeira et al., 2018). Rather these
discordant results may reflect progression through the AD
continuum. While lumbar punctures are minimally invasive,
they have the benefit of being 3–4 times less expensive than
the imaging techniques discussed below (Tariciotti et al., 2018).

Currently, advanced neuroimaging methods are being explored
to detect changes in glutamate receptors and glutamate excitation in
healthy aging, MCI, and AD patients. Imaging offers the potential to
detect changes in metabolic functions within the brain and monitor
structural transformations throughout the aging process. Positron
emission tomography (PET) imaging can be used with multiple
radiotracers to quantitatively assess synaptic density. Radiotracers
are molecules where one or more atoms are replaced with a
radioactive isotope and their in vivo decay is monitored.
Radiotracers can be created to target specific receptors in the
brain that can be visualized using gamma ray emissions (Schaffer
et al., 2015). Currently, PET imaging is used to assess multiple AD
pathophysiological targets including amyloid, tau, neuronal density,
and neurotransmitter signaling—including glutamate (Bao et al.,
2021). Using radiotracers targeting mGluR5 researchers found
decreased hippocampal expression in early AD patients that
correlated with lower episodic memory scores and decreased
global function (Mecca et al., 2020; Treyer et al., 2020). The
small number of glutamate signaling radiotracers, short decay
times, and large financial costs all limit the clinical utility of PET
imaging.

Magnetic resonance (MR) uses a magnetic field to create a
three-dimensional image of the brain without the need for
ionizing radiation or radiotracers. Unlike PET imaging, MR is
unable to directly measure neural activity (Osborne et al., 2015).
MRS is capable of detecting the chemical composition of the
tissue by examining the magnetic moment of nuclei such as
protons (1H) and carbons (13C). MRS has allowed for the
noninvasive quantification of regional neurotransmitters
including glutamate in numerous diseases and preclinical
disease models. Multiple MRS studies have shown decreased
hippocampal glutamate concentrations in AD patients (Lin
et al., 2003; Fayed et al., 2011; Graff-Radford and Kantarci, 2013).

In the last decade MR has been used in conjunction with
chemical exchange saturation transfer (CEST) allowing for the
indirect detection of brain metabolite changes using endogenous

proteins. CEST uses exchangeable amide protons to monitor
glycogen, glycosaminoglycans, γ-aminobutyric acid, and
glutamate (GluCEST) (Kogan et al., 2013). GluCEST has been
validated in humans (Nanga et al., 2018) and is capable of sub-
hippocampal measurements. The majority of GluCEST studies,
however, have focused on preclinical aging and disease models.
Aging reduced GluCEST contrast in multiple networks associated
with cognition in mouse lemur primates (Garin et al., 2022).
Decreased hippocampal glutamate has also been observed in 18+
month old amyloid (Haris et al., 2013) and tau (Crescenzi et al.,
2014) mouse models of AD similar to observations using
implantable biosensors. Considering GluCEST is noninvasive,
longitudinal analysis in mouse models would provide initial
clinical utility for examination across the AD continuum in
humans.

CONCLUSION

The extensive amount of knowledge accumulated through
decades of research on the biology of glutamate leaves this
system poised to make major advancements in the realm of
neurological disorders. Our laboratory has shown the potential
for using glutamate as a biomarker for determining the
juxtaposition between physiological and pathological aging.
Advances using minimally and noninvasive techniques allows
for longitudinally monitoring regional changes in glutamate
levels. These methods have the potential to provide disease
state dependent therapeutic interventions for improving
patient outcome.
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