
Southern Illinois University Carbondale Southern Illinois University Carbondale 

OpenSIUC OpenSIUC 

Publications Educational Psychology and Special Education 

2012 

A Method for Simulating Nonnormal Distributions with Specified A Method for Simulating Nonnormal Distributions with Specified 

LL-Skew, -Skew, LL-Kurtosis, and -Kurtosis, and LL-Correlation -Correlation 

Todd C. Headrick 
Southern Illinois University Carbondale, headrick@siu.edu 

Mohan Dev Pant 
Southern Illinois University Carbondale, mpant@uta.edu 

Follow this and additional works at: https://opensiuc.lib.siu.edu/epse_pubs 

Published in ISRN Applied Mathematics, Vol 2012, at 

doi:10.5402/2012/980827 

Recommended Citation Recommended Citation 
Headrick, Todd C. and Pant, Mohan D. "A Method for Simulating Nonnormal Distributions with Specified 
L-Skew, L-Kurtosis, and L-Correlation." (Jan 2012). 

This Article is brought to you for free and open access by the Educational Psychology and Special Education at 
OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more 
information, please contact opensiuc@lib.siu.edu. 

https://opensiuc.lib.siu.edu/
https://opensiuc.lib.siu.edu/epse_pubs
https://opensiuc.lib.siu.edu/epse
https://opensiuc.lib.siu.edu/epse_pubs?utm_source=opensiuc.lib.siu.edu%2Fepse_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.5402/2012/980827
mailto:opensiuc@lib.siu.edu


International Scholarly Research Network
ISRN Applied Mathematics
Volume 2012, Article ID 980827, 23 pages
doi:10.5402/2012/980827

Research Article
A Method for Simulating Nonnormal
Distributions with Specified L-Skew, L-Kurtosis,
and L-Correlation

Todd C. Headrick1 and Mohan D. Pant2

1 Section on Statistics and Measurement, Department of EPSE, Southern Illinois University Carbondale,
222-J Wham Bldg, Carbondale, IL 62901-4618, USA

2 Department of Curriculum and Instruction, University of Texas at Arlington, 320B Science Hall,
Arlington, TX 76019, USA

Correspondence should be addressed to Todd C. Headrick, headrick@siu.edu

Received 21 February 2012; Accepted 15 May 2012

Academic Editors: J. R. Fernandez, E. Skubalska-Rafajlowicz, and W. Yeih

Copyright q 2012 T. C. Headrick and M. D. Pant. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper introduces two families of distributions referred to as the symmetric κ and asymmetric
κL-κR distributions. The families are based on transformations of standard logistic pseudo-random
deviates. The primary focus of the theoretical development is in the contexts of L-moments and
the L-correlation. Also included is the development of a method for specifying distributions with
controlled degrees of L-skew, L-kurtosis, and L-correlation. The method can be applied in a variety
of settings such as Monte Carlo studies, simulation, or modeling events. It is also demonstrated
that estimates of L-skew, L-kurtosis, and L-correlation are superior to conventional product-
moment estimates of skew, kurtosis, and Pearson correlation in terms of both relative bias and
efficiency when moderate-to-heavy-tailed distributions are of concern.

1. Introduction

Monte Carlo investigations often require the need for univariate or multivariate nonnormal
distributions with specified conventional product moments. For example, it is common
practice for methodologists to investigate the Type I error and power properties associated
with inferential statistics under various degrees of nonnormality. In many cases, these
investigations may only require an elementary transformation on standard normal or
zero-one uniform deviates to produce nonnormal distributions with specified values of
conventional skew and kurtosis. More specifically, the popular power method (PM) [1–3] and
the generalized lambda distribution (GLD) [4–6] are two basic transformations that could be
used for this purpose.

However, conventional-moment-based estimators of skew and kurtosis have unfavor-
able attributes insofar as they can be substantially biased, have high variance, or can be
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influenced by outliers [7, 8]. In view of this, L-moment-based estimators such as L-skew
and L-kurtosis were introduced to address the limitations associated with conventional
moment-based estimators. Specifically, some of the advantages that L-moments have over
conventional moments are that they (a) exist whenever the mean of the distribution
exists, (b) are nearly unbiased for all sample sizes and distributions, and (c) are more
robust in the presence of outliers [7–10]. In view of these advantages, both the PM and
GLD transformations have been characterized in the context of L-moments to enable the
simulation of univariate nonnormal distributions with specified values of L-skew and L-
kurtosis [6, 11–13].

In addition to issues of a transformation’s simplicity and ease of execution, another
important criterion is its ability to simulate nonnormal distributions with specified
correlation structures. To meet this criterion, methodologists have extended the conventional-
moment-based PM and GLD transformations from univariate to multivariate data generation
in the context of the Pearson correlation [2, 3, 14–17]. However, and although these product-
moment-based methods are commonly used [3, pages 2-3], they would not make feasible
extensions of the univariate L-moment-based PM or GLD transformations because the second
L-moment and the L-correlation are based on the coefficient of mean difference and not the
variance or standard deviation [7, 8, 18].

Thus, the primary goal of this paper is to derive two families of distributions
based on transformations that produce continuous symmetric and asymmetric nonnormal
distributions with specified values of L-skew, L-kurtosis, and L-correlation. These two
families of distributions are referred to herein as the symmetric κ and asymmetric κL-
κR distributions. The proposed transformations are computationally efficient because they
only require the knowledge of one or two parameters (κ, or κL, κR) and an algorithm
that generates standard logistic pseudo-random deviates. We would note that the proposed
transformations are analogs to the L-moment-based Tukey h and hh distributions [19].
However, the κ and κL-κR transformations can generate more leptokurtic and elongated
distributions as they are based on the logistic distribution as opposed to the standard normal
based h or hh distributions.

The remainder of the paper is outlined as follows. In Section 2, the parametric forms
of the probability density function, cumulative distribution function, and other properties
associated with the κ and κL-κR distributions are derived. In Section 3, a summary of
univariate L-moment theory is first provided. The derivations of the systems of equations
for specifying values of L-skew and L-kurtosis for the κ and κL-κR distributions are
subsequently provided. The boundary region for feasible combinations of L-skew and L-
kurtosis is also provided. In Section 4, the coefficient of L-correlation is first introduced and
then the equations are developed for determining intermediate correlations for specified L-
correlations between κ and (or) κL-κR distributions. In Section 5, the steps for implementing
the new method are described. A numerical example and the results of a simulation are
provided to confirm the derivations and compare the new method with its conventional-
moment-based counterpart. In Section 6, the results of the simulation are discussed.

2. Methodology

The derivation of the probability density function (pdf) and the cumulative distribution
function (cdf) associated with the κ and κL-κR families of distributions begins with the
following definitions.
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Definition 2.1. Let X be a random variable that has a standard logistic distribution with pdf
and cdf expressed as

fX(x) =
e−x

(1 + e−x)2 (2.1)

FX(x) = Pr(X ≤ x) = 1
(1 + e−x)

, −∞ < x < +∞. (2.2)

Let x = (u, v) be the auxiliary variable that maps the parametric curves of (2.1) and (2.2) as

f : x �−→ �2 := fX(x)= fX(u, v) = fX
(
x, fX(x)

)
,

F : x �−→ �2 := FX(x)= FX(u, v) = FX(x, FX(x)).
(2.3)

Definition 2.2. The analytical and empirical forms of the quantile functions for symmetric κ
distributions are defined as

q(x) = qκ(x) = xeκ|x|, (2.4)

q(X) = qκ(X) = Xeκ|X|, (2.5)

where κ is a real-valued parameter that controls the tail weight of a distribution.

Definition 2.3. The analytical and empirical forms of the quantile functions for asymmetric
κL-κR distributions are defined as

q(x) = qκL,κR(x) =

{
xeκL|x|, for x ≤ 0,
xeκR|x|, for x ≥ 0,

(2.6)

q(X) = qκL,κR(X) =

{
XeκL|X|, forX ≤ 0,
XeκR|X|, forX ≥ 0,

(2.7)

where κL (κR) is the real-valued parameter that controls the left (right) tail of a κL-κR
distribution. Note that if κL = κR, then (2.6) and (2.7) are equivalent to the symmetric κ
distribution in (2.4) and (2.5).

The explicit forms of the derivatives associated with (2.4) and (2.6) are

q′(x) = q′κ(x) = e
κ|x| + xκeκ|x|

d|x|
dx

,

q′(x) = q′κL,κR(x) =

{
eκL|x| − xκLeκL|x|, for x < 0,
eκR|x| + xκReκR|x|, for x > 0,

(2.8)

where it is assumed that q′(x) > 0, that is, the transformations in (2.4) and (2.6) are strictly
increasing monotone functions and where q′(x) = 1 at x = 0 in (2.8).
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Proposition 2.4. If the compositions f ◦ q and F ◦ q map the parametric curves of fq(X)(q(x)) and
Fq(X)(q(x)) where q(x) = q(u, v) as

f ◦ q : q(x) �−→ �2 := fq(X)
(
q(x)

)
= fq(X)

(
q(u, v)

)
= fq(X)

(
q(x),

fX(x)
q′(x)

)
, (2.9)

F ◦ q : q(x) �−→ �2 := Fq(X)
(
q(x)

)
= Fq(X)

(
q(u, v)

)
= Fq(X)

(
q(x), FX(x)

)
, (2.10)

then (2.9) and (2.10) are the parametric forms of the pdf and cdf associated with the quantile functions
in q(X) in (2.5) and (2.7), respectively.

Proof. It is first shown that fq(X)(q(x), fX(x)/q′(x)) in (2.9) has the properties:

Property 1.
∫+∞
−∞ fq(X)(q(x), fX(x)/q′(x))dx = 1.

Property 2. fq(X)(q(x), fX(x)/q′(x)) ≥ 0, for −∞ < x < +∞.
To prove Property 1, let v = f(u) be a function where

∫+∞
−∞ f(u)du =

∫+∞
−∞ vdu. Thus,

given that u = q(x) and v = fX(x)/q′(x) in fq(X)(q(u, v)) in (2.9) we have

∫+∞

−∞
fq(X)

(
q(x),

fX(x)
q′(x)

)
dx =

∫+∞

−∞
vdu =

∫+∞

−∞

(
fX(x)
q′(x)

)
dq(x)

=
∫+∞

−∞

(
fX(x)
q′(x)

)
q′(x)d(x) =

∫+∞

−∞
fX(x)d(x) = 1,

(2.11)

which integrates to one because fX(x) is the standard logistic pdf in (2.1). To show
Property 2, it is given by definition that fX(x) ≥ 0 and it is assumed that q′(x) > 0. Hence,
fq(X)(q(x), fX(x)/q′(x)) ≥ 0 because fX(x)/q′(x) will be nonnegative on the support of x for
all x ∈ (−∞,+∞) and where the limx→±∞fq(X)(q(x), fX(x)/q′(x)) = 0 provided that κ ≥ 0 for
symmetric distributions or for the case of asymmetric distributions we must have κL ≥ 0 and
κR ≥ 0.

A corollary to Proposition 2.4 is stated as follows.

Corollary 2.5. The derivative of the cdf Fq(X)(q(x), FX(x)) in (2.10) is the pdf fq(X)(q(x),
fX(x)/q′(x)) in (2.9).

Proof. It follows from u = q(x) and v = FX(x) in Fq(X)(q(u, v)) in (2.10) that du = q′(x)dx and
dv = fX(x)dx. Hence, using the parametric form of the derivative we have v = dv/du =
fX(x)/q′(x) in (2.9). Whence, F ′

q(X)(q(x), FX(x)) = F ′
q(X)(q(u, dv/du)) = fq(X)(q(u, v)) =

fq(X)(q(x), fX(x)/q′(x)). Thus, fq(X)(q(x), fX(x)/q′(x)) in (2.9) and Fq(X)(q(x), FX(x)) in
(2.10) are the parametric forms of the pdf and cdf associated with the quantile functions
in (2.5) and (2.7).

Remark 2.6. Inspection of (2.1), (2.4), (2.6), and (2.9) indicates that the height of any symmet-
ric κ or asymmetric κL-κR distribution at x = 0 will be fX(x)/q′(x) = 1/4.

Definition 2.7. If the monotonicity assumption (q′(x) > 0) holds in (2.9) for all x ∈ (−∞,+∞),
which requires κL,R ≥ 0, then (2.9) is defined as a global pdf.
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Remark 2.8. The mode associated with a global pdf in (2.9) is located at
fq(X)(q(x̃), fX(x̃)/q′(x̃)), where x = x̃ is the critical number that solves dv/du =
d(fX(x)/q′(x))/du = 0 and globally maximizes v = fX(x̃)/q′(x̃) at x = q(x̃). It is
noted that the pdf in (2.9) will have a global maximum because the standard logistic pdf
in (2.1) has a global maximum and the transformation q(x) is assumed to be a strictly
increasing monotone function.

Remark 2.9. The median associated with a global pdf in (2.9) is located at q(x = 0) = 0. This
can be shown by letting u0.50 = q(x) and v0.50 = 0.50 = FX(x) = Pr{X ≤ x} denote the
coordinates in the cdf in (2.10) that are associated with the 50th percentile. In general, we
must have x = 0 such that v0.50 = 0.50 = FX(0) = Pr{X ≤ 0} holds in (2.10) for the standard
logistic distribution. As such, the limit of the quantile function q(x) locates the median at
limx→ 0q(x) = 0.

Remark 2.10. The monotonicity assumption (q′(x) > 0) also holds in (2.9) for cases where
κL,R < 0 and (1/κL,R < x < 0 or 0 ≤ x < −1/κL,R). This leads to Definition 2.11.

Definition 2.11. A symmetric κ or asymmetric κL-κR distribution has a local pdf if the mono-
tonicity assumption (q′(x) > 0) holds in accordance to Remark (2.5) and from (2.10) 1 −
Pr{q(x ≤ |1/κL,R|)} ≤ γ where γ is a specified threshold probability (e.g. γ = 0.001).

Figures 1 and 2 give examples of symmetric κ and asymmetric κL-κR distributions
based on (2.9) and (2.10). Figures 1(a) and 1(b) are examples of symmetric global pdfs.
Figure 2(a) is an example of an asymmetric global pdf and Figure 2(b) is an example of an
asymmetric local pdf. The point where monotonicity fails for the local pdf in Figure 2(b) is
located at q(x = 1/ − 0.0497) = −7.402 where making use of (2.10) yields 1 − Pr{q(x) ≤
| − 7.402|} = 0.0006, which would not pose a serious limitation for most purposes. In the next
section the L-moments for κ and κL-κR distributions are derived and other distributional
properties are discussed after a preliminary discussion of univariate L-moments.

3. L-Moments for κ and κL-κR Distributions

3.1. Preliminaries: Univariate L-Moments

Let Y1, . . . , Yj , . . . , Yn be independent and identically distributed random variables each with
continuous pdf fY (y), cdf FY (y), order statistics denoted as Y1:n ≤ · · · ≤ Yj:n ≤ · · · ≤ Yn:n,
and L-moments defined in terms of either linear combinations of (a) expectations of order
statistics or (b) probability-weighted moments (βi). For the purposes considered herein, the
first four L-moments associated with Yj:n are expressed as [8, pages 20–22]

λ1 = E[Y1:1] = β0, (3.1)

λ2 =
1
2
E[Y2:2 − Y1:2] = 2β1 − β0, (3.2)

λ3 =
1
3
E[Y3:3 − 2Y2:3 + Y1:3] = 6β2 − 6β1 + β0, (3.3)

λ4 =
1
4
E[Y4:4 − 3Y3:4 + 3Y 2:4 − Y1:4] = 20β3 − 30β2 + 12β1 − β0, (3.4)
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Mean = 0
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L-kurtosis: τ4 = 0.2519
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L-skew: τ3 = 0

q(x)0.05 = −3.95255

q(x)0.25 = −1.226185

q(x)0.75 = 1.226185

q(x)0.95 = 3.95255

(b)

Figure 1: Two symmetric κ global pdfs and their associated cdfs. The percentiles were computed based on
(2.10). The parameters of kurtosis (α4) and L-kurtosis (τ4) are based on (A.2) in the appendix and (3.11),
respectively.

where the βi are determined from

βi =
∫
y
{
FY
(
y
)}i

fY
(
y
)
dy, (3.5)

where i = 0, . . . , 3. The coefficients associated with βi in (3.5) are obtained from shifted
orthogonal Legendre polynomials and are computed as shown in [8, page 20] or in [11].
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q(x)0.05 = −3.38644

q(x)0.25 = −1.157465

q(x)0.75 = 1.275371

q(x)0.95 = 4.3919

L-skew: τ3 = 0.1

Global pdf characteristics

(a)

κL = −0.0497, κR = 0.0968

0.2

0.1

1

0.8

0.6

0.4

0.2

−4 −2 2 4 6

κL = −0.0497, κR = 0.0968
−4 −2 2 4 6

Local pdf characteristics Parameters

Mean = 0.264

Median = 0

Mode = −0.1986

Max(height) = 0.2525

Percentiles

q(x)0.05 = −2.54346

q(x)0.25 = −1.04021

q(x)0.75 = 1.22188
q(x)0.95 = 3.91545

Skew: α3 = 1.7

Kurtosis: α4 = 10.34
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(b)

Figure 2: Two asymmetric κL-κR distributions pdfs and their associated cdfs. The parameters of skew (α3)
and kurtosis (α4) are based on (A.2) in the appendix. The parameters of L-skew (τ3) and L-kurtosis (τ4)
are based on (3.15) and (3.16). The distribution in (b) is a local pdf in the range of q(x) ∈ (−7.402,+∞).

The L-moments λ1 and λ2 in (3.1) and (3.2) are measures of location and scale and
are the arithmetic mean and one-half the coefficient of mean difference, respectively. Higher
order L-moments are transformed to dimensionless quantities referred to as L-moment ratios
defined as τr = λr/λ2 for r ≥ 3, and where τ3 and τ4 are the analogs to the conventional
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measures of skew and kurtosis. In general, L-moment ratios are bounded in the interval −1 <
τr < 1 as is the index of L-skew (τ3) where a symmetric distribution implies that all L-moment
ratios with odd subscripts are zero. Other smaller boundaries can be found for more specific
cases. For example, the index of L-kurtosis (τ4) has the boundary condition for continuous
distributions of [20]:

5τ2
3 − 1
4

< τ4 < 1. (3.6)

3.2. L-Moments for Symmetric κ and Asymmetric κL-κR Distributions

The derivation of the first four L-moments associated with symmetric κ distributions begins
by defining the probability weighted moments based on (3.5) in terms of q(x) in (2.4) and
the standard logistic pdf and cdf in (2.1) and (2.2) as

βi =
∫+∞

−∞
q(x, κ){FX(x)}ifX(x)dx. (3.7)

Integrating (3.7) for i = 0, 1, 2, 3 and using (3.1)–(3.4) gives λ1, λ2, τ3, and τ4 as

λ1 = 0, (3.8)

λ2 =
1
2
(2 + κ(−4A + 4B + κ(C − D))), (3.9)

τ3 = 0, (3.10)

τ4 =
1
6

(

1 + 5κ2 +
10κ
(
1 + 2κ + 2κ2(H[−(κ/2)] − H[−(1/2) − (κ/2)])

)

2λ2

)

, (3.11)

where A = ψ[0, (1/2) − (κ/2)], B = ψ[0, 1 − (κ/2)], C = ψ[1, (1/2) − (κ/2)], and D = ψ[1, 1 −
(κ/2)]. The notations ψ[a, b] and H[·] in (3.9) and (3.11) are the polygamma and harmonic
number functions, respectively. The argument for b must be positive in ψ[a, b] and thus a
κ-distribution with a global pdf and defined values of λ1, λ2, τ3, τ4 requires that 0 ≤ κ < 1.

The derivation of the L-moments for asymmetric κL-κR distributions associated with
(2.6) begins with determining the probability-weighted moments βi in (3.5) by separately
evaluating and summing two integrals as

βi =
∫0

−∞
q(x, κL){FX(x)}ifX(x)dx +

∫+∞

0
q(x, κR){FX(x)}ifX(x)dx. (3.12)



ISRN Applied Mathematics 9
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Figure 3: Graph of the region for feasible combinations of (absolute value) L-skew |τ3| and L-kurtosis τ4
for global pdfs. An asymmetric κL-κR distributions will lie in the area above the curve graphed in the |τ3|
and τ4 plane.

As such, using (3.12) to obtain β0,. . ., β3 and subsequently substituting these terms into
(3.1)–(3.4) we have

λ1 =
1
4
(2A − 2B − 2C + 2D − κLE + κLF + κRG − κRH), (3.13)

λ2 =
1
4
(4 + κL(−4A + 4B + κL(E − F)) + 4 + κR(−4C + 4D + κR(G − H))), (3.14)

τ3 =

(
4κR − 4κL + κ2

L(6A − 6B + κL(F − E)) + κ2
R(−6C + 6D + κR(G − H))

)

(4λ2)
, (3.15)

τ4 =
W

(24λ2)
, (3.16)

where W denotes {2(2+5κL(1+3κL)+5κR(1+3κR))−4(κL+10κ3
L)A−4(κR+10κ3

R)C+5κL((4+
40κ2

L)B+κL(1+ 5κ2
L)(E− F) +κR((4+ 40κ2

R)D+κR(1+ 5κ2
R)(G−H)))}, where the polygamma

functions are A = ψ[0, (1/2) − (κL/2)], B = ψ[0, 1 − (κL/2)], C = ψ[0, (1/2) − (κR/2)], D =
ψ[0, 1 − (κR/2)], E = ψ[1, (1/2) − (κL/2)], F = ψ[1, 1 − (κL/2)], G = ψ[1, (1/2) − (κR/2)],
and H = ψ[1, 1 − (κR/2)]. Thus, given specified values of τ3 and τ4, (3.15) and (3.16) can
be numerically solved to obtain the corresponding values of κL and κR. Analogous to κ-
distributions, an asymmetric κL-κR distribution with a global pdf and defined values of λ1,
λ2, τ3, τ4 will require both 0 ≤ κL < 1 and 0 ≤ κR < 1. Note that careful inspection of (3.15) and
(3.16) reveals that interchanging values for the parameters κL and κR reverse the direction
of τ3 and has no effect on τ4. Further, if κL = κR, then equations (3.13)–(3.16) simplify to
(3.8)–(3.11) associated with the symmetric κ family of distributions.

In terms of boundary conditions, the minimum value of L-kurtosis for global pdfs is
min(τ4) = 1/6 where κL = κR = κ = 0, which is associated with the standard logistic pdf in
(2.1). As such, using (3.15) and (3.16) with κL = 0 and κR ∈ [0, 1], provided in Figure 3 is a
graph of the region for feasible combinations of |τ3| and τ4 for asymmetric κL-κR global pdfs.



10 ISRN Applied Mathematics

Feasible combinations of L-skew and L-kurtosis for (3.15) and (3.16) will lie in the region
above the curve graphed in the |τ3|, τ4 plane of Figure 3.

The conventional-moment-based system for κL-κR distributions is given in the
appendix. This system was used to determine the values of skew and kurtosis associated
with the distributions given in Figures 1 and 2. It is worthy to point out that the conventional
moment based system has a disadvantage in terms of moment existence. That is, the integral
in (A.1) of the appendix reveals that for the rth moment to exist we must have 0 ≤ κL < 1/r
and 0 ≤ κR < 1/r to yield appropriate polygamma functions. More specifically, if the mean,
variance, skew, and kurtosis exist, then the parameters must be bounded in the range of
0 ≤ κL < 0.25 and 0 ≤ κR < 0.25. The advantage that the L-moment system has in this context
is attributed to Hosking’s Theorem 1 [7] which states that if the mean (λ1) exists, then all
other L-moments will have finite expectations.

Figure 4 provides some additional examples of κ and κL-κR distributions. These
distributions will be used in the simulation portion of this study in Section 5. Note that the
distributions associated with Figures 4(a) and 4(b) are local pdfs with probabilities at the
point where monotonicity fails of 1 − Pr{q(x) ≤ | − 8.2084|} = 0.00027 and 1 − Pr{q(x) ≤
|12.9285|} = 2.43 × 10−6, which do not pose any limitation for the purposes considered herein.
In the next section we first introduce the topic of the L-correlation and subsequently develop
the methodology for simulating κL-κR (or κ) distributions with specified L-correlations.

4. L-Correlations for κL-κR (or κ) Distributions

4.1. Preliminaries: The L-Correlation

The coefficient of L-correlation [18] is introduced by considering two random variables Yj
and Yk with distribution functions F(Yj) and F(Yk), respectively. The second L-moments of
Yj and Yk can alternatively be expressed as

λ2
(
Yj
)
= 2Cov

(
Yj, F

(
Yj
))
, (4.1)

λ2(Yk) = 2Cov(Yk, F(Yk)). (4.2)

The second L-comoments of Yj toward Yk and Yk toward Yj are

λ2
(
Yj, Yk

)
= 2Cov

(
Yj, F(Yk)

)
, (4.3)

λ2
(
Yk, Yj

)
= 2Cov

(
Yk, F

(
Yj
))
. (4.4)

As such, the L-correlations of Yj toward Yk and Yk toward Yj are expressed as

ηjk =
λ2
(
Yj, Yk

)

λ2
(
Yj
) (4.5)

ηkj =
λ2
(
Yk, Yj

)

λ2(Yk)
. (4.6)
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q(x) ∈ (−∞, 12.9285)

α3 = −1.356, α4 = 7.518
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τ3 = −0.12, τ4 = 0.2
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Figure 4: Two asymmetric κL-κR distributions and two symmetric κ distribution with their L-moment
and conventional parameters of L-skew (τ3) and skew (α3), L-kurtosis (τ4) and kurtosis (α4), and
corresponding shape parameters for (2.5) and (2.7). Note that in Tables 1–11 (a), (b), (c), (d) are denoted
as 1, 2, 3, 4, respectively.
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The L-correlation in (4.5) or (4.6) is bounded such that −1 ≤ ηjk ≤ 1 where a value of ηjk = 1
(ηjk = −1) indicates a strictly increasing (decreasing) monotone relationship between the two
variables. In general, we would also note that ηjk /=ηkj .

4.2. The L-Correlation for κL-κR (or κ) Distributions

In the context of L-moment-based κL-κR (or κ) distributions, suppose it is desired to simulate
a T -variate distribution from quantile functions of the form in (2.7) with a specified L-
correlation matrix and where each distribution has its own specified values of τ3 and τ4. Let
Z1, . . . , ZT denote standard normal variables where the distribution functions and bivariate
density function associated with Zj and Zk are expressed as:

Φ
(
zj
)
= Pr

{
Zj ≤ zj

}
=
∫zj

−∞
(2π)−1/2 exp

{−w2
j

2

}

dwj, (4.7)

Φ(zk) = Pr{Zk ≤ zk} =
∫zk

−∞
(2π)−1/2 exp

{−w2
k

2

}

dwk, (4.8)

fjk =
(

2π
(

1 − ρ2
jk

)1/2
)−1

exp
{
−
(

2
(

1 − ρ2
jk

))−1(
z2
j + z

2
k − 2ρjkzjzk

)}
. (4.9)

Using (4.7), it follows that the jth κL-κR distribution associated with (2.7) can be expressed
as qj(g(Φ(zj))) where g(Φ(zj)) = ln(Φ(zj)/(1 − Φ(zj))) is standard logistic because Φ(zj) ∼
U(0, 1). As such, using (4.5), the L-correlation of qj(g(Φ(zj))) toward qk(g(Φ(zk))) can
be evaluated using solved values of κLj and κRj for qj(g(Φ(zj))), a specified intermediate
correlation (IC) ρjk in (4.9), and the following integral expressed as

ηjk = 2
√
π

∫∫+∞

−∞
sj
(
qj
(
g
(
Φ
(
zj
))
, κLj , κRj

))
Φ(zk)fjkdzjdzk. (4.10)

We would point out that the purpose of the IC (ρjk) in (4.9) and (4.10) is to adjust for the effect
of the transformation qj(g(Φ(zj))), which is induced by the κLj and κRj parameters, such that
qj(g(Φ(zj))) has its specified L-correlation (ηjk) toward qk(g(Φ(zk))). Further, to simplify the
computation, the κLj -κRj distribution in (4.10) is standardized by a linear transformation such
that it has a mean of zero and one-half the coefficient of mean difference equal to that of the
unit-normal distribution as

sj
(
qj
(
g
(
Φ
(
zj
))
, κLj , κRj

))
= δ
(
qj
(
g
(
Φ
(
zj
))
, κLj , κRj

)
− λ1

)
, (4.11)

where λ1 is the mean from (3.13) and δ is a constant that scales λ2 in (3.14) and in the
denominator of (4.5) to 1/

√
π as

δ =
4

(√
π
(

8 − 4AκLj + 4BκLj + Eκ2
Lj

− Fκ2
Lj

− 4CκRj + 4DκRj + Gκ2
Rj

+ Hκ2
Rj

)) . (4.12)
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(∗Intermediate Correlation∗)
ρjk = 0.678043;

Needs[“MultivariateStatistics”’]
fjk = PDF[MultinormalDistribution[{0, 0}, {{1, ρjk}, {ρjk, 1}}], {Zj, Zk}];
Fj = CDF[NormalDistribution[0, 1],Zj];
Fk = CDF[NormalDistribution[0, 1],Zk];

(∗Parameters for Distribution 4(a) in Figure 4∗)
κL = −0.044817709;
κR = 0.1704343967;

X = Log[Fj/(1 − Fj)];

qL = X ∗ Exp[κL ∗ Abs[X]];
qR = X ∗ Exp[κR ∗ Abs[X]];

(∗ Standardizing constants λ1 from (3.13) and δ from (4.12)∗)
SqL = δ ∗ (qL − λ1);
SqR = δ ∗ (qR − λ1);

(∗Compute the specified L-correlation∗)
ηjk = 2

√
π ∗ NIntegrate[Piecewise[{{SqL, X ≤ 0}, {SqR, X > 0}}] ∗ Fk ∗ fjk , {Zj,−10, 10},

{Zk,−10, 10}, Method→MultiDimensional]

0.70

Algorithm 1: Mathematica source code for computing intermediate correlations for specified L-
correlations. The example is for distribution j = 1 towards distribution k = 2 (η12) in Figure 4 (Panels
4(a) and 4(b)). See also Table 3(a).

Analogously, the L-correlation of qk(g(Φ(zk))) toward qj(g(Φ(zj))) is expressed as

ηkj = 2
√
π

∫∫+∞

−∞
sk
(
qk
(
g(Φ(zk)), κLk , κRk

))
Φ
(
zj
)
fjkdzkdzj . (4.13)

Note also for the special case that if qj(g(Φ(zj))) in (4.10) and qk(g(Φ(zk))) in (4.13) have the
same parameters, that is, κLj = κLk and κRj = κRk , then ηjk = ηkj . Provided in Algorithm 1
is Mathematica [21] source code that implements the computation of an IC (ρjk) based on
(4.10). The details for simulating κL-κR (or κ) distributions with specified values of L-skew,
L-kurtosis, and L-correlations are described in the next section.

5. The Method and Simulation Study

To implement the method for simulating κL-κR (or κ) distributions with specified L-moments
and L-correlations we suggest the following six steps.

(1) Specify the L-moments for T transformations of the form in (2.7), that is,
q1(g(Φ(z1))), . . . , qT (g(Φ(zT ))) and obtain the solutions for the parameters of κLj

and κRjby solving (3.15) and (3.16) using the specified values of L-skew (τ3) and
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L-kurtosis (τ4) for each distribution. Specify a T × T matrix of L-correlations (ηjk)
for qj(g(Φ(zj))) toward qk(g(Φ(zk))), where j < k ∈ {1, 2, . . . , T}.

(2) Compute the (Pearson) intermediate correlations (ICs) ρjk by substituting the
solutions of κLj and κRj from Step 1 into (4.10) and then numerically integrate to
solve for ρjk (see Algorithm 1 for an example). Repeat this step separately for all
T(T − 1)/2 pairwise combinations of correlations.

(3) Assemble the ICs into a T × T matrix and decompose this matrix using a Cholesky
factorization. Note that this step requires the IC matrix to be positive definite.

(4) Use the results of the Cholesky factorization from Step 3 to generate T standard
normal variables (Z1, . . . , ZT ) correlated at the intermediate levels as follows:

Z1 = a11V1,

Z2 = a12V1 + a22V2,

...

Zj = a1jV1 + a2jV2 + · · · + aijVi + · · · + ajjVj
...

ZT = a1TV1 + a2TV2 + · · · + aiTVi + · · · + ajTVj + · · · + aTTVT ,

(5.1)

where V1, . . . , VT are independent standard normal random variables and where aij
represents the element in the ith row and the jth column of the matrix associated with the
Cholesky factorization performed in Step 3.

(5) Substitute Z1, . . . , ZT from Step 4 into the following Taylor series-based expansion
for the standard normal cdf [22]:

Φ
(
Zj

)
=
(

1
2

)
+ Φ
(
Zj

)
⎧
⎨

⎩
Zj +

Z3
j

3
+

Z5
j

(3 · 5)
+

Z7
j

(3 · 5 · 7)
+ · · ·

⎫
⎬

⎭
, (5.2)

where φ(Zj) denotes the standard normal pdf and where the absolute error associated with
(5.2) is less than 8 × 10−16.

(6) Substitute the zero-one uniform deviates, Φ(Zj), generated from Step 5 into the T
equations of the form of qj(g(Φ(zj))), where g(Φ(zj)) = ln(Φ(zj)/(1 − Φ(zj))) is
standard logistic to generate the κL-κR distributions with the specified L-moments
and L-correlations.

To demonstrate the steps above and evaluate the proposed method, a comparison
between the proposed L-moment and conventional product-moment based procedures is
subsequently described. Specifically, the distributions in Figure 4 are used as a basis for
a comparison using the specified correlation matrices in Table 1 where both strong and
moderate levels of correlation are considered. Tables 2 and 3 give the solved IC matrices for
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Table 1: Specified correlation matrices for the distributions in Figure 4.

(a)

1 2 3 4
1 1
2 0.70 1
3 0.70 0.70 1
4 0.85 0.70 0.70 1

(b)

1 2 3 4
1 1
2 0.40 1
3 0.50 0.40 1
4 0.60 0.50 0.40 1

Table 2: Intermediate correlations for the conventional moment procedure.

(a)

1 2 3 4
1 1
2 0.850758 1
3 0.781157 0.737229 1
4 0.942741 0.721594 0.720942 1

(b)

1 2 3 4
1 1
2 0.482879 1
3 0.571693 0.428504 1
4 0.673333 0.518208 0.415569 1

Table 3: Intermediate correlations for the L-moment procedure.

(a)

1 2 3 4
1 1
2 0.678043 1
3 0.678043 0.687374 1
4 0.835100 0.687374 0.678876 1

(b)

1 2 3 4
1 1
2 0.380048 1
3 0.477524 0.388439 1
4 0.576716 0.487002 0.381013 1



16 ISRN Applied Mathematics

(∗Intermediate Correlation∗)
ρjk = 0.673333;

Needs[“MultivariateStatistics”’]
fjk = PDF[MultinormalDistribution[{0, 0}, {{1, ρjk}, {ρjk, 1}}],{Zj, Zk}];
Fj = CDF[NormalDistribution[0, 1],Zj];
Fk = CDF[NormalDistribution[0, 1],Zk];

(∗Parameters for Distributions 4(a) and 4(d) in Figure 4∗)
κLj = −0.044817709;
κRj

= 0.1704343967;
κLk

= 0.0;
κRk

= 0.0;

Xj = Log[Fj/(1 − Fj)];
Xk = Log[Fk/(1 − Fk)];

qLj
= Xj ∗ Exp[κLj

∗ Abs[Xj]];
qRj

= Xj ∗ Exp[κRj
∗ Abs[Xj]];

qLk
= Xk ∗ Exp[κLk

∗ Abs[Xk]];
qRk

= Xk ∗ Exp[κRk
∗ Abs[Xk]];

(∗Standardizing constants λ1 from (3.13) and α2 from (A.2) from the appendix∗)
SqLj

= (qLj
− λ1j )/α2j ;

SqRj
= (qRj

− λ1j )/α2j ;
SqLk

= (qLk
− λ1k )/α2k ;

SqRk
= (qRk

− λ1k )/α2k ;

(∗Compute the specified conventional Pearson correlation∗)
ρ∗
jk

= NIntegrate[Piecewise[{{SqLj
, Xj ≤ 0}, {SqRj

, Xj > 0}}] ∗ Piecewise[{{SqLk
, Xk ≤ 0},

{SqRk
, Xk > 0}}]∗

fjk , {Zj,−10, 10}, {Zk,−10, 10}, Method→MultiDimensional]

0.60

Algorithm 2: Mathematica source code for computing intermediate correlations for specified conventional
Pearson correlations. The example is for distributions j = 1 and k = 4 (ρ∗34) in Figure 4 (Panels 4(a) and
4(d)). See also Table 2(b).

the conventional moment and L-moment-based methods, respectively. See Algorithm 2 for an
example for computing ICs for the conventional method. Tables 4 and 5 give the results of the
Cholesky decompositions on the IC matrices, which are then used to createZ1, . . . , Z4 with the
specified ICs by making use of the formulae given in (5.1) of Step 4 with T = 4. The values of
Z1, . . . , Z4 are subsequently transformed to Φ(Z1), . . . ,Φ(Z4) using (4.2) and then substituted
into equations of the form in (2.5) and (2.7) to produce q1(g(Φ(z1))), . . . , q4(g(Φ(z4))) for
both methods.

In terms of the simulation, a Fortran algorithm was written for both methods
to generate 25,000 independent sample estimates for the specified parameters of: (a)
conventional skew (α3), kurtosis (α4), and Pearson correlation (ρ∗

jk
) and (b) L-skew (τ3), L-

kurtosis (τ4), and L-correlation (ηjk). All estimates were based on sample sizes of n = 25
and n = 1000. The formulae used for computing estimates of α3,4 were based on Fisher’s
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Table 4: Cholesky decompositions for the conventional moment procedure.

(a)

a11 = 1 a12 = 0.850758 a13 = 0.781157 a14 = 0.942741
0 a22 = 0.525558 a23 = 0.138241 a24 = −0.153076
0 0 a33 = 0.608838 a34 = 0.009320
0 0 0 a44 = 0.296176

(b)

a11 = 1 a12 = 0.482879 a13 = 0.571693 a14 = 0.673333
0 a22 = 0.875687 a23 = 0.174087 a24 = 0.220478
0 0 a33 = 0.801786 a34 = −0.009670
0 0 0 a44 = 0.705634

Table 5: Cholesky decompositions for the L-moment procedure.

(a)

a11 = 1 a12 = 0.678043 a13 = 0.678043 a14 = 0.835100
0 a22 = 0.735022 a23 = 0.309694 a24 = 0.164812
0 0 a33 = 0.666594 a34 = 0.092412
0 0 0 a44 = 0.516629

(b)

a11 = 1 a12 = 0.380048 a13 = 0.477524 a14 = 0.576716
0 a22 = 0.924967 a23 = 0.223745 a24 = 0.289548
0 0 a33 = 0.849652 a34 = 0.048058
0 0 0 a44 = 0.762398

k-statistics, that is, the formulae currently used by most commercial software packages
such as SAS, SPSS, Minitab, for computing indices of skew and kurtosis (where α3,4 = 0
for the standard normal distribution). The formulae used for computing estimates of τ3,4

were Headrick’s Equations 2.4 and 2.6 [11]. The estimate for ρ∗
jk

was based on the usual
formula for the Pearson product moment of correlation statistic and the estimate for ηjk was
computed based on (4.5) using the empirical forms of the cdfs in (4.1) and (4.3). The estimates
for ρ∗

jk
and ηjk were both transformed using Fisher’s z′ transformation. Bias-corrected

accelerated bootstrapped average estimates, confidence intervals (C.I.s), and standard errors
were subsequently obtained for the estimates associated with the parameters (α3,4, τ3,4, z′ρ∗

jk
,

z′ηjk) using 10,000 resamples via the commercial software package Spotfire S+ [23]. The
bootstrap results for the estimates of z′ρ∗

jk
and z′ηjk were transformed back to their original

metrics. Further, if a parameter (P) was outside its associated bootstrap C.I., then an index of
relative bias (RB) was computed for the estimate (E) as: RB = ((E − P)/P) × 100. The results
of the simulation are reported in Tables 6–11 and are discussed in the next section.

6. Discussion and Conclusion

Headrick [11] demonstrated the advantages that L-moment ratios have over conventional-
moment-based estimators in terms of relative bias and efficiency when sampling was
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Table 6: Skew (α3) and Kurtosis (α4) results for the conventional moment procedure.

(a) n = 25

Dist Parameter Estimate 95% Bootstrap C.I. Standard error Relative bias %

1 α3 = 4.502 1.259 1.246, 1.272 0.0065 −72.0
α4 = 129.5 3.286 3.230, 3.340 0.0280 −97.5

2 α3 = −1.356 −0.6655 −0.6756, −0.6551 0.0053 −50.9
α4 = 7.518 1.657 1.625, 1.694 0.0175 −78.0

3 α3 = 0 0.0093 −0.0052, 0.0228 0.0071 —
α4 = 9.674 2.374 2.335, 2.411 0.0194 −75.5

4 α3 = 0 0.0068 −0.0016, 0.0150 0.0042 —
α4 = 1.2 0.7011 0.6826, 0.7202 0.0096 −41.6

(b) n = 1000

Dist Parameter Estimate 95% bootstrap C.I. Standard error Relative bias %

1 α3 = 4.502 3.285 3.260, 3.311 0.0128 −27.0
α4 = 129.5 29.16 28.56, 29.75 0.3057 −77.5

2 α3 = −1.356 −1.286 −1.293, −1.279 0.0037 −5.2
α4 = 7.518 6.260 6.157, 6.373 0.0555 −16.7

3 α3 = 0 −0.0011 −0.0110, 0.0090 0.0051 —
α4 = 9.674 8.016 7.897, 8.152 0.0644 −17.1

4 α3 = 0 −0.0003 −0.0019, 0.0019 0.0010 —
α4 = 1.2 1.179 1.173, 1.185 0.0033 −1.79

Table 7: L-skew (τ3) and L-kurtosis (τ4) results.

(a) n = 25

Dist Parameter Estimate 95% bootstrap C.I. Stand. error Relative bias %

1 τ3 = 0.23 0.2043 0.2026, 0.2061 0.00091 −11.2
τ4 = 0.25 0.2343 0.2329, 0.2357 0.00072 −6.3

2 τ3 = −0.12 −0.1075 −0.1090, − 0.1059 0.00086 −10.4
τ4 = 0.20 0.1942 0.1931, 0.1954 0.00058 −2.9

3 τ3 = 0 0.0015 −0.0004, 0.0034 0.00098 —
τ4 = 0.25 0.2413 0.2400, 0.2425 0.00063 −3.5

4 τ3 = 0 0.00116 −0.00027, 0.00249 0.00070 —
τ4 = 0.1667 0.1654 0.1644, 0.1664 0.00050 −0.76

(b) n = 1000

Dist Parameter Estimate 95% bootstrap C.I. Stand. error Relative bias %

1 τ3 = 0.23 0.2291 0.2287, 0.2294 0.00017 −0.39
τ4 = 0.25 0. 2494 0. 2492, 0.2497 0.00013 −0.24

2 τ3 = −0.12 −0.1197 −0.1200,−0.1195 0.00013 —
τ4 = 0.20 0.1999 0.1997, 0.2001 0.00009 —

3 τ3 = 0 −0.0001 −0.0004, 0.0003 0.00017 —
τ4 = 0.25 0.2498 0.2496, 0.2500 0.00010 —

4 τ3 = 0 −0.00004 −0.00026, 0.00016 0.00011 —
τ4 = 0.1667 0.1667 0.1665, 0.1668 0.00007 —
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Table 8: Correlation (strong) results for the conventional moment procedure.

(a) n = 25

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
ρ∗12 = 0.70 0.7857 0.7846, 0.7863 0.00114 12.24
ρ∗13 = 0.70 0.7528 0.7515, 0.7541 0.00148 7.54
ρ∗14 = 0.85 0.9083 0.9079, 0.9088 0.00125 6.86
ρ∗23 = 0.70 0.7277 0.7264, 0.7290 0.00141 3.96
ρ∗24 = 0.70 0.7178 0.7165, 0.7190 0.00133 2.54
ρ∗34 = 0.70 0.7185 0.7172, 0.7198 0.00138 2.64

(b) n = 1000

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
ρ∗12 = 0.70 0.7145 0.7141, 0.7149 0.00044 2.07
ρ∗13 = 0.70 0.7073 0.7069, 0.7077 0.00037 1.04
ρ∗14 = 0.85 0.8615 0.8610, 0.8617 0.00067 1.35
ρ∗23 = 0.70 0.7046 0.7043, 0.7048 0.00026 0.66
ρ∗24 = 0.70 0.7009 0.7006, 0.7011 0.00022 0.13
ρ∗34 = 0.70 0.7011 0.7009, 0.7013 0.00022 0.16

Table 9: Correlation (strong) results for the L-moment procedure.

(a) n = 25

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
η12 = 0.70 0.7069 0.7053, 0.7083 0.00153 0.99
η13 = 0.70 0.7066 0.7050, 0.7081 0.00156 0.94
η14 = 0.85 0.8543 0.8535, 0.8552 0.00158 0.51
η23 = 0.70 0.7078 0.7063, 0.7092 0.00147 1.11
η24 = 0.70 0.7079 0.7065, 0.7094 0.00147 1.13
η34 = 0.70 0.7069 0.7054, 0.7083 0.00149 0.99

(b) n = 1000

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
η12 = 0.70 0.6999 0.6997, 0.7002 0.00024 —
η13 = 0.70 0.7002 0.6999, 0.7004 0.00024 —
η14 = 0.85 0.8500 0.8499, 0.8502 0.00024 —
η23 = 0.70 0.6999 0.6997, 0.7001 0.00022 —
η24 = 0.70 0.7001 0.6998, 0.7003 0.00022 —
η34 = 0.70 0.7001 0.6999, 0.7003 0.00022 —

from power method distributions with either moderate or heavy tails. Inspection of the
simulation results in Table 6 and Table 7 of this study clearly indicates that this is also the
case for the family of κ and κL-κR distributions. Specifically, the superiority that estimates
of L-moment ratios (τ3, τ4) have over their corresponding conventional-moment-based
counterparts (α3, α4) is obvious. For example, with samples of size n = 25 the estimates of
skew and kurtosis for Distribution 1 were, on average, only 28% and 2.5% of their associated
population parameters, whereas the estimates of L-skew and L-kurtosis were 88.8% and
93.7% of their respective parameters. It is also evident from comparing Tables 6 and 7 that
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Table 10: Correlation (moderate) results for the conventional moment procedure.

(a) n = 25

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
ρ∗12 = 0.40 0.4517 0.4498, 0.4536 0.00123 12.93
ρ∗13 = 0.50 0.5492 0.5473, 0.5512 0.00143 9.84
ρ∗14 = 0.60 0.6505 0.6490, 0.6520 0.00134 8.42
ρ∗23 = 0.40 0.4226 0.4203, 0.4247 0.00137 5.65
ρ∗24 = 0.50 0.5170 0.5150, 0.5189 0.00135 3.40
ρ∗34 = 0.40 0.4155 0.4133, 0.4178 0.00136 3.88

(b) n = 1000

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
ρ∗12 = 0.40 0.4076 0.4072, 0.4079 0.00023 1.90
ρ∗13 = 0.50 0.5061 0.5057, 0.5066 0.00030 1.22
ρ∗14 = 0.60 0.6071 0.6067, 0.6075 0.00031 1.18
ρ∗23 = 0.40 0.4026 0.4023, 0.4030 0.00022 0.65
ρ∗24 = 0.50 0.5014 0.5011, 0.5017 0.00021 0.28
ρ∗34 = 0.40 0.4007 0.4004, 0.4011 0.00021 0.18

Table 11: Correlation (moderate) results for the L-moment procedure.

(a) n = 25

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
η12 = 0.40 0.4075 0.4048, 0.4100 0.00157 1.88
η13 = 0.50 0.5060 0.5036, 0.5081 0.00156 1.20
η14 = 0.60 0.6065 0.6044, 0.6083 0.00156 1.08
η23 = 0.40 0.4071 0.4048, 0.4096 0.00147 1.78
η24 = 0.50 0.5083 0.5060, 0.5103 0.00148 1.66
η34 = 0.40 0.4068 0.4042, 0.4091 0.00149 1.70

(b) n = 1000

Parameter Estimate 95% bootstrap C.I. Standard error Relative bias%
η12 = 0.40 0.4000 0.3996, 0.4004 0.00024 —
η13 = 0.50 0.5001 0.4997, 0.5005 0.00024 —
η14 = 0.60 0.6002 0.5999, 0.6004 0.00024 —
η23 = 0.40 0.3996 0.3993, 0.4000 0.00022 —
η24 = 0.50 0.5001 0.4998, 0.5004 0.00022 —
η34 = 0.40 0.4000 0.3996, 0.4003 0.00022 —

L-skew and L-kurtosis are more efficient estimators as their relative standard errors RSE =
(standard error/estimate) × 100 are substantially smaller than the conventional estimators
of skew and kurtosis. For example, in terms of Distribution 1 (n = 1000), inspection of
Tables 6 and 7 indicates RSE measures of: RSE(α̂3) = 0.390% and RSE(α̂4) = 1.05% compared
with RSE(τ̂3) = 0.074% and RSE(τ̂4) = 0.052%. This demonstrates that L-skew and L-kurtosis
have more precision because they have less variance around their estimates.

Presented in Tables 8–11 are the results associated with the conventional Pearson
and L-correlations. Overall inspection of these tables indicates that the L-correlation is
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substantially superior to the Pearson correlation in terms of relative bias. For example, in
terms of strong correlations (n = 25) the relative bias for the two heavier tailed distributions
(distributions 1 and 2) was 12.24% for the Pearson correlation compared to only 0.99% for
the L-correlation. Further, for large sample sizes (n = 1000), the L-correlation bootstrap C.I.s
contained all of the population parameters, whereas the Pearson correlation C.I.s contained
none of the parameters. It is also noted that the variability of the L-correlation appears to
be more stable than that of the Pearson correlation both within and across the different
conditions.

In summary, the new L-moment-based method is an attractive alternative to the tradi-
tional conventional-moment-based procedure. In particular, the L-moment based procedure
has distinct advantages when distributions with moderate and heavy tails are used. Finally,
we would note that Mathematica Version 8.0 [21] source code is available from the authors
for implementing the L-moment-based method.

Appendix

A. System of Conventional-Moment-Based Equations for
κL-κR Distributions

The moments (μr=1,...4) associated with (2.7) can be determined from

μr =
∫0

−∞
q(x, κL)rfX(x)dx +

∫+∞

0
q(x, κR)rfX(x)dx. (A.1)

The mean, variance, skew, and kurtosis are in general (e.g., [24])

α1 = μ1,

α2
2 = μ2 − μ2

1,

α3 =

(
μ3 − 3μ2μ1 + 2μ3

1

)

α3/2
2

,

α4 =

(
μ4 − 4μ3μ1 − 3μ2

2 + 12μ2μ
2
1 − 6μ4

1

)

α2
2

.

(A.2)

The moments associated with the location and scale parameters in (A.2) are

α1 = μ1 =
1
4
(2A − 2B − 2C + 2D − κLE + κLF + κRG − κRH), (A.3)

μ2 =
1
2

(
κLHZ

[
3,

1
2
− κL

]
− κLHZ[3, 1 − κL] + E + F

)

+
1
2

(
κRHZ

[
3,

1
2
− κR

]
− κRHZ[3, 1 − κR] + G − I

)
,

(A.4)
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where the polygamma functions are A = ψ[0, (1/2) − (κL/2)], B = ψ[0, 1 − κL/2], C =
ψ[0, (1/2)−(κR/2)], D = ψ[0, 1−(κR/2)], E = ψ[1, (1/2)−(κL/2)], F = ψ[1, 1−(κL/2)], G =
ψ[1, (1/2) − (κR/2)], and H = ψ[1, 1 − (κR/2)], I = ψ[1, 1 − κR].

The notation HZ[·] is the Hurwitz zeta function. The moments related to skew and
kurtosis are as follows:

μ3 =
3

16

(
2J − 2K − κLL + κLM

+
3
8

(
N + 2Z

[
3,

1
2
(1 − 3κR)

]
+ 3κRZ

[
4,

1
2
(1 − 3κR)

]
− 3κRZ

[
4, 1 − 3κR

2

]))
,

(A.5)

μ4 =
1
8
(O − P − κLQ + κLR) +

1
8
(2S − 2T − κRU + κRV), (A.6)

where J = ψ[2, (1/2) − (3κL/2)], K = ψ[2, 1 − (3κL/2)], L = ψ[3, (1/2) − (3κL/2)], M =
ψ[3, 1 − (3κL/2)], N = ψ[2, 1 − (3κR/2)], O = ψ[3, (1/2) − 2κL], P = ψ[3, 1 − 2κL], Q =
ψ[4, (1/2)−2κL], R = ψ[4, 1−2κL], S = ψ[3, (1/2)−2κR], T = ψ[3, 1−2κR], U = ψ[4, (1/2)−
2κR], V = ψ[4, 1−2κR]. The notation Z[·] in (A.5) is the zeta function. Note that the moments
for symmetric κ distributions can be easily obtained by setting κL = κR in (A.3)–(A.6) and
simplifying.
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