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Abstract 19 

In archaea, pseudouridine () synthase Pus10 modifies uridine (U) to  at positions 54 and 55 of 20 

tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are 21 

carried out by TrmA (U54 to m5U54) and TruB (U55 to 55). Many eukaryotes have an 22 

apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and 23 

TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 24 

genes, their biological roles are not clear for the two reasons. First, experimental evidence 25 

suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor–related 26 

apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of 27 

 synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of 28 

fungi (such as chytrid Batrachochytrium) but is absent in all dikaryon fungi surveyed 29 

(Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes 30 

and found that orthologs of Pus10, TrmA and TruB were present in all the animals, plants and 31 

protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three 32 

genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that 33 

Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome 34 

duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results 35 

suggest that functional redundancy result in gene loss or neofunctionalization in different 36 

evolutionary lineages. 37 

 38 

Keywords: phylogeny, protein evolution, subfunctionalization, pseudogene, orthologs 39 
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Introduction 41 

 42 

During protein synthesis, transfer RNA (tRNA) requires modifications at specific nucleotides to 43 

ensure the correct incorporation of amino acids to a growing peptide chain. A superfamily of 44 

pseudouridine synthases families can isomerize uridine (U) to pseudouridine (Ψ) at multiple 45 

positions in RNA post-transcriptionally (Kaya and Ofengand 2003). In this superfamily, 46 

members of TruA, TruB and TruD families modify tRNA; members of the RluA and RsuA 47 

families primarily involve in uridine modification of rRNA; members of Pus10 can modify 48 

tRNA at position U54 to Ψ (Gurha and Gupta 2008).  49 

Both TruB (of bacterial origin) and Pus10 (of archaeal origin) can modify U to Ψ at tRNA 50 

position 55 in vitro (Blaby et al. 2011; Gurha and Gupta 2008; Roovers et al. 2006). In bacteria, 51 

TrmA methylates tRNA at position U54 to m5U54 or ribo-T54 (ribothymidine) (Ny and Björk 52 

1980). These three enzymes TruB, TrmA, and Pus10all have eukaryal orthologs and thus, 53 

have potential overlapped roles in modification of uridines at position 54 (by TrmA and Pus10) 54 

and 55 (by TruB and Pus10) of tRNAs. Indeed, when crystal structures of Pus family members 55 

were compared, overlapping structural similarities of an aspartate residue as the catalytic amino 56 

acid in the active pocket were revealed and confirmed. The structure is preserved in all the 57 

eukaryal orthologs studied (Foster et al. 2000; Hoang 2004; Hoang et al. 2006; McCleverty et al. 58 

2007; Pan et al. 2003; Sivaraman et al. 2002). Moreover, mutational analysis of Pus family 59 

members identified additional four amino acids and structural features forefinger loop (FFL) 60 

and thumb loop to be important for substrate recognition and binding (Chan and Huang 2009; 61 

Conrad et al. 1999; Gurha and Gupta 2008; Hamilton et al. 2005; Hur and Stroud 2007; Joardar 62 

et al. 2013; Kamalampeta et al. 2013; Spedaliere et al. 2000). 63 
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In this paper, the molecular evolution of Pus10 and resolution of functional redundancy 64 

between orthologs of Pus10, TruB, and TrmA in different eukaryotic lineages are described. 65 

Lineage-specific alterations in key Pus10 sequence features are shown: length of the FFL and 66 

substitution of amino acids in the catalytic region and thumb loop. Different evolutionary 67 

hypotheses are proposed to explain how neofunctionalization, subfunctionalization and gene loss 68 

have given different lineage-specific outcomes.  69 

 70 

Materials and Methods 71 

 72 

Collection of Data Sets 73 

  74 

For the identification of Pus10-like proteins, only the species with whole sequenced and 75 

annotated genomes were retrieved from the National Center for Biotechnology Information 76 

(NCBI), the DOE Joint Genome Initiative (JGI), the Solanaceae Genomic Network (SGN), and 77 

the Ensembl genome browser (version 62) (Bombarely et al. 2011; Hubbard et al. 2009; 78 

McGinnis and Madden 2004). Sequence alignments were performed using the basic local 79 

alignment tool Protein BLAST (BLASTP; using default settings) in NCBI. The full length Pus10 80 

sequences from Homo sapiens (NP_653310, PDB: 2V9K), Arabidopsis thaliana (NP_173466), 81 

Methanocaldococcus jannaschii (NP_247004) and Pyrococcus furiosus (NP_578868.1) were 82 

used as a query. Similarity Sequences with BLASTP score of 40 or better and with >25% 83 

coverage were initially retained. However, those that did not harbor the essential Asp (aspartic 84 

acid) in the conserved core catalytic sequence GREDXD (Joardar et al. 2013) or were found to 85 

be significantly better aligned to another known Pus protein (e.g.,, Cbf5, Pus4, etc.) were 86 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
   

5 
 

excluded from later analysis. These were likely not functional orthologs of Pus10. Accession 87 

numbers for all the proteins obtained are in Supplementary Table 1.  88 

 89 

Protein Alignment and Phylogenetic Analysis 90 

 91 

Orthologous Pus10 protein sequences of 116 species were collected from Eukarya and Archaea. 92 

A weakly aligned Pus10 homolog was found for Nanoarchaeum but was excluded from the 93 

downstream phylogenetic analysis due to extreme divergence of the sequence and absence of key 94 

Pus10 sequence features. The N-terminal region of Pus10 showed high divergence specific to 95 

each taxonomic domain and kingdom, and resulted in very low or no bootstrap supported values. 96 

Thus, protein alignment and phylogenetic analyses were conducted using only the conserved C-97 

terminal catalytic domain (e.g., Gly286-Asp528 in human Pus10). In this study, amino acid 98 

positioning of Pus10 refers to the corresponding sequence position in relation to M. jannaschii. 99 

Isolation of the C-terminal domain was done by multiple sequence alignment using ClustalX 100 

(version 2.0.12) of whole protein sequences followed by removing the N-terminus region (e.g., 101 

residues 1 to 286 in human Pus10) (Larkin et al. 2007; McCleverty et al. 2007). Maximum 102 

likelihood analyses of all taxa with respect to the C-terminal of orthologous Pus10 were 103 

calculated with the Whelan and Goldman (WAG + I + G) empirical substitution model (Whelan 104 

and Goldman 2001). The web server RAxML Black box  (http://phylobench.vital-it.ch/raxml-105 

bb/) was used for maximum likelihood analyses (Stamatakis 2006). Netwick files were uploaded 106 

into FigTree (version 1.3.1) (http://tree.bio.ed.ac.uk/software/figtree) and the following settings 107 

were altered. Line weight: 2x, cladogram was chosen as displayable transform version, node 108 

labels were chosen to display bootstrap values. Further features were selected: Node bars and 109 
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scale bar (altered to line weight of 2). Tree branches were colored to emphasize different 110 

kingdoms and the tree graphic was exported as a jpeg format. 111 

  112 

Annotation of Phylogenetic Trees 113 

 114 

The molecular phylogeny of the C-terminal Pus10 was annotated using the Interactive Tree Of 115 

Life (version 2.0) (iTOL; http://itol.embl.de/index.shtml) (Letunic and Bork 2011; Letunic and 116 

Bork 2016) featuring the key amino acids in the active pocket and structural features relevant for 117 

recognition and binding of tRNA substrates. Substitutions in the key Pus10 features were 118 

mapped onto a maximum likelihood tree and color coded. A separate species tree with 131 taxa 119 

(including those without detectable PUS10) was generated to illustrate the presence/absence 120 

pattern of Pus10 in relation to species ancestry and to determine potential gain/loss events 121 

(Supplementary Table 1). A reduced version with of the species tree was generated by acquiring 122 

taxonomy numbers from NCBI uploaded onto iTOL. The resulting species tree was color coded 123 

with respect to kingdom, except for phylum amoebozoa. Furthermore, presence/absence of 124 

Pus10 within clades was emphasized (Letunic and Bork 2011) (Refer to illustration in Fig. 5). 125 

 126 

Homology Modeling and Structural Superimposition 127 

 128 

A homology model of the protein structure of M. jannaschii Pus10 was calculated using 3D-129 

JIGSAW (version 2.0; http://bmm.cancerresearchuk.org/~3djigsaw/) (Bates et al. 2001). The 130 

crystal structure of H. sapiens (PDB: 2V9K, B factor 38.6, resolution: 2.0 Å) was used as a 131 

template (McCleverty et al. 2007). Both the crystal structures of H. sapiens Pus10 and the 132 

homology-modeled protein structure of M. jannaschii were uploaded onto the Swiss-PDB 133 
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Viewer (version 4.1) and superimposed via the ‘generate structural alignment tool’ (Guex et al. 134 

2009). Pus10 of H. sapiens and M. jannaschii are displayed as ribbon and each backbone of the 135 

3D-structure was color coded. Conserved amino acids in all pseudouridine synthases were 136 

individually displayed, color coded, and labeled (refer to Fig. 3).  137 

 138 

Results  139 

 140 

Characterization of Key Conserved Structural Features of Pus10  141 

 142 

Members of the Pseudouridine Synthase superfamily have a similar 3D structure and a conserved 143 

catalytic Asp (Mueller and Ferré-D'Amaré 2009). Other accessory domains with binding 144 

capacity and features (e.g., FFL and thumb loop) are conserved within sub-families and can 145 

distinguish between different members (Fig. 1). Crystal structure analysis of RluA and TruA 146 

identified FFL and thumb loop in the catalytic site as the ‘pinch mechanism’ holding the 147 

substrate in place (Hoang et al. 2006; Hoang and Ferré-D’Amaré 2001). Only three families 148 

(TruA, RluA and Pus10) have both the FFL and thumb loop, whereas other families have either 149 

loop individually (Fig. 1).  150 

The THUMP-domain is unique to Pus10 within the pseudouridine synthase superfamily (Fig. 151 

2). It is structurally similar to the THUMP domain of bacterial ThiI and present at the N-152 

terminus, and likely involved in substrate recognition and binding (Aravind and Koonin 2001). 153 

Modification of the N-terminal THUMP-domain in Pus10 was observed throughout different 154 

eukaryotic lineages, and extensively so in plants and animals (Fig. 2). Eukaryotic Pus10 155 

THUMP-domains contain large insertions to prevent detection by routine search of hidden 156 
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Markov models (HMM) for a THUMP-domain (when using PFAM PF02926 as template). But, 157 

all archaeal Pus10 THUMP-domains tested fit the PFAM model.  158 

Structural pairwise alignment of bacterial ThiI (PDB: 2C5S) was made to the homology 159 

modeled THUMP-domain across eukaryal and archaeal lineages. The structural comparison 160 

analysis by the DALIlite (version 3.3) (Holm et al. 2008; Holm and Rosenstrom 2010) showed 161 

an overall high similarity Z-score (Table 1). The Z-scores of PUS10 from P. furiosus and H. 162 

sapiens are very high, 2.5 and 3.7, respectively. These scores indicate that although observed 163 

deletions in P. furiosus and insertions in H. sapiens could theoretically have affected the folding 164 

of the protein, this region still remains structurally similar to ThiI THUMP. 165 

In Pus10 of H. sapiens, the zinc-binding site consists of four cysteine (Cys) residues at 166 

positions 21, 24, 109, and 112, and is thought to be involved in the maintenance of the native N-167 

terminal structure (McCleverty et al. 2007). Multiple sequence alignment revealed the presence 168 

of the four Cys residues in nearly all Pus10 orthologs of Archaea and Eukarya. The exceptions 169 

were found in the fungi lineage. Here, all four Cys were present in early fungi Mucoromycotina 170 

and in several Chytridiomycota, but entirely absent in Microsporidia. Furthermore, the first Cys 171 

pair (Cys21 and 24) was absent in one chitrid fungus (Allomyces macrogynus). Interestingly, the 172 

latter was encountered in the following invertebrates; Branchiostoma floridae, Daphnia pulex, 173 

and Caenorhabditis elegans. Ala (alanine) substitutions of the second pair, C106/109A in M. 174 

jannaschii (equivalent to C109/C112 of human Pus10) showed a reduced 54 modification, but 175 

55 modification was unaffected (Joardar et al. 2013). This suggests Pus10 proteins may retain 176 

partial (55) function despite the absence of the second Cys pair. 177 

In the catalytic region, five amino acids (Asp275, Tyr339, Ile412, Lys413, Leu440 in M. 178 

jannaschii) were determined to be conserved throughout all pseudouridine synthase families 179 
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(Hamma and Ferré-D'Amaré 2006; McCleverty et al. 2007). Superimposition of a homology-180 

modeled structure of M. jannaschii Pus10 onto that of H. sapiens Pus 10 revealed the same 181 

orientation and 3D positioning of the conserved amino acids present in the active pocket. This 182 

was observed throughout all 116 organisms surveyed (Fig. 3) with the exceptions of 183 

Branchiostoma floridae (Cephalochordata), Daphnia pulex (Brachipoda), Manihot esculenta and 184 

Solanum lycopersicum. A conserved consensus sequence of the catalytic site in the Pus10 185 

orthologs centered on the catalytic Asp275 and 5 surrounding residues ‘GREDVD’ (Fig. 1). 186 

Substitutions within this catalytic site have been observed throughout Archaea and Eukaryota 187 

(Fig. 4). In addition to the active pocket, two loops were experimentally confirmed to be of value 188 

for the pseudouridylation of tRNAs at positions U55 and U54. The FFL proved to contribute to 189 

modify U55 over U54. Therefore, the length of the loop was crucial, not the identities of the 190 

amino acids within the loop. The opposite was observed for the thumb-loop, where the amino 191 

acid identity (His and Arg) is of importance for pseudouridylation (Joardar et al. 2013).  192 

 193 

Presence, Absence, and Copy Number of Pus10 Orthologs in Whole Genomes 194 

  195 

Organisms with fully sequenced genomes were surveyed by BLASTP to identify Pus10 196 

orthologs. In the identification of Pus10 orthologs, several eukaryotic and a few archaeal species 197 

were found to lack Pus10 and were placed on a species tree (Fig. 5). Four nodes of Pus10 loss 198 

were identified (Fig. 5). In fungi, all dikaryotes (Ascomycocota and Basidomycocota) lacked 199 

Pus10 but had TruB orthologs. The most parsimonious answer would be a single evolutionary 200 

event in which Pus10 was lost in the common ancestor of all Dikaryon fungi. Other fungal taxa, 201 

including Chitrids and Microsporidia, contain Pus10 orthologs (Fig. 5). Most of Archaea had 202 

Pus10 but only two genera lacked functional Pus10 genes (Fig. 5). In Sulfolobus tokodaii, S. 203 
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acidocaldarius, S. solfataricus, their most similar sequences (to Pus10) all lack the catalytic 204 

aspartate residue. The entire conserved ‘GREDVD’ sequence surrounding the catalytic aspartate 205 

residue is significantly altered (i.e., “PYSEPSDVR” in S. acidocaldarius). Although most of the 206 

residues upstream of this site are somewhat conserved. There is less conservation of the protein 207 

downstream of the catalytic site. Many of the other structural features thought to be needed to 208 

perform pseudouridylation are also missing or significantly divergent from those conserved 209 

between Archaea and Eukaryotes. The Pus10 sequence of Nanoarchaeum showed high overall 210 

divergence, with numerous substitutions throughout the sequence and resulted in low bootstrap 211 

values upon phylogenetic analysis. For these reasons, these two genera of Archaea were 212 

excluded from phylogenetic analysis. In four Archaeal orders and a few members within 213 

Desulfurococcales and Halobacteriales, shorter FFLs were observed. However, the majority of 214 

Archaea species in this study had Pus10 orthologs with completely intact Pus10 structural 215 

features (Fig. 4).   216 

A surprising finding in all the genomes surveyed was the presence of only a single Pus10 217 

gene per genome, despite the numerous genome duplications that have occurred in the evolution 218 

of animals, fungi and especially in plants (where genes frequently duplicate and 219 

subfunctionalize) (Koonin and Wolf 2010; Proost et al. 2011). This finding might point to a 220 

potential dosage effect or other harmful consequence for higher copy numbers of Pus10. 221 

  222 

Pus10 in Archaea 223 

  224 

A maximum likelihood tree was calculated for the C-terminal domain of the Pus10 in 44 225 

archaeal species (Supplementary Fig. 1). The tree is comprised of 4 clades where the outer most 226 

clade is represented by members of the Thermococcales. Crenarchaeum symbiosum and 227 
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Nitrosopumilus maritimus (Thaumarchaeota). These are incorporated into the Methanococcales 228 

clade and show long branches, indicating high divergence and possible false placement due to 229 

long branch attraction or parallelism (Anderson and Swofford 2004). This sequence convergence 230 

indicates some possible alteration of the Pus10 catalytic function. When comparing key features 231 

of Pus10 protein sequences FFL, catalytic ‘GRED[V/X]D’ and thumb loop with His and Arg 232 

of Thaumarchaeota to other Archaea and Eukaryota, Pus10 of both C. symbiosum and N. 233 

maritimus show the same FFL size as that of M. jannaschii. This could explain the incorporation 234 

of C. symbiosum and N. maritimus into the clade of Methanococcales. However, the sequence of 235 

their catalytic site differs considerably. In addition, the thumb loop lacks a conserved histidine 236 

residue. Multiple sequence alignment of Pyrobaculum arsenaticum, P. islandicum and 237 

Thermoproteus neutrophilus also show modification in all structural features for Pus10.  238 

 The most important differences in Pus10 features were observed in Methanococcales and 239 

Thermococcales. Methanobacteriales, Halobacteriales and Methanococcales have insertions in 240 

the FFL, creating a longer loop than the other clades in Archaea (Fig. 4). Moreover, the 241 

Thermococcales clade, within this insert-containing group, had further changes in the length of 242 

the FFL and substitutions (His376Asn and Arg377Ser) in the thumb loop.  243 

 244 

Pus10 in Fungi 245 

 246 

Of the 50 fungi with fully sequenced genomes, a total of nine species were found with 247 

orthologous Pus10 sequences (Supplementary Fig. 2). All nine were found in the earliest 248 

diverging families of fungi, the Unikaryonidae and Nosematidae (Microsporidia), Mucoraceae 249 

(Zygomycota) and Batrachochytrium (Chytridiomycota). The related lineages Ascomycota (as 250 
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yeasts and sac fungi) and Basidiomycota (as mushroom fungi) did not have Pus10 orthologs in 251 

any of the 41 sequenced genomes surveyed, although other pseudouridine synthase genes (e.g., 252 

Pus4, Cbf5) were found (Fig. 5). This suggested that Pus10 was secondarily lost in the common 253 

ancestor of these fungal species.  254 

Common sequence features among the Pus10 sequences of fungi included the presence of 10 255 

amino acid deletions in the 11th α-helix and 13th α-helix C-terminal to the catalytic site 256 

(Supplementary Fig. 2) (McCleverty et al. 2007). Microsporidia are also missing the first three 257 

secondary structures (α4, α6, β1) which are critical to the THUMP-domain (Fig. 2). All early 258 

fungi species contain the same sequence length of the FFL, and three conserved amino acids 259 

were present in these Pus10 FFLs (‘PxxxxGxxxxxS’).  260 

 The catalytic site of Pus10 in R. oryzae and M. circinelloides showed conversion of the key 261 

second Asp 277 to Asn. Other minor substitutions in the catalytic site have also been observed 262 

(Fig. 4). The thumb-loop in all nine fungi species is highly conserved in its sequence, except for 263 

in R. oryzae and M. circinelloides (Gln, instead of His). This changes the composition of the 264 

thumb-loop from a basic amino acid to an acidic amino acid and could affect the binding of 265 

tRNA (Fig. 4). A TrmA ortholog was present in B. dendrobatidis but not in any other species of 266 

Microsporidian or Zygomycota (Table 2). Interestingly, TruB (Pus4) orthologs are not present in 267 

the earlier fungi lineages (Microsporidia, Chytridiomycote and Zygomycote) but are present in 268 

Ascomycotes (S. cerevisiae).  269 

 270 

Pus10 in Plants 271 

 272 
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Arabidopsis thaliana has a total of 24 pseudouridine synthase-like proteins. Most are paralogous 273 

copies of TruA, indicating expansion of this family in plants. Only one copy of Pus10 and TruD 274 

were detected in A. thaliana, and in 18 other plant genomes.  275 

Multiple sequence alignment showed the incorporation of Ile (isoleucine), instead of Val 276 

(valine), in the catalytic site of ‘GREDID’ in plants. Substitutions were observed in the following 277 

species: ‘GREDLD’ in Cucumis sativus; ‘GREDMD’ in the moss Physcomitrella patens and 278 

green algae Ostreococcus tauri; ‘GREDAD’ in Chlamydomonas reinhardtii (Fig. 4). A highly 279 

modified THUMP-domain was present in most plants. Nicotiana tabacum and Solanum 280 

lycopersicum (Solanaceae), Carica papaya and Oryza sativa all lack α4 and β1 of the THUMP-281 

domain. In addition, N. tabacum and S. lycopersicum are also missing α6 and β2. Sorghum 282 

bicolor Pus10 uncharacteristically lacks the catalytic Asp and several amino acids of the catalytic 283 

site (Fig. 4), indicating it is a non-functioning protein, however other grasses all seem to have a 284 

functional Pus10 catalytic site. 285 

The molecular phylogenetic analysis of Pus10 has the same topology as the phylogenetic tree 286 

of species, with the exception of Ectocarpus siliculosus (Heterokontophyta; brown algae) (Fig. 287 

4). This resulted in a split of the two green algae representatives  C. reinhardtii and O. tauri, 288 

Chlorophyta  indicating possible genome fusion in the brown algae (Fig. 4). All plant genomes 289 

contain TruB and TrmA orthologs (N-terminus of TruB in C. reinhardtii). Most species within 290 

the plant kingdom have functional Pus10; but C. reinhardtii and C. papaya have modifications in 291 

the catalytic site that may have an effect on its function.  292 

 293 

Pus10 in Animals and the Importance of THUMP Domain  294 

 295 
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THUMP is a RNA binding domain present in 17 protein architectures and found in over 3,587 296 

proteins according to the PFAM database. Many of these proteins have different biological roles. 297 

For example, S-adenosyl methionine dependent methyltransferase, rodanese like proteins, FtsJ 298 

like methyltransferase, SpoU rRNA methylase family and cytidine zinc-binding region. In this 299 

study, three major insertions which potentially disrupt or significantly alter the functional 300 

THUMP-domain in Pus10 were identified (Fig. 2). All eukaryotic Pus10 THUMP-domains were 301 

larger than archaeal ones and included numerous lineage specific insertions between conserved 302 

portions of the THUMP-motif (Fig. 2); they make identification of the THUMP-domain by 303 

sequence alignment difficult. The first insertion was observed on the N-terminal side of the 304 

THUMP-domain and is found in all taxa except fungi and Archaea. A second insertion within the 305 

THUMP domain was observed to be present in animals and in some plants. The third insertion is 306 

found shortly before the FFL, it is conserved in higher eukaryotes and in several Protista 307 

(Paramecium tetraurelia and Trichoplax adhaerens). However, the insertions were absent in 308 

Archaea (Fig. 2). In this study, 42 animal species representing 32 different orders, a few animal-309 

specific modifications in the THUMP-domain and key Pus10 structure features (conserved 310 

residues in the catalytic site, FFL and thumb-loop) were observed (Fig. 5). The C-terminal 311 

catalytic site is highly conserved in all animals with some minor differences in earlier lineages. A 312 

maximum likelihood tree showed that the Protista, Tricoplacia, and Dictyostelia, followed by 313 

representatives of Nematoda, generally show the most diverse sequences alterations of key 314 

Pus10 features (Supplementary Fig. 3). Nematodes, Caenorhabditis elegans and Pristionchus 315 

pacificus, have a shorter FFL and the substitution of His to Lys in the thumb-loop; same 316 

observations were made for the Diptera clade. However, Tribolium castaneum had ‘GREDFD’ in 317 

the catalytic motif/core instead of I412 in respect to M. jannaschii (refer to Fig. 5). Although 318 
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there is no experimental evidence, these modifications to the THUMP domain may potentially 319 

alter or weaken non-specific Pus10 RNA binding and potentially alter the range of substrate 320 

RNA.  321 

In H. sapiens, Pus10 is also known as Downstream Of Bid (DOBI). It has been shown to be a 322 

downstream interactor of the Bid (BH3 interacting-domain death agonist) protein signal involved 323 

in TRAIL-induced apoptosis and release of cytochrome C from mitochondria (Aza-Blanc et al. 324 

2003; Jana et al. 2017). TRAIL is tumor necrosis factor–related apoptosis-inducing ligand and 325 

TNF-related apoptosis-inducing ligand. Mammalian Pus10 is recognized and cleaved by 326 

caspase-3 or caspase-8, which may create the functional unit for TRAIL signaling (Park et al. 327 

2009).  To analyze the ancestry of Pus10 involvement in TRAIL-induced apoptosis and tRNA 328 

pseudouridylation, 17 animal species were tested for the presence of a) intact orthologs of 329 

redundant functioning pathways (TruB, TrmA) and b) essential interacting components of 330 

TRAIL-induced apoptosis, caspase-3 and caspase-8 (Table 3). TrmA as well as caspase-3 and 331 

caspase-8 genome were not detectable in D. pulex, suggesting TRAIL-induced apoptosis is 332 

absent and Pus10 is likely to perform pseudouridylation of U54 (Table 3). Caspase-3 and 333 

caspase-8 orthologs were found in T. adhaerens, a multicellular organism belonging to the 334 

phylum Placozoa which lacks the presence of organs (Table 3). This, together with the absence 335 

of caspase-3 and caspase-8 orthologs in all fungi and plants, indicates that TRAIL-induced 336 

apoptosis could have begun as early as the last common ancestor of animals with T. adhearens, 337 

at the base of the metazoan clade, approximately 635My ago.  338 

 339 

Discussion 340 

 341 

Evolutionary Resolution of Functional Redundancy in Pus10 and TruB 342 
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 343 

Pus10 is the most recently identified member of the pseudouridine synthase family and it has 344 

been experimentally shown to be crucial for tRNA pseudouridylation in Archaea (Gurha and 345 

Gupta 2008; Mueller and Ferré-D'Amaré 2009; Roovers et al. 2006). While there is significant 346 

similarity between eukaryal (H. sapiens) and archaeal (M. jannaschii) Pus10 orthologs, no 347 

remotely similar protein sequences were found in Bacteria. On the other hand, TrmA and TruB 348 

are absent in Archaea, but are present in Bacteria and Eukarya. This suggests that Pus10 must 349 

have originated in Archaea and is required to modify tRNA at both positions U55 and U54. The 350 

coexistence of Pus10, with parallel tRNA modifying genes TrmA and TruB, impacts the function 351 

of Pus10 in Eukarya. This situation may have also occurred in the observed species of Sufolobus 352 

which have genes similar to bacterial TruB and TrmA, possibly acquired through horizontal gene 353 

transfer (HGT). In this case, the presence of both of these genes might have lead to the loss of 354 

key amino acids involved in the pseudouridine synthase function, but not the complete loss of the 355 

Pus10 protein. In another Archaea P. furiosus, in which HGT has introduced bacterial RumA to 356 

modify tRNA position U54 (but not U55), may have resulted in a more specific loss of Pus10 357 

function for position U54 only. In general, after a duplication event, an organism is less likely to 358 

maintain more than one copy of a gene involved in tRNA processing and this coincides with our 359 

study of Pus10 across all species examined. Redundancy of Pus10 with non-homologous 360 

proteins performing similar functions may have led to its functional diversification. 361 

The most important differences in terms of potential for revealing the mechanism of function 362 

in Pus10 were observed in Methanococcales and Thermococcales (refer to Fig. 4). Structural 363 

comparison of P. furiosus to M. jannaschii showed these modifications are very likely relevant 364 

for hook formation and substrate binding, which may be related to the loss of in vivo 365 
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modification of U54 without affecting U55 modification (Joardar et al. 2013). Several in vitro 366 

generated mutants of M. jannaschii Pus10 at these residues lost Ψ54 activity, but not activity of 367 

Ψ55. P. furiosus Pus10, does have a weak in vitro ability to pseudouridylate at tRNA position 368 

54, whereas M. jannaschii has a robust one (Gurha and Gupta 2008). An in silico mutagenesis of 369 

His376 to Asn and Arg377 to Ser in M. jannaschii shows that this change in the thumb-loop 370 

should increase the gap width between both loops (Joardar et al. 2013). A wider gap generated 371 

by changes to the thumb-loop, and/or shortening of the FFL could contribute to a reduction in the 372 

tight pinching of the tRNA substrate that might be required for modification of U54.  373 

In the case of P. furiosus, a bacterial rRNA methyltransferase (in the subfamily RumA of Pus 374 

superfamily) that is known to be acquired through HGT, is responsible for U54 modification in 375 

tRNA (Urbonavičius et al. 2008). Thus, in P. furiosus, the presence of RumA likely resulted in 376 

the partial relaxation of selection pressure and subsequent loss of Pus10 Ψ54 synthase ability, 377 

whereas its Ψ55 activity is retained. These differences in sequence across Archaea may indicate 378 

the extent of possible subfunctionalization and uncoupling of Ψ55 and Ψ54 activity of Pus10 for 379 

the order Thermococcales. 380 

Based on our findings, it is likely that only TruB and TrmA orthologs remain functionally 381 

unchanged. Pus4 (TruB ortholog) converts U55 to Ψ55, and Trm2 (TrmA ortholog) modifies 382 

U54 to ribo-T54 in tRNAs of eukaryotes (Becker et al. 1997; Nordlund et al. 2000; Nurse et al. 383 

1995). A different pseudouridine synthase, Cbf5, performs pseudouridylation of rRNA in a 384 

guide-RNA dependent manner in both eukaryotes and Archaea. However, in eukaryotes, Cbf5 385 

has also neofunctionalized to play a role during mitosis by binding to microtubules and 386 

centromeres (Blaby et al. 2011; Jiang et al. 1993; Rashid et al. 2006). Thus, like Cbf5, Pus10 387 

may have neofunctionalized to signal TRAIL-induced apoptosis in humans, if not all animals 388 
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either in place of or in addition to the pseudouridylation function. Pus10 protein is nuclear 389 

localized, and translocates to the mitochondria upon cleavage by caspase-3, which in turn 390 

amplifies caspase-3 activity, creating a positive feedback loop that has a central role in apoptosis 391 

(Jana et al. 2017).  However, some mammalian tRNAs have been shown to have Ψ at position 54 392 

instead of ribo-T. This indicates the existence of a protein to provide Ψ synthase activity for U54 393 

(Roe and Tsen 1977). The obvious candidate is Pus10 (Gurha and Gupta 2008). Thus, we 394 

hypothesize that in some eukaryotic lineages Pus10 and TrmA orthologs may both have 395 

subfunctionalized, partitioning U54 modification activity, each with its own specific subset of 396 

tRNA substrates. Furthermore, we observed in the multiple sequence alignment of all 131 taxa, 397 

three insertions in the THUMP-domain, which could alter RNA recognition. Interestingly, a few 398 

human mitochondrial tRNALEU do contain Ψ at position 55 (Helm 2006). However, the presence 399 

of TruB in H. sapiens does not leave out the possibility that TruB performs the aforementioned 400 

pseudouridylation rather than Pus10 (Table 2). While it is clear that mammalian Pus10 is part of 401 

TRAIL-apoptosis it remains unclear if it continues tRNA-pseudouridylation at position 54 in the 402 

Mammalian clade, though it is the most obvious candidate. If so, it may still be capable to 403 

perform tRNA-pseudouridylation at position 55 as it may be impossible to uncouple this reaction 404 

from position 54 pseudouridylation. 405 

A RsuA-like Ψ synthase protein is known to be a suppressor of var2 mutant phenotype and 406 

plays a role in variegation, an apoptosis of the chloroplast, in A. thaliana (Yu et al. 2008). This 407 

suggested a potential TRAIL-like apoptosis pathway might exist in plants. However, no 408 

sequences like caspase-3 were found. Plants contain 3 metacaspases, which are involved in the 409 

so called ‘deathosome’, to regulate programmed cell death (Coll et al. 2010; Vercammen 2004; 410 

Vercammen et al. 2007). Metacaspases are also found in the kingdoms of Protozoa, fungi and 411 
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plants. Plants contain type I and II metacapsases, but not animal-like caspsases. Metacaspase-4 412 

and metacaspase-9 (AtMC4, AtMC9) recognize positively charged amino acids such as Arg or 413 

Lys in the motifs of substrate peptides with the amino acids FR, GRR, GKR and VRPR and 414 

cleave after Arg or Lys (Vercammen 2004). Future experimental work will be needed to 415 

determine whether Pus10 plays a part of either a mitochondrial or plastid apoptotic-like 416 

machinery in plants.  417 

 418 

Molecular Evolution of Pus10 in Eukaryota 419 

 420 

In Eukarya, the common ancestor likely had three proteins from Bacteria and Archaea through 421 

genome fusion (Koonin 2010) that modified residues U54 and U55 of tRNA, which created a 422 

functional redundancy. Over time the modification and loss of Archaeal-origin Pus10 interacts 423 

with that of bacterial-origin TruB and TrmA orthologs. Surprisingly, unlike most redundancy 424 

created through gene duplication, this redundancy was not resolved through gene loss in most 425 

lineages (Sémon and Wolfe 2007). Individual eukaryotic lineages were examined and revealed 426 

lineage specific differences in the fate of these three proteins in the fungi, plants and animals. 427 

A surprising finding in all the sequenced genomes of this study, was the presence of only a 428 

single Pus10 gene per genome, despite the numerous genome duplications that have occurred in 429 

the evolution of animals, fungi and especially in plants (where genes frequently duplicate and 430 

subfunctionalize) (Koonin and Wolf 2010; Proost et al. 2011). This finding might point to a 431 

potential dosage effect or other harmful consequence for higher copy numbers of Pus10.  432 

In Fungi, TruB orthologs are not present in the earlier fungi lineages (Microsporidia, 433 

Chytridiomycote and Zygomycote) but are present in Ascomycotes. The most parsimonious 434 
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solution is that the three early-branching fungal lineages have lost both TruB and TrmA, but 435 

have retained Pus10 (Table 2), while in Dikaryon fungi (Ascomycota, Basidiomycota), the 436 

opposite order of gene loss is observed, TruB and TrmA are retained and Pus10 is lost. Thus, it 437 

seems that these two groups of fungi have undergone the opposite selection of the enzymes 438 

Pus10, TruB and TrmA that can modify uridine residues at positions 54 and 55 of tRNA. The 439 

pattern of gain and loss here clearly points to the random elimination of redundant enzymes for 440 

tRNA U54 and U55 modification, that could be due to the loss of selection pressure.  Given the 441 

phylogenetic analysis, it is unlikely that this pattern was the result of HGTs (refer to Fig. 5). This 442 

simple explanation for resolving functional redundancy through random gene loss is however not 443 

the case in plants and animals which retained seemingly functional orthologs of all three genes. 444 

A recent duplication event in angiosperms should have resulted in at least two copies of 445 

Pus10 and in the 11 eudicot genomes surveyed (Proost et al. 2011). However, it has been shown 446 

that the extra paralogous genes coding for signaling and metabolism (e.g., protein kinases) are 447 

often maintained in plants while paralogous genes involved in DNA repair and modification are 448 

typically thinned to a limited number through rapid gene loss (Thomas et al. 2006). Gene 449 

ontology analysis of a tetraploid genome revealed the preference of keeping or losing duplicated 450 

genes is frequently based on their biological role. Indeed, duplicated genes which are responsible 451 

for tRNA processing were less likely to be maintained in the genome.  452 

Ala (alanine) substitutions in M. jannaschii differentially reduced Ψ54 activity while 453 

retaining most of wild type Ψ55 activity (Joardar et al. 2013). However, a triple mutant in M. 454 

jannaschii (Ile412A/Lys413A/Leu440A) showed no pseudouridine synthase activity at either 455 

site. These two species, along with Sorghum bicolor that is lacking a catalytic Asp, indicate that 456 

Pus10 activity is lost in some plant species. However, the overall presence of conserved, 457 
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seemingly functional Pus10 in all other plant species in this study would indicate a positive 458 

selection pressure for some function of this enzyme. 459 

A RsuA-like pseudouridine synthase protein is known to be a suppressor of var2 mutant 460 

phenotype and plays a role in variegation, an apoptosis of the chloroplast, in A. thaliana (Yu et 461 

al. 2008). This suggested a potential TRAIL-like apoptosis pathway might exist in plants. 462 

However, no sequences like caspase-3 and caspase-8 were found. Plants contain 3 metacaspases, 463 

which are involved in the so called ‘deathosome’, to regulate programmed cell death (Coll et al. 464 

2010; Vercammen 2004; Vercammen et al. 2007). Metacaspases are also found in the kingdoms 465 

of Protozoa, fungi and plants. Plants contain type I and II metacapsases, but not animal-like 466 

caspsases. Metacaspase-4 and metacaspase-9 (AtMC4, AtMC9) recognize positively charged 467 

amino acid such as Arg or Lys in the motifs of substrate peptides with the amino acids FR, GRR, 468 

GKR and VRPR and cleave after Arg or Lys (Vercammen 2004). Future experimental work will 469 

be needed to determine whether Pus10 plays a part of either a mitochondrial or plastid apoptotic-470 

like machinery in plants. 471 

 472 

Conclusion 473 

 474 

This study provides evidence of Pus10 subfunctionalization in Thermococcales (Archaea) and 475 

possibly in the Chytridiomycota. In both cases, TrmA/Trm2-like enzymes are present in the 476 

genome, indicating an alternate route for modification of U54 that co-occurs with mutations that 477 

reduce or eliminate Pus10 U54 modification. Apparently, methylation of U54 of tRNA to riboT-478 

54 by proteins acquired through either HGT or descent can lead to functional diversity in Ψ54 479 

synthase activity of Pus10. A gap in the catalytic site of Pus10 in S. bicolor (plant) was noticed 480 

which could indicate that Pus10 is on the verge to become a pseudogene in some plant lineages.  481 
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 485 

Figure and Table Legends 486 

 487 

Fig. 1 Domain distribution of pseudouridine synthases. Pseudouridine synthase superfamily 488 

contains (six) families and their substrates. Domains are represented as boxes, loops are 489 

represented as ovals. Catalytic site and thumb-loop are represented by their consensus sequences. 490 

Conserved catalytic aspartate (D) across all pseudouridine synthases is marked in bold, X 491 

indicates any amino acid. Due to the focus of this paper, Pus10 and tRNA55 are in bold. TruD 492 

family = TruD, TruA family = TruA, TruB family = TruB, RsuA family = RluB and RsuA, RluA 493 

family = RluC and RluA. Members of RluA and RsuA families differ in their structural features. 494 

RluA is lacking two extensions compared to its family member RluC. RsuA is lacking the 495 

thumb-loop and the C-terminal extension compared to its member RluB (Mueller and Ferré-496 

D'Amaré 2009). 497 

Fig. 2 THUMP-domain modification of Pus10 in different lineages. Blue colored helices and 498 

arrows emphasize structural elements belonging to typical THUMP-domain and are observed in 499 

archaeal Pus10. Three insertions were observed in multiple sequence alignment across 116 taxa 500 

and are indicated with arrows. + means presence of an insertion; - means no insertion.  501 

Fig. 3 Substrate specific amino acids conserved throughout all pseudouridine synthases. A 502 

superimposition of human Pus10 (grey) and of M. jannaschii (blue) generated via Swiss-PDB 503 

viewer version 4.0.1(Guex and Peitsch 1997). FFL and thumb-loop (indicated with black arrows) 504 

are located in the C-terminal part of the protein. B Back view of the C-terminus with close up 505 
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focusing on the catalytic core, which shows the catalytic Asp275 (white), Leu440 (orange), 506 

Tyr339 (blue), Ile412 (green) and Lys413 (pink).  507 

Fig.  4 Summary of the Pus10 characteristics of the C-terminal across Eukarya and Archaea. 508 

Here we want to emphasize on the substitutions between clades and chose taxa (97 out of 111) 509 

that differ in their Pus10 characteristic. The maximum likelihood tree was calculated via RAxML 510 

black box, model WAG+G+I. The annotation was generated via iTOL. Forefinger-loop features 511 

are represented in a single-value bar chart to emphasize on the length differences: Forefinger-512 

loop = 15 = insertion (longer), 10 = normal length based on H. sapiens, 5 = partial deletion 513 

(shorter). Presence/absence/substitution of amino acid are represented with a color gradient: 514 

presence of amino acid = 50, substitution = 25, absence = 0. The catalytic region: Y339 (yellow), 515 

I412 (orange), K413 (purple) and L440 (light blue). Catalytic site including the catalytic Asp (D) 516 

(green). Thumb-loop (focus on His and Arg presence; blue). All substitutions are displayed. 517 

Pus10 key features are displayed as seen in multiple sequence alignment. Species labels were 518 

color coded based on their belonging to archaea (light green) and eukaryote (light blue).   519 

Fig. 5 Presence and absence tree of Pus10 across representatives of tree of life. The species tree 520 

was generated via NCBI taxonomy accession numbers and modified in iTOL. Presence of Pus10 521 

is color coded in blue (outer circle) whereas absence of Pus10 is indicated in white. Clades were 522 

color coded: Algae = light green, Amoebozoa = orange, Archaea = turquoise, planta = green, 523 

fungi = light pink, Protista = purple, Animalia = blue. The loss of four nodes across Eukarya and 524 

Archaea of Pus10 is indicated as red circles. The absence of Pus10 in bacteria is indicated with a 525 

brown circle. The presence of TrmA and TruB are indicated with yellow and green stars.  526 

Table 1 Structural alignment with THUMP-domain via DALIlite  527 

Table 2 Presence/absence of TruB, TrmA and Pus10 528 
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Table 3 Presence/ absence of TruB, TrmA, caspase-3 and caspase-8  529 

 530 

Supplementary Materials 531 

Supplementary Fig. 1 Maximum likelihood tree of archaeal Pus10. 532 

Supplementary Fig. 2 Modifications specific to microsporidia (fungi). 533 

Supplementary Fig. 3 Maximum likelihood tree of Pus10 represented across the animal 534 

kingdom. 535 

Supplementary Table. 1 List of Pseudouridine synthase Pus10 accession numbers. 536 
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 538 

Fig. 1 Domain distribution of pseudouridine synthases. Pseudouridine synthase superfamily 539 

contains (six) families and their substrates. Domains are represented as boxes, loops are 540 

represented as ovals. Catalytic site and thumb-loop are represented by their consensus sequences. 541 

Conserved catalytic aspartate (D) across all pseudouridine synthases is marked in bold, X 542 

indicates any amino acid. Due to the focus of this paper, Pus10 and tRNA55 are in bold. TruD 543 

family = TruD, TruA family = TruA, TruB family = TruB, RsuA family = RluB and RsuA, RluA 544 

family = RluC and RluA. Members of RluA and RsuA families differ in their structural features. 545 

RluA is lacking two extensions compared to its family member RluC. RsuA is lacking the 546 

thumb-loop and the C-terminal extension compared to its member RluB (Mueller and Ferré-547 

D'Amaré 2009). 548 
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 549 

Fig. 2 THUMP-domain modification of Pus10 in different lineages. Blue colored helices and 550 

arrows emphasize structural elements belonging to typical THUMP-domain and are observed in 551 

archaeal Pus10. Three insertions were observed in multiple sequence alignment across 116 taxa 552 

and are indicated with arrows. + means presence of an insertion; - means no insertion.  553 
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 557 

Fig. 3 Substrate specific amino acids conserved throughout all pseudouridine synthases. A 558 

superimposition of human Pus10 (grey) and of M. jannaschii (blue) generated via Swiss-PDB 559 

viewer version 4.0.1(Guex and Peitsch 1997). FFL and thumb-loop (indicated with black arrows) 560 

are located in the C-terminal part of the protein. B Back view of the C-terminus with close up 561 
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focusing on the catalytic core, which shows the catalytic Asp275 (white), Leu440 (orange), 562 

Tyr339 (blue), Ile412 (green) and Lys413 (pink).  563 
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 564 

 565 

Fig.  4 Summary of the Pus10 characteristics of the C-terminal across Eukarya and Archaea. 566 

Here we want to emphasize on the substitutions between clades and chose taxa (97 out of 111) 567 

that differ in their Pus10 characteristic. The maximum likelihood tree was calculated via RAxML 568 

black box, model WAG+G+I. The annotation was generated via iTOL. Forefinger-loop features 569 
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are represented in a single-value bar chart to emphasize on the length differences: Forefinger-570 

loop = 15 = insertion (longer), 10 = normal length based on H. sapiens, 5 = partial deletion 571 

(shorter). Presence/absence/substitution of amino acid are represented with a color gradient: 572 

presence of amino acid = 50, substitution = 25, absence = 0. The catalytic region: Y339 (yellow), 573 

I412 (orange), K413 (purple) and L440 (light blue). Catalytic site including the catalytic Asp (D) 574 

(green). Thumb-loop (focus on His and Arg presence; blue). All substitutions are displayed. 575 

Pus10 key features are displayed as seen in multiple sequence alignment. Species labels were 576 

color coded based on their belonging to archaea (light green) and eukaryote (light blue).   577 
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 578 

Fig. 5 Presence and absence tree of Pus10 across representatives of tree of life. The species tree 579 

was generated via NCBI taxonomy accession numbers and modified in iTOL. Presence of Pus10 580 

is color coded in blue (outer circle) whereas absence of Pus10 is indicated in white. Clades were 581 

color coded: Algae = light green, Amoebozoa = orange, Archaea = turquoise, planta = green, 582 

fungi = light pink, Protista = purple, Animalia = blue. The loss of four nodes across Eukarya and 583 

Archaea of Pus10 is indicated as red circles. The absence of Pus10 in bacteria is indicated with a 584 

brown circle. The presence of TrmA and TruB are indicated with yellow and green stars.  585 
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Table 1 Structural alignment with THUMP-domain via DALIlite  587 

Species  Lineage Z-score 

H. sapiens Animal 3.7 

D. melanogaster Animal 3.7 

C. elegans Animal 2.8 

H. volcanii Archaea 3.3 

M. jannaschii Archaea 2.8 

P. furiosus Archaea 2.5 

R. oryzae fungi 4.3 

N. bombycis fungi 2.5 

A. thaliana plant 3.0 

P. patens plant 2.6 
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Table 2 Presence/absence of TruB, TrmA and Pus10 590 

Species TruB Pus10 TrmA 

Homo sapiens NP_631908.1 NP_653310.2 NP_892029.2 

Saccharomyces cerevisiae EGA73247 ND EDN59959 

Zygomycota ND Yes ND 

Batrachochytrium dendrobatidis ND EGF78467 EGF83624.1 

Microsporidians ND Yes ND 

Escherichia coli TruB ND TrmA 

ND = not detected by BLAST in the genome, Yes = present in all taxa sampled  591 
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Table 3 Presence/ absence of TruB, TrmA, caspase-3 and caspase-8  593 

Species TruB TrmA (3BT7) Caspase-3 Caspase-8 

Homo sapiens NP_631908.1 NP_892029.2 NP_116786.1 NP_001219.2 

Gallus gallus XP_421776.1 XP_415080.2 NP_990056.1 NP_989923.1 

Taeniopygia guttata XP_002186667.1 XP_002187418.1 XP_002191294.1 XP_002190143.1 

Anolis carolinensis XP_003223551.1 XP_003226338.1 ND ND 

Danio rerio NP_001122159.1 NP_956223.1 NP_571952.1 NP_571585.2 

Daphnia pulex 346482 ND ND ND 

Branchiostoma 

floridae 

XP_002607561.1 XP_002611903.1 XP_002610410.1 XP_002605135.1 

Ciona intestinalis XP_002130935.1 XP_002130635.1 XP_002131300.2 XP_002122848.1 

Lottia gigantea 139266 121926 ND ND 

Paramecium 

tetraurelia 

XP_001430104.1 XP_001442539.1 ND ND 

Trichoplax 

adhaerens 

XP_002108027.1 XP_002115265.1 XP_002114146.1 XP_002114150.1 

Dictyostelium 

discoideum 

XP_640508.1 XP_629224.1 ND ND 

Drosophila 

melanogaster 

NP_525120.1 NP_649083.2 NP_524551.2 NP_476974.1 

Apis mellifera XP_397244.4 XP_396538.2 XP_395697.2 XP_395697.2 

Tribolium 

castaneum 

XP_967291.1 XP_973242.1 XP_967501.2 XP_967501.2 

Caenorhabditis 

elegans 

NP_499370.1 NP_503353.2 ND NP_001022453.1 

Mucor circinelloides 113436 111833 ND ND 

Ostreococcus tauri XP_003080670.1 XP_003078170.1 ND ND 

Physcomitrella 

patens 

XP_001773683.1 XP_001766898.1 ND ND 

Oryza sativa NP_001054428.2 EEC70100.1 ND ND 

Arabidopsis thaliana NP_196950.2 NP_188767.2 ND ND 

Ricinus communis XP_002521488.1 XP_002530289.1 ND ND 

Populus trichocarpa EEF11588.1 XP_002314271.1 ND ND 

Number = accession number in GenBank, ND = not detected by BLAST of genome. 594 
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