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Abstract	
	

The	midterm	(2010)	election	in	the	U.S.	presented	a	unique	opportunity	to	study	the	online	

social	media	strategy	of	various	political	groups.	Although	candidates	had	previously	leveraged	

social	media,	the	prevalence	of	use	during	this	election	allows	us	to	study	a	significant	percentage	of	

candidates	and	a	novel	glimpse	into	their	networks	and	messaging.	In	combination,	the	networks	

and	associated	content	reflect	positioning	of	candidates	both	structurally	and	in	framing	in	relation	

to	other	politicians.	In	our	work,	we	study	the	use	of	Twitter	by	House,	Senate	and	gubernatorial	

candidates	during	the	midterm	elections	in	the	U.S.	Our	data	includes	almost	700	candidates	and	

over	460k	tweets	that	they	produced	in	the	3.5	years	leading	to	the	elections.	We	utilize	graph	and	

text	mining	techniques	to	analyze	differences	between	Democrats,	Republicans	and	Tea	Party	

candidates,	and	suggest	a	novel	use	of	language	modeling	for	estimating	content	cohesiveness.	Our	

findings	show	significant	differences	in	the	usage	patterns	of	social	media,	and	suggest	conservative	

candidates	used	this	medium	more	effectively,	conveying	a	coherent	message	and	maintaining	a	

dense	graph	of	connections.	Despite	the	lack	of	party	leadership,	we	find	Tea	Party	members	

display	both	structural	and	language‐based	cohesiveness.	Finally,	we	investigate	the	relation	

between	network	structure,	content	and	election	results	by	creating	a	proof‐of‐concept	model	that	

extends	incumbency	models	to	predict	candidate	victory.	

	 	



1. Introduction			

The	success	of	social	media	as	part	of	the	elections	of	2008	has	made	it	a	virtual	

requirement	for	modern	campaigns	to	engage	the	public	through	tools	such	as	Twitter	and	

Facebook.		Political	parties	and	individual	candidates	regularly	hire	staff	members	to	act	as	social	

media	coordinators.		The	speed	and	scale	of	these	systems	have	led	to	the	sophisticated	adaptation	

of	campaign	behaviors.	Twitter,	with	over	200	million	registered	users	(as	of	April,	2011),	is	a	

particularly	popular	social	media	system,	allowing	for	micro‐blogged	tweets	(status	updates)	to	be	

fired	off	to	any	follower.	

Barack	Obama’s	renowned	tweet	in	2008,	“We	just	made	history…”	which	was	published	

shortly	after	his	victory,	reflected	the	popularity	of	Twitter	in	political	messaging.		In	the	2008	

elections,	14%	of	Internet	users	used	social	media	sites	for	engaging	in	political	activity	(Smith	&	

Rainie,	2008).		In	2010,	this	number	has	grown	to	22%	(Smith	2011).		To	understand	and	replicate	

successful	messaging,	campaign	managers	and	researchers	alike	have	turned	to	analysis	of	the	

mechanisms	of	information	diffusion	and	structure	of	political	social	networks.		In	particular,	

campaigners	look	for	viral	channels	to	propagate	information.	Notably,	understanding	how	political	

social	networks	form	and	communicate	has	broad	implications	beyond	the	political	sphere	to	any	

network	of	competing	agents	in	which	information	is	transferred.		

In	this	work	we	investigate	how	the	U.S.	2010	election	campaigns	were	expressed	on	

Twitter.	We	analyze	over	three	years’	worth	of	tweets	(over	460k)	from	687	candidates	running	for	

national	House,	Senate,	or	state	governor	seats.	As	tweets	are	limited	in	size	(140	characters)	we	

augment	our	data	by	crawling	nearly	233k	outgoing	links	to	Web	pages	referred	to	by	candidate	

tweets.			In	addition	to	observing	the	behavior	of	Republicans	and	Democrats	we	also	focus	

particular	attention	on	self‐identified	members	of	the	Tea	Party.	By	separating	Tea	Party	candidates	

in	analysis	from	their	official	party	position	we	are	able	to	analyze	the	behaviors	of	this	“virtual”	

party.		

Our	methods	of	analysis	include	both	text	and	graph	mining	techniques.	We	suggest	a	novel	

use	of	language	modeling	for	estimating	the	coherency	of	each	group	and	the	extremism	of	single	

candidates.	We	use	graph	analysis	to	compare	the	density	of	each	group	as	well	as	to	compute	

various	graph	properties	of	individual	candidates.	Finally,	we	combine	the	results	in	order	to	build	

a	model	that	predicts	whether	a	candidate	is	likely	to	be	elected.			

Rather	than	studying	the	general	population	of	political	Twitter	users	we	concentrate	on	

the	politicians	themselves.	Thus,	this	study	fits	under	the	broad	research	agenda	surrounding	



American	campaigns	and	elections.	Our	contributions	include	a	detailed	analysis	of	the	social	media	

behaviors	of	candidates	in	the	2010	midterm	elections.	We	demonstrate	a	method	for	content‐

based,	structural,	and	combined	analysis	of	these	candidates	relative	to	each	other	and	their	parties	

as	a	whole.	Using	these	techniques	we	characterize	the	attributes	of	the	different	parties,	

demonstrating	high	levels	of	structural	and	content	coherence	for	conservative	(Republican	and	

Tea	Party)	members.	We	further	analyze	how	centrality	in	structure	and	content	correlate	with	

election	outcomes	(positively)	by	employing	a	prediction	model.			

In	this	paper	we	expand	upon	our	earlier	work	(Livne	et	al.	2011)	to	include	an	analysis	of	

topics	and	sentiment.			

2. Related	Work	

Twitter	Networks	
The	growing	number	of	Twitter	users,	and	the	ease	of	access	to	their	tweets,	makes	Twitter	

a	popular	subject	for	research	in	various	research	communities	(Java	et	al.	2007).	Though	most	are	

about	the	general	population	of	users,	a	number	are	relevant	to	political	structures	(e.g.,	influence,	

viral	marketing,	computer‐mediated	communication,	etc.).	For	example,	Romero	et	al.	(2010)	

portrayed	influential	users,	refuting	the	hypothesis	that	users	with	many	followers	necessarily	have	

bigger	impact	on	the	community.	Honeycutt	and	Herring	(2009)	showed	that	Twitter	often	serves	

as	a	framework	for	discussions	rather	than	for	one‐way	communication.	Another	direction	of	study	

focused	on	commercial	usage	of	Twitter	(e.g.,	viral	marketing).	Jansen	et	al.	(2009)	performed	

sentiment	analysis	of	tweets	in	that	context	(specifically	targeting	products	and	brands).	Our	work	

here	is	informed	by	previous	work	on	Twitter	content	and	structure.	

Social	Media	and	Politics	
Research	on	social	media	and	politics	fits	into	the	broader	research	agenda	of	information	

technology	in	politics.		Broadly,	work	in	this	area	has	taken	two	approaches.		First,	researchers	have	

investigated	new	uses	of	social	media	by	politicians	(Coleman,	2005),	journalists	(Drezner,	2004),	

activists	(Karpf,	2008),	and	citizens	(Johnson	and	Kaye,	2004).		Much	of	this	work	is	descriptive,	

investigating	changes	in	the	political	sphere	due	to	changes	in	information	technology	(e.g.	Davis,	

2009;		McKenna	and	Pole,	2008;	Wallsten,	2008),	or	speculative,	attempting	to	extrapolate	trends	

and	predict	long‐term	outcomes	(e.g.	Hindman,	2008;	Sunstein,	2007;	Shirky,	2008).		Second,	

researchers	have	capitalized	on	content	from	social	media—especially	text—as	a	new	form	of	data	



(Lazer	et.	al.,	2009).		For	examples,	see	Hopkins	and	King	(2010),	and	Monroe,	Colaresi,	and	Quinn	

(2008).	

Just	as	studies	on	political	messaging	on	Facebook	(Williams	and	Gulati,	2008)	and	blogs	

before	it	(Adamic	and	Glance,	2005),	research	on	Twitter	has	further	enhanced	our	understanding	

of	political	discourse.		Broadly,	work	in	the	area	has	focused	on	the	analysis	of	the	content	and	

structure	of	elected	political	figures	(e.g.,	members	of	Congress)	or	the	use	of	Twitter	as	a	social	

sensor	to	predict	elections.		

A	number	of	studies	(Golbeck	et	al.	2010;	Glassman	et	al.	2010;	Senak	2010),	identified	

specific	patterns	of	tweeted	communication	between	members	of	Congress	and	their	constituents	

in	terms	of	quantity	and	content	type	(e.g.,	informational,	fundraising,	etc.).	Sparks	(2010)	further	

analyzed	partisan	structure	to	identify	groups	with	ideological	leanings.	Though	we	note	similar	

structural	features	in	our	findings	(e.g.,	increased	messaging	and	density	among	conservatives),	we	

concentrate	our	attention	on	candidates.	By	manually	classifying	tweets	of	candidates	one	week	

before	the	2010	election,	Amman	(2010)	found	that	most	messaging	by	Senate	candidates	was	

informational	and	does	appear	to	have	a	relationship	to	voter	turnout.	

	The	use	of	Twitter	as	a	“social	sensor”	for	election	prediction	has	been	applied	in	a	number	

of	recent	studies.	Tumasjan	et	al.	(2010)	used	chatter	on	Twitter	to	predict	the	German	federal	

election,	finding	the	number	of	tweets	mentioning	a	political	party	to	be	almost	as	accurate	as	

traditional	polls	in	predicting	election	outcomes.	Diakopoulos	and	Shamma	(2010)	showed	that	

tweets	can	be	used	to	track	real‐time	sentiment	about	a	candidate’s	performance	during	a	televised	

debate.	However,	these	previous	analyses	of	political	activity	on	Twitter	did	not	specifically	

examine	the	candidates	themselves,	or	the	structure	of	their	networks.		 	

Language	Models	and	Graphs	
To	model	content	we	employ	statistical	Language	Models	(LM).		Language	models	are	

statistical	models	in	which	probability	is	assigned	to	a	sequence	of	words,	thus	representing	a	

language	as	a	probability	distribution	over	terms.	It	was	first	used	in	speech	recognition	(Jelinek	

1997)	and	machine	translation	(Brown	et	al.	1990).	Ponte	and	Croft	(1998)	were	the	first	to	apply	

LM	to	the	task	of	document	ranking.	Metzler	et	al.	(2004)	improved	LM	accuracy	and	(Song	and	

Croft	1999)	used	smoothing	to	tackle	text	sparseness.	

The	construction	of	user	profiles	can	lead	to	better	results	in	information	retrieval	tasks	

such	as	web‐search	(Sugiyama	et	al.	2004)	and	recommendation	systems	(Zhang	&	Koren	2007).	

Xue	et	al.	2009	used	LM	for	constructing	user	profiles	to	enhance	search	results.	Similarly,	Shmueli‐



Scheuer	et	al.	(2010)	described	a	distributed	framework	using	Hadoop	to	construct	LM‐based	user	

profiles	(a	technique	we	employ	below).	

3. Data	

The	system	described	in	this	paper	makes	use	of	data	crawled	from	Twitter.	In	order	to	

build	a	fairly	complete	list	of	candidate	Twitter	accounts	we	semi‐automatically	generated	this	

collection.	For	each	candidate,	we	executed	a	query	on	Google	using	their	name	and	the	keyword	

“twitter”	and	retrieved	the	top	3	results	from	the	twitter.com	domain.	Each	result	was	manually	

inspected	and	filtered	(e.g.,	fake	accounts	mocking	the	candidates	were	removed),	leaving	only	

accounts	that	were	operated	by	the	candidates	or	their	staff.	Our	data	spans	687	users—339	

Democrats	and	348	Republicans.	Of	the	348	Republican	candidates,	95	were	further	identified	as	

Tea	Party	candidates1.	Note	that	notationally	we	exclude	Tea	Party	candidates	from	the	Republican	

set.	When	it	is	interesting	to	analyze	the	inclusion	or	exclusion	of	Tea	Party	candidates	we	employ	

the	notation	Rep+TP	and	Rep‐TP	respectively.	

	

	

Using	Twitter’s	API,	we	downloaded	460,038	tweets	for	candidate	accounts	dating	back	to	

March	25,	2007.	Figure	1	shows	the	number	of	tweets	in	the	days	(a)	and	hours	(b)	surrounding	the	

Election	Day.	We	see	temporal	patterns,	as	less	activity	is	observed	during	weekends	and	nights.	As	

																																																													

1	The	Tea	Party	classification	was	obtained	from	The	New	York	Times	feature	“Where	Tea	Party	Candidates	are	Running,”	October	14,	
2010	(nytimes.com/interactive/2010/10/15/us/politics/tea‐party‐graphic.html).	

Figure 1. Daily (a) and hourly (b) volume of tweets 



expected,	the	volume	of	tweets	increases	towards	November	the	2nd,	abruptly	decreasing	

afterward.	

The	data	include	84,	81	and	522	candidates	from	the	Senate	elections,	the	gubernatorial	

elections	and	the	Congressional	elections	respectively,	covering	about	50%	of	the	number	of	

candidates	in	each	of	the	races.	We	crawled	all	the	edges	connecting	users	in	our	dataset.	To	

identify	social	structures	we	consider	a	“follower		followed”	relation	as	a	directed	edge	going	from	

the	follower	to	the	followed	user	(we	identified	4,429	such	edges	between	candidates	in	our	pool).	

To	enrich	the	dataset	we	crawled	the	homepages	of	candidates	who	maintained	one	and	

each	of	the	valid	URLs	that	appeared	in	the	tweets	and	considered	them	as	additional	documents.	

Out	of	351,926	URLs	(186,000	distinct)	233,296	were	valid	pages	(132,376	distinct).		Although	the	

number	of	pages	is	far	smaller	than	the	number	of	tweets,	because	of	the	limitations	on	tweet	

length,	URL	derived	content	represented	96%	of	the	corpus	terms	of	word	count	(182,523,302	

terms	out	of	190,290,041).	We	filtered	out	stop	words	and	extracted	both	unigram	and	bi‐gram	

terms.	We	found	no	significant	difference	when	n‐grams	of	higher	order	were	considered.	

	

4. Methodology	

In	this	work,	we	analyze	two	aspects	of	the	data—the	content	produced	by	the	users	and	

the	structure	of	the	network	formed	by	the	follow‐up	edges.	We	start	by	providing	some	theoretical	

background	to	our	content	analysis	methods.	

User	Profile	Model	
Notations	

Our	system	consists	of	a	set	of	candidates	ܷ	where	each	candidate	has	a	set	of	

documents	ܦ௨	associated	with	her.	The	entire	corpus	is	denoted	by	ܦ ൌ ⋃ ௨.௨∈ܦ 	Documents	are	

represented	using	the	Bags	of	Words	model	where	each	term	ݐ ∈ ݀	is	associated	with	its	number	of	

occurrences	in	the	document	݂ݐሺݐ, ݀ሻ.	The	vocabulary	of	the	corpus	is	denoted	by	ܸ.	Our	model	is	

based	on	the	݂ݐ	 ൈ 	݂݅݀	model;	therefore	we	make	use	of	the	document	frequency	of	a	term	݂݀ሺݐሻ	

and	the	inverse	document	frequency	݂݅݀ሺݐሻ ൌ log	ሺ1  	document	the	denote	We	ሻሻ.ݐሺ݂݀/|ܦ|

frequency	of	a	term	in	the	set	of	user	ݑ’s	documents	by	݂݀ሺݐ, ,ݐሺ݂݀ݑ	of	use	make	also	We	௨ሻ.ܦ ௨ሻܦ 	ൌ

	݂݀ሺݐ, ௨ሻܦ ⁄௨ܦ ,	the	maximum	likelihood	estimation	of	the	probability	to	find	term	ݐ	in	ܦ௨.	

	



Term	Weighting	

We	set	the	initial	weight	of	a	term	in	a	user	LM	to	be	

	

,ݐሺݓ ሻݑ ൌ ഥ݂ݐ ሺݐ, ,ݐሺ݂݀ݑ௨ሻܦ ,ݐ௨ሻ݂݅݀ሺܦ 	ሻܦ
	

where	ݐഥ݂ ሺݐ, ௨ሻܦ ൌ ∑ ,ݐሺ݂ݐ ݀ሻ/ܦ௨ௗ∈ೠ 	stands	for	the	average	frequency	of	term	ݐ	in	the	collection	ܦ௨.	

In	addition,	we	calculate	the	marginal	probability	of	ݐ ∈ ܸ	in	the	language	model	of	the	entire	

corpus	as	

	

ܲሺܦ|ݐሻ ൌ ഥ݂ݐ ሺݐ, ,ݐሺ݂݀ݑሻܦ 	ሻܦ
	

These	values	are	then	normalized	in	order	to	obtain	a	probability	distribution	over	the	terms.	

	

ܲேሺܦ|ݐሻ ൌ
ܲሺܦ|ݐሻ

ሺ∑ ܲሺܦ|ݐሻ௧∈ ሻ
,ݐேሺݓ; ሻݑ ൌ

,ݐሺݓ ሻݑ
ሺ∑ ,ݐሺݓ ሻ௧∈ݑ ሻ

	

We	then	smooth	the	weights	using	the	LM	of	the	corpus,	

	

ܲሺݑ|ݐሻ ൌ ሺ1 െ ,ݐேሺݓሻߣ ሻݑ  	ሻܦ|ݐேሺܲߣ
	

using	a	normalization	factor	of	ߣ ൌ 0.001.	Finally,	we	divide	these	values	by	their	sum	to	normalize	

them.	

	

ܲேሺݑ|ݐሻ ൌ
ܲሺݑ|ݐሻ

ሺ∑ ܲሺݑ|ݐሻ௧∈ ሻ
	

	

In	a	similar	manner	we	constructed	a	LM‐based	profile	for	the	Democratic	and	Republican	

parties,	as	well	as	to	the	group	of	Tea	Party	members.	In	order	to	compute	the	LM‐based	profile	of	a	

group	ܩ	we	applied	the	same	process	described	above	with	the	exception	that	the	set	of	users’	

documents	ܦ௨	is	replaced	with	ீܦ ൌ ⋃ ீ∋௨௨ܦ ,	the	union	of	the	documents	of	the	users	in	the	group.	

Content	Analysis	
We	consider	the	content	produced	by	a	user	to	be	the	tweets	that	were	produced	by	the	

user	as	well	as	the	content	of	the	URLs	that	appear	in	his	tweets.	We	assume	that	in	the	majority	of	

the	cases	these	cited	pages	represent	a	candidate’s	opinion.	In	the	discussion	section	we	propose	a	

more	delicate	interpretation	using	sentiment	analysis.	



In	order	to	perform	large	scale	analysis	of	the	content	we	constructed	a	LM‐based	profile	for	each	

user,	as	described	in	the	previous	subsection.	We	apply	the	symmetric	version	of	the	Kullback‐

Leibler	(KL)	divergence	on	two	LM	profiles	to	estimate	the	difference	between	the	content	of	the	

two	corresponding	users.	For	two	distributions	 ଵܲሺݐሻ	and	 ଶܲሺݐሻ	over	the	terms	in	the	vocabulary	ݐ ∈

ܸ,	the	symmetric	KL	divergence	is	defined	as:	

ܦ
ௌ ሺ ଵܲ|| ଶܲሻ ൌ ଵܲሺݐሻ

log ଵܲሺݐሻ

log ଶܲሺݐሻ
 ଶܲሺݐሻ

log ଶܲሺݐሻ

log ଵܲሺݐሻ௧∈

 

We	also	used	the	(non‐symmetric)	KL	divergence	in	order	to	measure	the	contribution	of	

single	terms	to	the	difference	of	one	profile	from	another.	

Sentiment	Analysis	

In	order	to	apply	sentiment	analysis	on	the	notoriously	abbreviated	tweet	corpus,	we	first	

expanded	web	acronyms	using	a	slang	dictionary2.		We	then	converted	each	term	to	its	sentiment	

value	based	on	the	AFINN‐111	list	(Nielsen	2011)	as	described	by	Hansen	et	al.	(2011).		We	

followed	a	simple	heuristic	to	handle	negation	words	in	which	we	inverted	the	sentiment	value	of	

terms	preceded	by	a	negation	word.	Finally	we	considered	the	sentiment	of	a	document	to	be	the	

sum	over	the	sentiment	of	the	terms	in	that	document.	In	experiments	where	we	considered	both	

web	pages	and	tweets	we	normalized	the	document	sentiment	by	the	number	of	words,	whereas	in	

experiments	that	considered	only	tweets	(which	were	of	relatively	similar	length)	normalization	

was	unnecessary.	

Topic	Modelling	

We	applied	the	LDA	algorithm	on	the	data	to	extract	latent	topics	and	assess	their	affinity	to	

each	party.	We	used	GibbsLDA++3	(to	extract	latent	topics.	The	LDA	algorithm	also	provided	us	

with	P(topic|document)	from	which	we	calculated	P(topic|party).	First	we	calculated	

P(topic|candidate)	by	averaging	P(topic|document)	over	the	documents	of	a	candidate	and	then	we	

averaged	P(topic|candidate)	over	the	candidates	of	a	party	to	determine	P(topic|party).	

	

	

																																																													

2	http://www.noslang.com/dictionary	

3	http://gibbslda.sourceforge.net/	



	

5. Results	

Basic	Structure	Analysis	
The	network	structure	of	the	candidate	graph	is	visualized	in	Figure	2a‐b.	Unsurprisingly,	

the	Tea	Party	members	are	fairly	intertwined	within	the	Republican	subgraph.	We	also	note	the	

relative	densities	(higher	for	Republicans)	of	the	party	substructures.		

This	is	further	confirmed	through	an	analysis	of	subgraph	density	of	edges	within	the	same	

group.	For	a	subgraph	with	N	nodes	and	E	edges,	we	utilize	the	density	definition	of	E/(N2‐N),	or	the	

	

Figure	2a.	Plot	of	the	candidate	network	(force‐directed	graph	embedding	layout	modified	to	emphasize	
separation,	nodes	size	proportional	to	indegree)	

Figure	2b.	Individual	party	candidate	networks.		From	left	to	right:	Democratic,	Republican,	and	Tea	Parties.	



ratio	between	the	number	of	actual	edges	and	the	number	of	possible	edges.	Since	density	is	

sensitive	to	the	size	of	the	graph	we	considered	in‐degree	as	well.	

Table	1.	Subgraph	Density	by	Group	

  Democratic Rep‐TP Rep+TP Tea Party
Density  0.007 0.032 0.025 0.020

In‐degree  2.55 8.37 8.97 1.82

	

Table	1	shows	the	calculated	subgraph	densities	and	mean	in‐degree.	We	note	that	the	

Democratic	network	is	sparser	than	the	networks	of	Republicans	and	Tea	Party	members,	

consistent	with	prior	studies	(Adamic	&	Glance	2005).	This	difference	in	density	holds	even	when	

we	consider	the	group	of	Republicans	and	Tea	Party	members	(Rep+TP)	which	has	more	

candidates	than	the	group	of	Democrats,	and	so	has	more	possible	edges.	Figure	3	represents	the	

number	of	cross‐party	edges,	for	example	we	see	512	instances	of	a	Republican	being	followed	by	a	

Tea	Party	member.	Consistent	with	Figure	2,	the	Republicans	and	Tea	Party	members	interact	with	

one	another	more	frequently	than	either	do	with	Democrats.	

	

Figure	3.	Number	of	explicit	follower	edges	and	unique	@mention	edges	(follower	/	mention)	

	

Basic	Content	Analysis	
Table	2	shows	some	statistics	of	the	content	produced	by	candidates	in	each	party.	Each	

value	is	the	mean	over	the	users	in	that	group.	

Of	note	are	the	high	levels	of	tweets	and	tweets	per	day	for	Tea	Party	candidates	and	

relatively	higher	levels	of	Republicans	over	Democrats.	We	find	the	same	relationship	(Tea	Party	>	

Rep‐TP	>	Democratic)	for	retweets	(the	rebroadcast	of	someone	else’s	message)	and	replies	(a	

response	to	someone’s	tweet).	These	results	indicate	that	not	only	are	conservative	candidates	



more	likely	to	“broadcast”,	they	are	more	likely	to	communicate	with	each	other.	Finally,	we	note	

conservative	candidates	use	more	hashtags,	potentially	to	provide	additional	unity.	Hashtags—

keywords/topics	indicated	with	a	“#”—are	frequently	used	by	communities	for	grouping	tweets	to	

create	a	Trending	Topic	to	be	highlighted	by	Twitter.		

Table	2.	Mean	Usage	Patterns	by	Group	

Democratic Rep‐TP Tea Party 
tweets  551 723 901

tweets per day 2.66 2.97 5.21
retweets 40 52.3 82.6
replies 172.6 260.5 472.7

hashtags  196 404 753
hashtags per tweet 0.37 0.54 0.68

	

Hashtag	Use	

We	took	a	closer	look	at	the	usage	of	hashtags	by	each	of	the	groups.	Table	3	presents	the	

top	5	hashtags	used	by	each	group	along	with	their	number	of	occurrences	and	the	number	of	

unique	users	in	the	group	that	used	this	hashtag.	The	first	part	of	the	table	shows	the	hashtags	that	

were	used	by	the	greatest	number	of	unique	users,	while	the	second	part	shows	the	hashtags	with	

most	occurrences.	

Table	3.	Top	Hashtags	(#	times	used,	unique	users).	p2	(Progressives	2.0);	tcot	(Top	

Conservatives	on	Twitter);	nvsen	(Nevada	Senator);	fb	(Facebook);	hcr	(Health	Care	

Reform);	gop	(Grand	Old	Party);	nrcc	(National	Republican	Congressional	Committee);	

ar02	(Arkansas	District	#2);	ff	(FollowFriday);	sgp	(Smart	Girls	Politics).	

Sorted by # unique candidates:
Democratic  Rep‐TP Tea Party
p2, 4564, 96  tcot, 13347, 169 tcot, 11482, 70
hcr, 1176, 82  gop, 3929, 125 gop, 2262, 60
ff, 639, 80  hcr, 1772, 110 teaparty, 4419, 52 
jobs, 427, 52  teaparty, 1706, 93 sgp, 1149, 38
oilspill, 708, 45 ff, 1160, 81 ff, 1188, 32
Sorted by mentions:
p2, 4564, 96  tcot, 13347, 169 tcot, 11482, 70
tcot, 3403, 38  gop, 3929, 125 teaparty, 4419, 52 
nvsen, 2471, 3  fb, 3882, 45 ar02, 3762, 2
fb, 1232, 32  nrcc, 2091, 29 alaska,2372, 1
hcr, 1176, 82  hcr, 1772, 110 gop, 2262, 60

	

It	is	somewhat	surprising	to	find	a	conservative‐related	hashtag	(tcot)	as	one	of	the	top	

Democratic	topics.	However,	a	closer	inspection	of	these	tweets	reveals	negative	information	



intentionally	attached	to	this	topic.	Such	behavior	is	consistent	with	previous	observations	on	the	

number	of	mentions	of	opposing	entities	in	political	networks	(Adamic	and	Glance	2005).	

Interestingly,	we	find	the	health	care	reform	(hcr),	a	topic	under	much	debate,	to	be	almost	equally	

brought	up	by	both	Republicans	and	Democrats.	A	number	of	hashtags—ar02	and	alaska—were	

utilized	by	a	small	number	of	extremely	active	candidates	to	refer	to	specific	elections	(rather	than	

specific	topics).	Finally,	we	note	the	high	levels	of	use	of	the	Facebook	(fb)	tag	produced	

automatically	by	programs	cross‐posting	to	the	candidates’	Facebook	pages.	

Profiles	Review	
Extending	beyond	simple	content	features,	we	employ	the	language	model	(LM)	based	

profiles	described	above.	Table	4	provides	a	glimpse	of	some	of	the	top	terms	in	each	party’s	profile	

(calculated	as	the	marginal	KL	divergence	of	the	term	compared	to	the	LM	of	the	corpus).	Note	that	

the	higher	the	marginal	KL	divergence	of	a	term	compared	to	the	LM	of	the	corpus,	the	more	it	

contributes	to	differentiating	a	profile	from	the	rest	of	the	corpus.	In	other	words,	these	terms	serve	

best	as	features	for	identifying	content	produced	by	each	party.	

	 We	found	Tea	Party	members	frequently	mentioning	Democratic	political	figures	

such	as	Nancy	Pelosi,	Barney	Frank,		 and	Ellen	Tauscher	(generally	in	a	negative	context).	 The	

Republican	profile	consists	mostly	of	terms	relating	to	the	economy,	such	as	spending,	bills,	budget,	

tax	cuts,	and	the	deficit,	as	well	as	various	references	to	the	Wall	Street	Journal.		From	a	qualitative	

observation	of	keywords,	the	Democratic	profile	seems	to	cover	the	widest	range	of	topics	such	as	

energy	(clean	energy,	solar,	renewable	energy);	education	(education,	school,	teachers);	the	oil	spill	

(BP,	oil	spill);	military	(Afghanistan,	Iraq,	military)	and	economics	(e.g.,	jobs,	health	care	reform,	

recovery	act,	and	social	security).	

Table	4.	Top	Terms	

Democratic  Republican‐TP Tea Party
education  spending barney_frank

jobs  bills conservative
oil_spill  budget tea_party

clean_energy  wsj [wall street journal] clinton
afghanistan  bush nancy_pelosi
reform  deficit obamacare

	

Identified	Topics	
Table	5	illustrates	a	few	key	topic	identified	within	the	dataset.	Each	line	describes	one	

topic	(represented	by	5	terms)	and	the	affinity	of	the	Republican	(Rep+TP)	and	Democratic	parties	



for	that	topic.		The	affinity	difference	reflects	the	difference	between	the	affinity	scores,	

P(topic|party),	between	the	Democratic	and	Republican	parties.		Thus,	negative	scores	indicate	that	

the	Republicans	focus	on	the	topic	more	than	the	Democrats.				The	Red	to	Blue	coloring	visually	

encodes	the	affinity	differences	for	the	Republican	to	Democratic	parties	respectively.			

Table	5.	Representative	terms	for	topics	identified	in	the	corpus	colored	by	party	affinity.	

Topic terms 
Affinity 
Difference 

tax,jobs,spending,[O]bama,stimulus  ‐0.047618 

health,care,bill,house,reform  ‐0.032136 

tcot,barney,teaparty,[Sean Bielat],twisters  ‐0.020878 

live,show,interview,radio,fox  ‐0.018375 

posted,facebook,photos,video,check  ‐0.014608 

ff,great,followfriday,twitter,followers  ‐0.012113 

obama,people,dont,good,government  ‐0.010277 

great,county,meeting,day,tonight  ‐0.007769 

campaign,tcot,twitter,facebook,support  ‐0.007624 

john,david,ad,[P]elosi,[Sharron A]ngle  ‐0.002737 

vote,endorsement,[H]armer,ca10,candidate  ‐0.001998 

change,view,changed,committee,energy  0.002625 

great,day,parade,good,time  0.002746 

ar02,ar2,[T]im [Griffin],vote,join  0.003104 

[O]bama,oil,president,hearing,bp  0.007417 

day,happy,great,women,honor  0.018366 

vote,day,early,election,voting  0.022653 

bill,house,voted,senate,reform  0.028481 

jobs,small,energy,great,business  0.074132 

	

These	topics	are	largely	consistent	with	expectations	with	two	extreme	topics	both	

reflecting	a	different	focus	on	the	economy.		Interestingly,	Republicans	appear	to	emphasize	

conventional	and	social	media	outlets,	likely	pushing	their	followers	to	additional	information	and	

encouraging	linking	behavior.		

Basic	Sentiment	Analysis	
	 We	used	sentiment	analysis	to	explore	the	sentiment	attached	to	different	terms	by	each	of	

the	political	groups.	Table	6	shows	some	of	the	terms	with	the	highest	disparity	in	the	sentiment	

attached	by	each	group	(Appendix	1	has	a	longer	list	of	these	terms).		

As	expected,	democrats	and	republicans	expressed	positive	sentiment	about	their	own	

parties	and	political	leanings	while	negative	about	the	opposite	party.	Democrats	expressed	



positive	sentiment	about	the	present,	including	the	country,	health	care	reform,	and	economic	

stimulus,	while	Republicans	were	discontent	with	the	same.	Republican	and	Tea‐Party	candidates	

in	most	cases	expressed	similar	sentiment	about	the	same	words,	with	their	difference	being	the	

strength	as	opposed	to	the	polarity	of	sentiment.	Finally,	all	three	parties	felt	most	positive	about	

the	same	thing—winning!	

Table	6.	The	5	most	positive	and	negative	sentiment	terms	associated	with	each	party.	

positive  negative 

Democratic  Republican  Tea‐Party  Democratic Republican  Tea‐Party 

winning  winning  winning  blame  illegal  illegal 

chance  nice  help  illegal  lost  lost 

endorse  support  opportunity failed  blame  unemployment

opportunity  love  bless  lame  unemployment  blame 

ellen  endorsement  support  lost  failed  disaster 

Content	Cohesiveness	
To	understand	the	cohesiveness	of	content	amongst	the	different	parties	we	apply	we	

calculated	the	KL	divergence	between	every	pair	of	candidates	from	the	same	party	(i.e.,	

determining	how	similar	party	members	were	to	each	other).	Figure	4	demonstrates	the	

cumulative	distribution	of	the	pairwise	distances.	Intuitively,	the	more	quickly	the	cumulative	

distribution	reaches	1,	the	more	similar	the	profiles	of	users	from	this	group	are.	

	
Figure 4. Pairwise KL divergence 



	

It	can	be	seen	that	the	content	of	the	Tea	Party	members	is	more	homogenous	compared	to	

the	rest	of	the	Republicans	while	the	Democrats	lag	behind,	indicating	they	produce	heterogeneous	

content.	This	finding	correlates	with	a	qualitative	inspection	of	topics	generated	through	topic	

modeling	(Blei	et	al.	2003)	where	we	found	the	profile	of	the	Democratic	Party	covers	a	wider	range	

of	topics	than	the	conservative	groups.	In	addition,	we	see	Tea	Party	members	having	a	negligible	

effect	on	the	LM	of	the	Republican	group	as	a	whole.	This	can	be	explained	by	the	relatively	small	

number	of	Tea	Party	members	and	the	similarity	in	the	content	attributed	to	these	two	groups.	

Content	Distance	versus	Structural	Distance	
We	hypothesize	that	the	closer	two	users	are	in	graph	distance,	the	more	similar	their	

content	would	be.	This	can,	in	part,	be	explained	through	models	of	homophily	and	social	influence.		

To	test	this	idea,	we	looked	at	every	pair	of	candidates,	calculating	the	shortest	path	in	the	

network	as	well	as	the	KL	divergence	in	their	language	models.	The	results	are	depicted	by	the	solid	

line	in	Figure	5,	along	with	error	bars	at	the	10%	and	90%	percentiles.	Note	the	significant	increase	

in	the	KL	divergence	as	the	distance	increases	from	one	to	three	hops.	The	effect	diminishes	for	

distances	greater	than	3	steps.	We	found	this	phenomenon	to	be	consistent	for	each	of	the	political	

groups	as	well	as	for	pairs	of	candidates	from	different	parties.	As	we	discuss	with	further	detail	in	

Figure 5. Mean pairwise KL divergence vs. pairwise distance considering retweets (solid
line) and ignoring retweets (dashed line). The left (green) error margins describe the 10%
and 90% percentiles of the data with retweets, while the right (black) error margins stands
for the data without retweets. 



Section	6,	this	could	indicate	the	boundaries	of	micro‐communities	surrounding	a	minor	issue	or	

reflect	a	“radius	of	influence”–the	distance	to	which	the	content	of	a	user	is	still	influential.	

Arguably,	connected	individuals	are	more	likely	to	retweet	each	other,	increasing	the	

similarity	by	copying	content.	To	ensure	that	this	was	not	a	primary	driver	of	measured	similarity,	

we	repeated	the	analysis	while	removing	retweets	and	the	corresponding	webpages.	The	results,	

represented	by	dashed	line	in	Figure	5,	show	slightly	higher	KL	divergence,	consistent	with	

retweets	contributing	to	a	small	portion	of	the	observed	correlation	between	network	and	content	

proximity.	

6. Predicting	Elections	Results	

In	order	to	test	the	importance	of	content	and	structure	to	election	outcome	we	devised	a	

“win”	model	for	all	candidates	in	our	dataset.	However,	we	note	that	for	this	experiment	we	filtered	

out	tweets	that	were	created	during	and	after	Election	Day	and	that	the	network	was	crawled	

during	the	hours	prior	to	the	beginning	of	the	elections.	

We	built	different	logistic	regression	models	where	the	dependent	variable	is	the	binary	

result	of	a	race,	indicating	whether	a	candidate	won	or	not.	The	independent	variables4	we	used	are	

described	below:	

● Closeness‐{in,out,all}	(Freeman	1979)	–	measuring	the	centrality	of	a	candidate	in	the	graph.	

Calculated	as	n/t∈Vdv,t	where	V	is	the	set	of	all	nodes	reachable	from	v	and	n=V.	dv,t	denotes	

the	distance	between	v	and	t.	In/out/all	stands	for	incoming,	outgoing	or	all	paths.	

● HITS’	Authority	score	(Kleinberg	et	al.	1999)	and	PageRank	(Page	et	al.	1998)	–	measuring	

the	relative	importance	of	a	node	in	the	graph.	

● In/Out‐degree	–	number	of	edges	to/from	the	node.	

● Incumbency	–	Boolean	variable	indicating	whether	the	candidate	was	incumbent	or	a	

challenger.	

● KL‐party/corpus	–	the	KL‐divergence	between	the	LM	of	a	user	and	the	LM	of	his	party/the	

entire	corpus.	
																																																													

4	There	are,	of	course,	more	sophisticated	models	for	election	prediction	(e.g.,	Kastellec	et	al.	

2008).	However,	our	interest	is	specifically	in	understanding	the	importance	of	structural	and	

content	“centrality.”	



● Party	–	indicating	the	political	group	a	user	belongs	to	(Democratic,	Tea‐Party	or	

Republican).	

● Same‐party	–	indicating	whether	the	party	of	the	candidate	is	the	same	as	the	party	that	last	

held	the	seat.	

● Tweets,	hashtags,	replies	and	retweets	–	basic	statistics	of	a	candidate’s	Twitter	activity,	as	

described	above.	

● Candidate’s	aggregate	sentiment	in	tweets	–	this	variable	was	found	to	be	not	significant.	

For	all	the	graph	properties	we	considered	the	whole	graph	consisting	of	all	the	candidates	

(experiments	using	only	edges	from	the	candidates	own	party	yielded	diminished	accuracy).	We	

start	by	examining	each	variable	independently.	Table	7	summarizes	this	set	of	experiments,	

showing	each	variable	along	with	its	coefficient,	statistical	significance	and	the	accuracy	of	the	

model.	We	measured	accuracy	using	a	10‐fold	cross‐validation	evaluation.	

Table	7.	Logistic	Regression	Model	with	Single	Variables	

Variable Estimate Prob(>|z|) Accuracy
same_party 2.67 <0.0001 78.9%
incumbent 3.163 <0.0001 76.9%
indegree 0.252 <0.0001 74.6%

closeness_all 486.7 <0.0001 73.5%
kl‐corpus ‐0.281 <0.0001 66.7%
pagerank 486.7 <0.0001 66.4%

closeness_in 1017.2 <0.0001 64.7%
authority 0.442 <0.001 63.8%

republican 0.976 <0.0001 61.0%
teaparty ‐0.277 0.38 61.0%
retweets ‐0.00113 0.15 58.4%
hashtags ‐0.00016 0.11 58.1%

tweets ‐0.00022 0.08  57.8% 

replies ‐0.00026 0.08  57.5% 

closeness_out ‐20.9682 0.1  57.5% 

outdegree 0.023  <0.01  57.5% 

kl‐party ‐0.047  <0.05  55.9% 

	

The	first	variable,	“same‐party”,	indicates	that	guessing	that	a	party	will	retain	a	seat	

correctly	predicts	78.9%	of	the	races.	Incumbency	is	known	to	be	a	major	factor	in	winning	

elections,	as	is	well	reflected	in	the	results.	Closeness‐all	and	in‐degree	are	also	predictive	as	

opposed	to	closeness‐out	and	out‐degree,	confirming	that	having	followers	is	more	important	than	

following	others.	



An	interesting	finding	is	that	KL‐corpus	is	significantly	more	predictive	than	KL‐party.	The	

negative	coefficient	of	these	variables	suggests	that	the	more	similar	the	LM	of	a	user	to	the	LM	of	

the	party/corpus,	the	more	likely	she	is	to	be	elected.	We	interpret	this	as	meaning	that	focusing	on	

centrist	issues	correlates	more	highly	with	winning	than	merely	conforming	to	the	agenda	of	one’s	

own	party	(though	both	matter).	Unsurprisingly,	given	Republicans’	success	in	gaining	seats	in	

2010,	the	Republican	variable	is	predictive	of	winning.	Finally,	we	see	that	simple	usage	statistics	

such	as	the	number	of	tweets	are	uninformative.	This	result	suggests	that	merely	spamming	

Twitter	is	not	a	useful	strategy.	

In	the	last	experiment	we	constructed	a	set	of	logistic	regression	models	combining	subsets	

of	the	variables	described	above.		Table	8	presents	the	accuracy	achieved	by	each	model	in	10‐fold	

CV	evaluation	(with	automated	model	selection	applied).	The	results	show	that	information	hidden	

in	graph	structure	and	content	can	significantly	improve	the	accuracy	of	election	prediction	(88%	

accuracy	over	81%	accuracy	omitting	Twitter‐derived	variables).	Finally,	we	verified	that	the	model	

performed	similarly	on	Republicans	as	well	as	on	Democrats.	

Table	8.	Logistic	Regression	Models	

Name  Variables  Accuracy
All  tweets, kl‐corpus, incumbent, party, closeness_all, closeness_out, same_party  88.0% 

All but 
kl‐corpus 

tweets, corpus, incumbent, same_party party, closeness_all, closeness_out  85.5% 

No content  incumbent, party, same_party, closeness_all, closeness_out  84.0% 

No graph  tweets, kl‐corpus, incumbent, party, same_party  83.8% 

No graph & 
content 

incumbent, party, same_party  81.5% 

	

7. Discussion	and	Future	Work	

The	model	described	above	determines	if	any	given	candidate	would	win.	Thus,	in	any	given	

race,	the	model	might	find	that	neither	or	both	candidates	won.	To	test	for	the	ability	to	predict	race	

outcome	we	apply	a	simple	scheme	in	which	the	most	probable	candidate	is	chosen	as	victor.	As	we	

do	not	have	information	for	every	candidate,	only	63	races	were	used	in	this	analysis.	Applying	this	

technique,	we	correctly	predict	49	out	of	63	(77.7%)	of	the	races.	Note	that	this	is	precisely	.88	×	

.88,	or	the	probability	of	picking	one	winner	and	one	loser	correctly.	This	result	could	likely	be	

improved	using	better	models	or	machine	learning	schemes	such	as	joint	inference.		



Our	findings	suggest	that	the	Republican	Party,	which	made	gains	in	the	2010	midterm	

election,	succeeded	in	running	a	strong	social	media	campaign	on	Twitter.		This	is	consistent	with	

the	observations	of	Chittal	(2010)	and	Stewart	(2010).	This	is	indicated	by	several	metrics.	First,	

the	Republicans	formed	a	denser	graph	of	followers,	and	mentioned	one	another	more	often.	Their	

tweets	were	also	more	topically	similar,	judging	by	the	similarity	of	their	language	models.	The	top	

terms	in	the	language	models	related	to	economic	issues.	In	contrast,	the	network	of	Democratic	

candidate	Twitter	accounts	was	sparser,	and	their	tweets	were	scattered	over	many	topics,	failing	

to	convey	a	single	coherent	message.		

Within	the	Republican	Twitter	network,	the	presence	of	the	Tea	Party	members	was	

boisterous.	From	their	frequent	use	of	hashtags	and	coherent	language	model,	Tea	Party	members	

appeared	to	be	running	an	organized	Twitter	campaign.	This	is	somewhat	surprising	given	the	

grassroots	nature	of	this	movement.	However,	a	qualitative	inspection	of	Tea	Party	messages	and	

LM	profile	indicates	a	possible	reason:	members	had	joined	forces	on	Twitter	in	attacking	key	

Democrats.		 	

Beyond	allowing	us	to	quantify	political	activity	on	Twitter,	network	and	content	variables	

are	also	predictive	of	election	outcomes.	Candidates	whose	tweets	resembled	that	of	many	others	in	

the	corpus,	that	is,	they	were	centrist	in	their	topic	selection	rather	than	extremist,	were	more	

correlated	with	victory.	Interestingly,	based	on	the	higher	predictiveness	of	KL‐corpus	over	KL‐

party,	candidates	are	judged	based	on	their	position	on	the	broad	political	spectrum	rather	than	on	

intra‐party	positioning.			In	future	work,	it	would	be	interesting	to	explore	the	relationship	between	

linguistic	positioning	in	campaigns	and	positioning	through	legislative	votes,	especially	NOMINATE	

scores.		

We	also	mention	here	two	metrics	that	were	not	predictive	of	election	outcomes:	

candidates’	expressed	sentiment,	and	the	relation	between	the	KL	divergence	of	two	opponents’	

LMs.	That	sentiment	is	not	predictive	of	election	outcomes	suggests	that	positive	or	negative	

campaigning	on	Twitter	has	no	discernible	effect	on	candidates’	success	at	the	polls.	The	lack	of	

relationship	between	similarity	in	what	candidates	talked	about	and	the	percentage	of	votes	each	

candidate	garnered,	suggests	that	perhaps	it	is	more	important	how	a	candidate	addresses	more	

broadly	discussed	issues,	than	how	much	they	mimic	or	try	to	differentiate	themselves	from	their	

opponent.	It	is	important	to	keep	in	mind	that	the	KL	divergence	suggests	an	estimation	of	

directionless	distance.	It	would	be	interesting	to	repeat	these	experiments	with	a	distance	measure	

that	also	contains	a	notion	of	direction,	to	position	candidates	on	the	political	spectrum.		



Our	content	analysis	is	further	limited	in	the	sense	that	we	relied	on	the	Bag‐of‐Words	

model,	ignoring	the	word	meaning	and	the	expressed	sentiment.	It	is	possible	that	sometimes	users	

quote	other	users	in	order	to	mock	them.	In	future	work	we	plan	to	assign	positive	and	negative	

weights	to	edges	using	sentiment	analysis	in	order	to	improve	the	accuracy	of	our	model.	

Additionally,	we	found	that	(in	part)	due	to	tweet	length,	an	initial	attempt	to	apply	Latent	Dirichlet	

Analysis	(LDA)	to	the	corpus	failed	to	produce	topics	of	high	enough	quality.	We	are	pursuing	other	

mechanisms	for	generating	high	quality	topics.		

Finally,	the	correspondence	between	network	and	content	proximity	suggests	that	

homophily	and	social	influence	shape	political	candidates’	activity	on	Twitter.	By	tracing	the	time‐

evolution	of	mentions	and	content,	we	might	be	able	to	approximate	the	range	of	individuals’	

influence	within	the	network.	

8. Conclusions	

In	this	paper	we	studied	the	usage	patterns	of	Twitter	by	candidates	in	the	2010	U.S.	

midterm	elections.	Our	study	addresses	House,	Senate	and	gubernatorial	races	as	well	as	the	virtual	

Tea	Party.	We	incorporated	structural	and	content	analysis,	and	demonstrated	the	utility	of	using	

language	modeling	to	estimate	group	cohesiveness	as	well	as	divergence	of	individuals.	Our	results	

indicate	strong	cohesiveness	among	conservatives,	even	for	the	largely	unstructured	Tea	Party.	

Additionally,	we	report	on	the	topics	and	sentiments	associated	with	the	content	of	these	networks.	

We	find	significant	relationships	between	content,	graph	structure	and	election	results	by	building	

a	model	that	predicts	whether	a	candidate	will	win	or	lose	with	accuracy	of	88.0%.	While	we	do	not	

claim	the	use	of	Twitter	determined	the	results,	we	do	think	a	broader	analysis	over	several	

campaigns	could	provide	insight	into	what	kinds	of	Twitter‐based	campaign	activities	are	more	

effective.		
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Appendix	1:	Sentiment	Analysis	

Positive	and	Negative	Sentiment	Words	by	Party	(expanded	from	Table	6)	

positive  negative 

Democratic  Republican  Tea‐Party  Democratic  Republican  Tea‐Party 

winning  winning  winning  blame  illegal  illegal 

chance  nice  help  illegal  lost  lost 

endorse  support  opportunity failed  blame  unemployment

opportunity  love  bless  lame  unemployment  blame 

ellen  endorsement  support  lost  failed  disaster 

freedom  opportunity  nice  wrong  bad  failed 

support  bless  endorse  unemployment debt  wrong 

rating  freedom  chance  disaster  poor  deficit 

november  food  counties  bad  deficit  hate 

healthcare_reform  friends  success  debt  lame  error 

food  kids  food  deficit  wrong  attack 

our_country  god  strong  attack  hate  trillion 

labor  family  god  hate  attack  lame 

women  women  love  poor  error  poor 

veterans  goal  share  error  stimulus  tax_cuts 
	

	 	



	

Largest	Republican	to	Democratic	differences
Democratic	Sentiment	 Republican	Sentiment Tea‐Party	Sentiment Term	

0.14	 1.961 0.376 crist
‐0.068	 1.338 0.984 the_gop	
0.239 1.634 1.672 commerce	
0.159 1.168 0.893 the_republican	
0.202 1.175 1.125 tea_party	
1.456 0.583 0.668 union	
1.058 0.177 0.209 jobs
0.522 ‐0.399 ‐0.252 stimulus	
2.263 1.3 1.03 care_bill	
1.255 0.231 0.798 gay
1.433 0.3 0.537 healthcare_reform	
1.435 0.075 0.584 liberals	
1.256 ‐0.331 0.894 this_country	
1.641 ‐0.13 0.035 dems	
4.933 3.002 2.938 chance	

Largest	Tea‐Party	to	Democratic	differences
0.713	 1.34 2.854 counties	
1.446	 2.224 2.739 god
0.43	 0.873 1.539 sarah_palin	

‐0.068	 1.338 0.984 the_gop	
0.202	 1.175 1.125 tea_party	
1.433	 0.3 0.537 healthcare_reform	
1.037	 0.458 0.106 legislation	
1.244	 1.032 0.16 children	
1.509	 1.121 0.318 boston	
2.263	 1.3 1.032 care_bill	
2.053	 2.057 0.814 our_country	
1.128	 0.288 ‐0.302 democratic	
3.647	 2.731 2.016 freedom	
6.772	 5.73 4.971 winning	
4.933	 3.002 2.938 chance	

Largest	Republican	to	Tea‐Party	differences
0.713	 1.34 2.854 counties	
3.87	 2.758 3.902 wins	
0.216	 ‐0.272 0.782 dead	
2.041	 1.613 2.543 twitter	
1.09	 0.587 1.5 individual	

‐0.948	 ‐1.407 ‐0.604 debt
1.494	 0.69 1.478 alaska	
0.43	 0.873 1.539 sarah_palin	
1.509	 1.121 0.318 boston	
1.244	 1.032 0.16 children	
0.995	 1.282 0.407 michigan	
‐1.029	 ‐0.679 ‐1.568 disaster	
1.559	 2.265 1.32 kids
3.775	 3.691 2.449 love
2.053	 2.057 0.814 our_country	

	
This	table	represents	the	largest	sentiment	differences	between	pairs	of	parties.		Note	that	not	
many	sentiment	scores	are	in	fact	negative	and	most	are	in	the	same	direction	(coded	from	white	to	
dark	green).		However,	the	degree	of	sentiment	by	each	party	differs	immensely.		
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