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Abstract

Multidimensional item response models have been developed to incorporate a general
trait and several specific trait dimensions. Depending on the structure of these latent
traits, different models can be considered. This paper provides the requisite information
and description of software that implement the Gibbs sampling procedures for three such
models with a normal ogive form. The software developed is written in the MATLAB
package IRTm2noHA. The package is flexible enough to allow a user the choice to simulate
binary response data with a latent structure involving general and specific traits, specify
prior distributions for model parameters, check convergence of the MCMC chain, and
obtain Bayesian fit statistics. Illustrative examples are provided to demonstrate and
validate the use of the software package.
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ture, MCMC, Gibbs sampling, Gelman-Rubin R, Bayesian DIC, posterior predictive model
checks.

1. Introduction

Item response theory (IRT) is a popular approach for solving various measurement problems,
and has been found useful in a wide variety of applications (e.g., Bezruckzo 2005; Boomsma,
van Duijn, and Snijders 2001; Chang and Reeve 2005; Embretson and Reise 2000; Feske,
Kirisci, Tarter, and Plkonis 2007; Imbens 2000; Kolen and Brennan 1995; Lord 1980). For
binary response data, IRT provides a collection of models that describe how persons and items
interact to yield probabilistic 0/1 responses. The influence of each person and item on the
response is modeled by distinct sets of parameters, namely, the person latent trait(s) θi and
the item’s characteristics ξj so that

P (y = 1) = f(θi, ξj),
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where f can assume a probit or a logit function, giving rise to what is called in the IRT
literature a normal ogive model or a logistic model. Unidimensional IRT models assume
one θi parameter for each person, signifying that each test item measures some facet of the
unified latent trait. In some situations, it suffices to assume one latent dimension and use the
unidimensional model. However, in many other situations where multiple traits are required
in producing the manifest responses to an item, multidimensional IRT (MIRT; Reckase 2009)
models need to be considered. A special case of the MIRT model is the multi-unidimensional
IRT model (Lee 1995; Sheng 2008b; Sheng and Wikle 2007), applicable in situations where
a test involves multiple traits with each item measuring one of them. The items measuring
a specific latent trait can be grouped together to form a subtest, and hence the test can be
viewed as one consisting of multiple such unidimensional subtests. In such situations, it is also
reasonable to assume that each subtest measures some facet of an overall or general latent trait
dimension and hence to consider MIRT models incorporating both the general trait and traits
specific for individual subtests so that separate inferences can be made about persons for each
of them. Here, the general trait signifies the unified latent dimension that involves cognitive
process common for all test items, whereas the specific trait involves cognitive process needed
for answering items in an individual subtest that may be related to the general trait or other
specific traits. Different such MIRT models have been developed in the literature so that the
general trait may be underlying the specific traits to form a hierarchical structure (Sheng
and Wikle 2008), or the general and specific traits form an additive structure, i.e., each item
measures a general trait and a specific trait directly (Sheng and Wikle 2009). These two types
of models make different assumptions on the underlying continuous dimensions. Their latent
structures can be comparable to that of second-order factor models (Schmid and Leiman
1957) and that of bifactor models (Holzinger and Swineford 1937, though bifactor models
assume that the general and specific factors are orthogonal), respectively, which have been well
studied in the factor analytic framework. Recent research on factor analysis indicates that the
second-order and bifactor models, though with similar interpretations, are not mathematically
equivalent (Gustafsson and Balke 1993; McDonald 1999; Mulaik and Quartetti 1997; Yung,
Thissen, and McLeod 1999). In particular, Yung et al. (1999) have demonstrated that the
former is actually hierarchically nested within the latter (see also Rindskopf and Rose 1988).
This finding further sheds light on the relation between the two MIRT models considered in
this paper.

Parameter estimation offers the basis for the theoretical advantages of IRT, and hence has
been a major concern in the application of IRT models. As the influence of items and persons
on the responses is modeled by distinct sets of parameters, simultaneous estimation of these
parameters results in statistical complexities in the estimation task, which have made estima-
tion procedure a primary focus of psychometric research over decades (Birnbaum 1969; Bock
and Aitkin 1981; Molenaar 1995). Recent attention is focused on the fully Bayesian approach
using Markov chain Monte Carlo (MCMC) simulation techniques, which are extremely general
and flexible and have proved useful in practically all aspects of Bayesian inferences, such as
parameter estimation or model comparisons. One of the simplest MCMC algorithms is Gibbs
sampling (Casella and George 1992; Geman and Geman 1984). The method is straightforward
to implement when each full conditional distribution associated with a particular multivariate
posterior distribution is a known distribution that is easy to sample. Gibbs sampling has been
applied to common unidimensional models (Albert 1992; Sahu 2002) and two-parameter nor-
mal ogive (2PNO) multi-unidimensional models (Lee 1995) using the data augmentation idea
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of Tanner and Wong (1987). Sheng and Wikle (2008, 2009) further extended their approaches
and developed the Gibbs sampling procedures for the MIRT models with a general trait and
several specific trait dimensions. The model with an additive structure, in particular, has
been found to provide a better description to the data in various situations compared with
the other IRT models (Sheng and Wikle 2009).

This paper provides a MATLAB (The MathWorks, Inc. 2007) package that implements Gibbs
sampling for the 2PNO MIRT models incorporating a general and several specific traits with
the option of specifying uniform or conjugate priors for item parameters. One may note
that different R packages have been developed to estimate dichotomous and/or polytomous
IRT models (see e.g., Anderson, Li, and Vermunt 2007; Johnson 2007; Mair and Hatzinger
2007; Rizopoulos 2006). These packages focus on the maximum likelihood estimation of
either Rasch models or models with one latent trait, and shall be differentiated from the fully
Bayesian approach and/or the multidimensional dichotomous IRT models considered in this
study. The remainder of the paper is organized as follows. Section 2 reviews the models and
Section 3 briefly describes the MCMC algorithms implemented in the package IRTn2noHA.
In Section 4, a brief illustration is given of Bayesian model choice or checking technique for
testing the adequacy of a model. The package IRTn2noHA is introduced in Section 5, where a
description is given of common input and output variables. In Section 6, illustrative examples
are provided to demonstrate the use of the source code. Finally, a few summary remarks are
given in Section 7.

This paper only considers normal ogive models given that more complicated MCMC proce-
dures have to be adopted for the logistic form of these models (e.g., Patz and Junker 1999a,b)
and that the logistic and normal ogive forms of the IRT model are essentially indistinguish-
able in model fit or parameter estimates given proper scaling (Birnbaum 1968; Embretson
and Reise 2000).

2. IRT models with general and specific traits

Suppose a K-item test consists of m subtests, each containing kv dichotomous (0/1) items,
where v = 1, 2, . . . ,m. Let yvij denote the ith person’s response to the jth item in the vth
subtest, where i = 1, 2, . . . , n and j = 1, 2, . . . , kv

1. With a probit link, the probability of a
correct response can be defined as

P (yvij = 1|θvi, αvj , βvj) = Φ(αvjθvi − βvj) =

∫ αvjθvi−βvj

−∞

1√
2π
e
−t2

2 dt, (1)

where θvi is a scalar person trait parameter specific for the vth latent dimension, αvj is a
positive scalar slope parameter representing the item discrimination in the vth dimension,
and βvj is a scalar intercept parameter that is related to the location in the vth dimension
where the item provides maximum information. This probability function takes the form of
that of the multi-unidimensional model (see Sheng and Wikle 2007; Sheng 2008b) where m
specific latent traits, θvi, are considered. We may incorporate an additional general latent

1For conventional IRT models, it is common to use the yij notation to denote person i’s response to item
j, where i = 1, . . . , n and j = 1, . . . ,K. The subscript v is introduced here because a different trait dimension,
θv, specific for each subtest is assumed, and each item has an nonzero discriminating power with respect to θv.
Essentially, yvij can be thought of as dividing the entire n ×K matrix of yij into m submatrices, with each
being of size n× kv.
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dimension by assuming a hierarchical structure so that each θvi either (a) is a linear function
of the general trait parameter θ0i,

θvi ∼ N(δvθ0i, 1), (2)

or (b) linearly combines to form the general trait parameter,

θ0i ∼ N(
∑
v

λvθvi, 1) (3)

(Sheng and Wikle 2008), where δv and λv are positive coefficients relating each θvi with θ0i.
For simplicity, the two formulations are referred to as hierarchical model 1 and hierarchical
model 2, respectively.

Alternatively, the general and specific latent dimensions can assume an additive structure so
the probability function is defined as

P (yvij = 1|θ0i, θvi, α0vj , αvj , βvj) = Φ(α0vjθ0i + αvjθvi − βvj) (4)

(Sheng and Wikle 2009), where α0vj is a positive scalar slope parameter associated with θ0i.
Hence, a correct response is assumed to be determined directly by two latent traits – a general
one and a specific one. Due to the additive structure of the latent traits, this model is referred
to as the additive model in this paper. As Figure 1 shows, it differs from the two hierarchical
models in the effect of the general trait on item responses. One may note the similarity of this
model with the original bifactor model proposed by Holzinger and Swineford (1937), where
each item has a nonzero loading on a primary factor and a second loading on only one of
several secondary factors. However, they differ in several aspects. First, the additive model is
for binary response data and is hence essentially similar to the bifactor full-information factor
model presented by Gibbons and Hedeker (1992); see also Li, Bolt, and Fu (2006). Second, as
with other IRT models, the additive model uses “difficulties” (which are related to intercepts
in our discussion) and “discriminations” instead of “thresholds” and “loadings” as with factor
models. Third, in the additive model, it is assumed that the slope is positive, whereas in
the bifactor model, the threshold can assume negative values. Finally, the bifactor model
constrains the correlation between the general and specific dimensions to be zero, whereas
the additive model does not, though it is pointed out later in the paper that large correlations
tend to result in high collinearity, which creates problem in parameter estimation. Since the
additive model specified in (4) is more complex than the conventional IRT models or even
the hierarchical models, certain constraints need to be adopted to help identification. See
Section 3.3 for a detailed illustration of the model specification.

3. MCMC algorithms

Gibbs sampling is one of the simplest MCMC algorithms that can obtain item and person
parameter estimates simultaneously. The method is particularly straightforward when each
full conditional distribution can be obtained in closed form. Its general underlying strategy is
to iteratively sample item and person parameters from their respective posterior distributions,
conditional on the sampled values of all other person and item parameters. This iterative
process continues for a sufficient number of samples after the posterior distributions reach
stationarity (a phase known as burn-in).
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(a) hierarchical model 1 (b) hierarchical model 2 (c) additive model

Figure 1: Graphical representations of the three MIRT models incorporating general and
specific latent traits. (Circles represent latent traits and squares represent observed item
responses.)

As with standard Monte Carlo, the posterior means of all the samples collected after the burn-
in stage are considered as estimates of the true model parameters. Similarly, their posterior
standard deviations are used to describe the statistical uncertainty. However, Monte Carlo
standard errors cannot be calculated using the sample standard deviations because subsequent
samples in each Markov chain are autocorrelated (e.g., Patz and Junker 1999b). Among the
standard methods for estimating them (Ripley 1987), batching is said to be a crude but
effective method (Verdinelli and Wasserman 1995) and hence is considered in this paper.
Here, with a long chain of samples being separated into contiguous batches of equal length,
the Monte Carlo standard error for each parameter is then estimated to be the standard
deviation of these batch means. The Monte Carlo standard error of the estimate is hence a
ratio of the Monte Carlo standard error and the square root of the number of batches. More
sophisticated methods for estimating standard errors can be found in Gelman and Rubin
(1992).

The Gibbs sampler for each MIRT model involving both general and specific latent traits is
now described.

3.1. Gibbs sampling for the hierarchical model 1

To implement Gibbs sampling for the model defined in (1) with θvi ∼ N(δvθ0i, 1), an aug-
mented continuous variable Z is introduced so that Zvij ∼ N(ηvij , 1) (Albert 1992; Sheng
and Wikle 2008; Tanner and Wong 1987), where ηvij = αvjθvi−βvj . With prior distributions
assumed for θ0i, ξvj , where ξvj = (αvj , βvj)

′, and δv, the joint posterior distribution of (θ, ξ,
Z, θ0, δ) is then

p(θ, ξ,Z,θ0, δ) ∝ f(y|Z)p(Z|θ, ξ)p(ξ)p(θ|θ0, δ)p(θ0)p(δ), (5)

where θ0 = (θ01, . . . , θ0n)′, δ = (δ1, . . . , δm)′, and

f(y|Z) =
m∏
v=1

n∏
i=1

kv∏
j=1

p
yvij
vij (1− pvij)1−yvij (6)

is the likelihood function with pvij being as defined in (1).
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The implementation of the Gibbs sampler thus involves five of the sampling processes, namely,
a sampling of the augmented Z parameters from

Zvij |• ∼
{

N(0,∞)(ηvij , 1), if yvij = 1

N(−∞,0)(ηvij , 1), if yvij = 0
; (7)

a sampling of person specific trait parameters θ from

θi|• ∼ Nm((A′A + I)−1(δθ0i + A′B), (A′A + I)−1), (8)

where θi = (θ1i, . . . , θmi)
′, A =


α1 0 · · · 0
0 α2 · · · 0
...

... · · ·
...

0 0 . . . αm


K×m

and B =


Z1i + β1

Z2i + β2
...

Zmi + βm


K×1

, in

which αv = (αv1, ..., αvkv)′, Zvi = (Zvi1, ..., Zvikv)′, βv = (βv1, ..., βvkv)′; a sampling of person
general trait parameters θ0 from

θ0i|• ∼ N((δ′δ + 1)−1(δ′θi), (δ
′δ + 1)−1); (9)

a sampling of the item parameters ξ from

ξvj |• ∼ N2((x
′
vxv)

−1x′vZvj , (x
′
vxv)

−1)I(αvj > 0), (10)

where xv = [θv,−1], assuming noninformative uniform priors αvj > 0 and p(βvj) ∝ 1, or from

ξvj |• ∼ N2((x
′
vxv + Σ−1ξv

)−1(x′vZvj + Σ−1ξv
µξv), (x′vxv + Σ−1ξv

)−1)I(αvj > 0), (11)

where µξv
= (µαv , µβv)′ and Σξv = diag(σ2αv

, σ2βv), assuming conjugate normal priors αvj ∼
N(0,∞)(µαv , σ

2
αv

), βvj ∼ N(µβv , σ
2
βv

); and a sampling of the hyperparameters δ from

δ|• ∼ Nm((θ′0θ0I)−1θ′θ0, (θ
′
0θ0I)−1)I(δ > 0) (12)

assuming noninformative uniform priors δv > 0, or from

δ|• ∼ Nm((θ′0θ0I + Σ−1δ )−1(θ′θ0 + Σ−1δ µδ), (θ′0θ0I + Σ−1δ )−1)I(δ > 0), (13)

where µδ = (µδ1 , . . . , µδm)′ and Σδ = diag(σ2δ1 , . . . , σ
2
δm

), assuming conjugate normal priors
δv ∼ N(0,∞)(µδv , σ

2
δv

).

The location and scale parameters for θvi are commonly assumed to be 0 and 1, respectively,
to ensure unique scaling and to resolve a particular identification problem for such models
(see e.g., Albert 1992; Lee 1995). Given the model specification, θvi are centered around
δvθ0i, and hence need to be normalized to have a mean of 0 and a standard deviation of 1. To
retain a common scale for all parameters, αvj and βvj are rescaled as well following Bafumi,
Gelman, Park, and Kaplan (2005). This transformation further allows computation to be
more efficient (Gelman, Carlin, Stern, and Rubin 2004).

3.2. Gibbs sampling for the hierarchical model 2

Assuming θ0i ∼ N (
∑

v λvθvi, 1), the hierarchical model 2 calls for a slightly different Gibbs
sampling procedure. In particular, we can assume a multivariate normal prior density for
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person specific trait parameters θi so that θi ∼ Nm(0,P), where P is a covariance matrix with
the variances being fixed at 1. It follows that the off-diagonal element of P is the correlation
ρst between θsi and θti, s 6= t, i = 1, . . . ,m. It is noted that the proper multivariate normal
prior for θvi with their location and scale parameters specified to be 0 and 1 ensures unique
scaling and hence is essential in resolving a particular identification problem for this model
(see e.g. Lee 1995, for a description of the problem). Moreover, introduce an unconstrained
covariance matrix Σ, where Σ = [σvv′ ]m×m, so that the correlation matrix P can be readily
transformed from Σ using

ρst =
σst√
σssσtt

, s 6= t (14)

(the same approach was adopted for the multi-unidimensional model; see Lee 1995; Sheng

2008b). A noninformative prior can be assumed for Σ so that p(Σ) ∝ |Σ|−
m+1

2 (Lee 1995).

Hence, with prior distributions assumed for ξvj and λ, where λ = (λ1, . . . , λm)′, the joint
posterior distribution of (θ, ξ, Z, θ0,λ, Σ) is

p(θ, ξ,Z,θ0,λ,Σ|y) ∝ f(y|Z)p(Z|θ, ξ)p(ξ)p(θ0|θ,λ)p(θ|P)p(λ)p(Σ), (15)

where f(y|Z) is as defined in (6).

The implementation of the Gibbs sampler thus involves six processes, namely, a sampling
of the augmented Z parameters from (7); a sampling of the item parameters ξ from (10)
assuming uniform priors or from (11) assuming conjugate normal priors; a sampling of person
specific trait parameters θ from

θi|• ∼ Nm((P−1 + λλ′ + A′A)−1(λθ0i + A′B), (P−1 + λλ′ + A′A)−1), (16)

where A and B are as defined in (8); a sampling of the person general trait parameters θ0
from (3); a sampling of the hyperparameters λ from

λ|• ∼ Nm((θ′θ)−1θ′θ0, (θ
′θ)−1)I(λ > 0) (17)

assuming noninformative uniform priors λv > 0, or from

λ|• ∼ Nm((θ′θ + Σ−1λ )−1(θ′θ0 + Σ−1λ µλ), (θ′θ + Σ−1λ )−1)I(λ > 0), (18)

where µλ = (µλ1 , . . . , µλm)′ and Σλ = diag(σ2λ1 , . . . , σ
2
λm

), assuming conjugate normal priors
λv ∼ N(0,∞)(µλv , σ

2
λv

); a sampling of the unconstrained covariance matrix Σ from

Σ|• ∼W−1(S−1, n) (19)

(an inverse Wishart distribution), where S =
n∑
i=1

(Cθi)(Cθi)
′, in which

C = diag

(
(
k1∏
j=1

α1j)
1/k1 , . . . , (

km∏
j=1

αmj)
1/km

)
; and a transformation of Σ to P using (14).

3.3. Gibbs sampling for the additive model

For the additive model, the Gibbs sampler again involves the introduction of an augmented
variable Z so that Zvij ∼ N(ηvij , 1), where ηvij = α0vjθ0i+αvjθvi−βvj . Assume a multivariate
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normal prior distribution for person general and specific trait parameters θi, where θi =
(θ0i, θ1i, . . . , θmi)

′, so that θi ∼ Nm+1(0,P). Here, P is a constrained covariance matrix, with
the diagonal element being 1 and the off-diagonal element being the correlation ρst between
θsi and θti, s 6= t, i = 0, . . . ,m. It is noted again that the location and scale parameters for
person parameters are specified to be 0 and 1, which ensures unique scaling and helps resolve
the model identification problem. Similar to the procedure described in Section 3.2, introduce
an unconstrained covariance matrix Σ = [σvv′ ](m+1)×(m+1) so that P can be transformed from

Σ using (14), and assume p(Σ) ∝ |Σ|−
m+2

2 . Then, with prior distributions assumed for ξvj ,
where ξvj = (α0vj , αvj , βvj)

′, the joint posterior distribution of (θ, ξ, Z, Σ) is

p(θ, ξ,Z,Σ|y) ∝ f(y|Z)p(Z|θ, ξ)p(ξ)p(θ|P)p(Σ), (20)

where f(y|Z) =
∏
v

∏
i

∏
j
p
yvij
vij (1− pvij)1−yvij is the likelihood function with pvij being as de-

fined in (4).

The Gibbs sampler hence involves five processes: a sampling of the augmented Z parameters
from (7), where ηvij = α0vjθ0i + αvjθvi − βvj ; a sampling of the person trait parameters θ
from

θi|• ∼ Nm+1((A
′A + P)−1A′B, (A′A + P)−1), (21)

where A =


α01 α1 0 · · · 0
α02 0 α2 · · · 0

...
...

... · · ·
...

α0m 0 0 . . . αm


K×(m+1)

and B =


Z1i + β1

Z2i + β2
...

Zmi + βm


K×1

, in which

α0v = (α0v1, . . . , α0vkv)′ and αv, Zvi, βv are as defined in (8); a sampling of the item param-
eters ξ from

ξvj |• ∼ N3((x
′
vxv + I)−1x′vZvj , (x

′
vxv + I)−1)I(α0vj > 0)I(αvj > 0), (22)

where x = [θ0,θv,−1], assuming uniform priors α0vj > 0, αvj > 0, and p(βvj) ∝ 1, or from

ξvj |• ∼ N3((x
′
vxv + Σ−1ξv

)−1(x′vZvj + Σ−1ξv
µξv

), (x′vxv + Σ−1ξv
)−1)I(α0vj > 0)I(αvj > 0), (23)

where µξv
= (µα0v , µαv , µβv)′ and Σξv = diag(σ2α0v

, σ2αv
, σ2βv), assuming conjugate normal

priors α0vj ∼ N(0,∞)(µα0v , σ
2
α0v

), αvj ∼ N(0,∞)(µαv , σ
2
αv

), βvj ∼ N(µβv , σ
2
βv

); a sampling of
the unconstrained covariance matrix Σ from (19), where θi is as defined in (21) and

C = diag

(
m∏
v=1

kv∏
j=1

α0vj)
1/K , (

k1∏
j=1

α1j)
1/k1 , . . . , (

km∏
j=1

αmj)
1/km

 ;

and a transformation of Σ to P using (14).

Due to an additional model indeterminacy resulted from the additive nature of θ0i and θvi,
further constraints are adopted to help identify the model. Specifically, at each iteration, the
θ0i and θvi parameters are normalized to have a mean of 0 and a standard deviation of 1,
with the corresponding α0vj , αvj and βvj parameters being rescaled so that the likelihood is
preserved (see Bafumi et al. 2005). This procedure, as mentioned in Section 3.1, also improves
mixing and computational efficiency.
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4. Bayesian model choice or checking

In Bayesian statistics, the adequacy of the fit of a given model is evaluated using several model
choice or checking techniques, among which, Bayesian deviance and posterior predictive model
checks are considered and briefly illustrated.

4.1. Bayesian deviance

The Bayesian deviance information criterion (DIC; Spiegelhalter, Best, Carlin, and van der
Linde 2002) is based on the posterior distribution of the deviance. This criterion is defined
as DIC = D + pD, where D = E(−2 logL(y|ϑ)) is the posterior expectation of the deviance
(with L(y|ϑ) being the model likelihood function, where ϑ denotes all model parameters)
and pD = D − D(ϑ̄) is the effective number of parameters (Carlin and Louis 2000). Fur-
ther, D(ϑ̄) = −2 log(L(y|ϑ̄)), where ϑ̄ is the posterior mean. To compute Bayesian DIC,
MCMC samples of the parameters, ϑ(1), . . . ,ϑ(G), can be drawn using the Gibbs sampler,
then D = 1

G(−2 log
∏G
g=1 L(y|ϑ(g))). Small values of the deviance suggest a better-fitting

model. Generally, more complicated models tend to provide better fit. Hence, penalizing for
the number of parameters (pD) makes DIC a more reasonable measure to use.

4.2. Posterior predictive model checks

The posterior predictive model checking (PPMC; Rubin 1984) method provides a popular
Bayesian model checking technique that is intuitively appealing, simple to implement, and
easy to interpret (Sinharay and Stern 2003). The basic idea is to draw replicated data yrep

from its posterior predictive distribution p(yrep |y) =
∫
p(yrep |ϑ)p(ϑ|y)dϑ, and compare them

to the observed data y. If the model fits, then replicated data generated under the model
should look similar to the observed data. A test statistic known as the discrepancy measure
T (y,ϑ) has to be chosen to define the discrepancy between the model and the data. For
each yrep drawn from the predictive distribution, the realized discrepancy T (y) = T (y,ϑ)
can be compared with the predictive discrepancy T (yrep) = T (yrep ,ϑ) by plotting the pairs
on a scatter plot. Alternatively, one can obtain a quantitative measure of lack of fit by
calculating the tail-area probability or the PPP-value (Sinharay, Johnson, and Stern 2006),
P (T (yrep) ≥ T (y)|y) =

∫
T (yrep)≥T (y) p(y

rep |ϑ)p(ϑ|y)dyrepdϑ.

To implement the method, one draws G samples from the posterior distribution of ϑ using
Gibbs sampling. Then for each simulated ϑ(g), a yrep(g) can be drawn from the predictive
distribution so there are G draws from the joint posterior distribution p(yrep ,ϑ|y). The
predictive test statistic T (yrep(g)) and the realized test statistic T (y) are computed and sub-
sequently compared to provide graphical and numerical evidence about model inadequacy.
Specifically, the proportion of the G simulated samples for which the replicated data could be
more extreme than the observed data, i.e., 1

G

∑G
g=1 I(T (yrep(g)) ≥ T (y)), provides an estimate

of the PPP-value. Extreme PPP-values (close to 0 or 1) indicate model misfit. It is noted
that although both are defined as tail-area probabilities, the PPP-value has to be differenti-
ated from the traditional hypothesis-testing p-value in that the posterior predictive checking
approach does not perform a hypothesis test (Gelman, Meng, and Stern 1996). The choice of
the discrepancy measure is critical in implementing this method. Sinharay et al. (2006), after
evaluating a number of discrepancy measures for assessing IRT models, concluded that the
odds ratio for measuring associations among item pairs, T (y) = ORij = n11n00

n01n10
, is powerful for
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detecting lack of fit when the model assumption is violated. Hence, this measure is adopted
as the test statistic for the PPMC method in this paper.

5. Package IRTm2noHA

The package IRTm2noHA contains two major user-callable routines. A function for gener-
ating binary response data using the multidimensional model involving a general and several
specific latent dimensions titled, simm2noHA, and a function that implements Gibbs sam-
pler to obtain posterior samples, estimates, convergence statistics, or model choice/checking
statistics, gsm2noHA.

The function simm2noHA has input arguments n, kv, model, b, r, and iparm for the number of
respondents, the number of items in each subtest, the MIRT model based on which the binary
response is generated (model = 1 for the hierarchical model 1, model = 2 for the hierarchical
model 2, and model = 3 for the additive model), the actual δ or λ coefficients relating the
general trait to the specific traits in the two hierarchical models, the actual correlation matrix
for person specific traits in the hierarchical model 2 or for person traits in the additive model,
and user-specified item parameters, respectively. The optional iparm argument allows the
user the choice to input item parameters for the model, or randomly generate them from
uniform distributions so that αvj ∼ U(0, 2), βvj ∼ U(−2, 2) for the hierarchical models, or
α0vj ∼ U(0, 2), αvj ∼ U(0, 2), βvj ∼ U(−2, 2) for the additive model. The user can further
choose to store the simulated person (theta) and item (item) parameters. It is noted that
a transformation is adopted in the Gibbs sampler for the hierarchical model 1 to rescale the
θvi estimates (see Section 3.1). To keep the simulated values on the same scale, θvi are also
normalized to have a mean of 0 and a standard deviation of 1 for this model.

With the required user-input binary response data (y) and number of items in each subtest
(kv), the function gsm2noHA initially reads in starting values for person and item parameters

(th0, item0) and the person hyperparameters (b0, sigma0), or sets them to be θ
(0)
vi = 0,

α
(0)
vj = 2, β

(0)
vj = −Φ−1(

∑
i yvij/n)

√
5, (following Albert 1992), δ

(0)
v = 1 or λ

(0)
v = 1, and

P(0) = I for the hierarchical models, or θ
(0)
0i = 0, θ

(0)
vi = 0, α

(0)
0vj = 2, α

(0)
vj = 2, β

(0)
vj = 1,

and P(0) = I for the additive model. It then implements the Gibbs sampler to a user-
specified MIRT model incorporating general and specific traits (model) and iteratively draws
random samples for the parameters and hyperparameters from their respective full conditional
distributions. The prior distributions for the item parameters or the δ/λ parameters can be
uniform (unif = 1, default) or conjugate (unif = 0). In the latter case, the user can specify
any values of interest or use the default values, namely, µαv = 0, µβv = 0 (xmu), σ2αv

= 1,
σ2βv = 1 (xvar) for αvj and βvj , and µδv/µλv = 0 (bmu), σ2δv/σ

2
λv

= 1 (bvar) for δv/λv in

the hierarchical models, or µα0v = 0, µαv = 0, µβv = 0 (xmu), σ2α0v
= 1, σ2αv

= 1, σ2βv = 1
(xvar) for α0vj , αvj and βvj in the additive model. It is noted that the prior location and
scale parameters for αvj , βvj , or α0vj can be set to be different across the m subtests. The
algorithm continues until all the (kk) samples are simulated, with the early burn-in samples
(burnin) being discarded, where kk and burnin can be 10, 000 and kk/2 (default) or any
values of interest. It then computes the posterior estimates, posterior standard deviations,
and Monte Carlo standard errors of the person (pparm), item (iparm) or hyperparameter
(hparm) estimates. Posterior samples after the burn-in stage of these parameters can also be
stored (samples) for further analysis.
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In addition to Monte Carlo standard errors, convergence can be evaluated using the Gelman-
Rubin R statistic (Gelman et al. 2004) for each person or item parameter. The usual practice
is using multiple Markov chains from different starting points. Alternatively, a single chain
can be divided into sub-chains so that convergence is assessed by comparing the between and
within sub-chain variances. Since a single chain is less wasteful in the number of iterations
needed, the latter approach is adopted to compute the R statistic (gr) with gsm2noHA. The
Bayesian deviance estimates, including D, D(ϑ̄), pD and DIC, can be obtained (deviance) to
measure the relative fit of a model. Moreover, the PPMC method can be adopted using the
odds ratio as the discrepancy measure so that PPP-values (ppmc) are obtained to evaluate
model misfit. Extreme PPP-values can be further plotted using the function ppmcplt, in
which the threshold (crit) can be 0.01 (default) or any level of interest so that PPP-values
larger than 1 − crit/2 are denoted using the right triangle sign and those smaller than
crit/2 are denoted using the left triangle sign. The functions’ input and output arguments
are completely specified in the m-files.

6. Illustrative examples

To demonstrate the use of the IRTm2noHA package, simulated and real data examples are
provided in this section to illustrate item parameter recovery as well as model comparisons.
The code to reproduce the results of each example is provided in the m-file v34i03.m.

6.1. Parameter recovery

For parameter recovery, tests with two subtests were considered so that the first half measured
one latent trait and the second half measured another. A 1000-by-32 (i.e., n = 1000, m = 2,
k1 = 16, k2 = 16, and K = 32) dichotomous data matrix was generated from each of the
three MIRT models described in Section 2. The item parameters were randomly simulated
from α0vj ∼ U(0, 2), αvj ∼ U(0, 2), and βvj ∼ U(−2, 2), and are shown in the first column
of Tables 1 through 7. Gibbs sampling was subsequently implemented to recover model
parameters assuming the noninformative uniform or informative conjugate prior distributions
described previously. The posterior means and standard deviations of item parameters (αv,
βv, and/or α0v), as well as their Monte Carlo standard errors of estimates and Gelman-
Rubin R statistics were obtained and are displayed in the rest of the tables. The estimation
accuracy was also evaluated using the average square error between the actual and estimated
item parameters, which is shown at the bottom of each table.

The Gelman-Rubin R statistic provides a numerical measure for assessing convergence for
each item parameter. With values close to 1, it is determined that in the implementations of
the Gibbs sampler, Markov chains reached stationarity with a run length of 10, 000 iterations
and a burn-in period of 5, 000 iterations. The posterior estimates of the item parameters
shown in the seven tables are fairly close to the true parameters, suggesting that each MIRT
model incorporating a general trait and several specific trait dimensions recovers its model
parameters with enough accuracy. In addition, the two sets of posterior estimates, resulted
from different prior distributions, differ only slightly from each other, signifying that the
posterior estimates are not sensitive to the choice of uniform or conjugate priors for the item
and δ/λ parameters. This point is further supported by the small differences between the
average square errors.
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True

α1

0.9200
0.4367
0.5408
0.0189
1.6427
1.8599
0.9943
1.3165
0.6044
0.2940
0.4665
1.1079
1.4760
0.3414
0.4347
0.8841

α2

1.2562
0.4675
0.1689
0.7057
0.2663
0.9276
0.1900
1.4285
0.7349
1.5261
0.9510
1.1355
0.5615
0.3012
0.4418
1.3371

Noninformative priors
Mean SD MCSE R

0.8430 0.0752 0.0043 1.0017
0.3862 0.0714 0.0039 1.0074
0.6060 0.0589 0.0021 1.0044
0.0646 0.0433 0.0014 1.0002
1.6079 0.1335 0.0162 1.0633
2.3267 0.2827 0.0302 1.0278
1.0113 0.0956 0.0059 1.0267
1.2855 0.0938 0.0057 1.0032
0.5670 0.0532 0.0020 1.0002
0.3136 0.0488 0.0022 1.0050
0.3432 0.0638 0.0035 1.0215
1.2406 0.1009 0.0056 1.0205
1.3453 0.1120 0.0072 1.0326
0.3586 0.0486 0.0018 1.0019
0.4671 0.0739 0.0034 1.0081
0.8100 0.0694 0.0028 1.0094

1.2733 0.1032 0.0064 1.0248
0.5060 0.0511 0.0021 1.0110
0.2604 0.0465 0.0011 1.0002
0.6992 0.0619 0.0023 1.0037
0.2319 0.0657 0.0023 1.0056
0.9670 0.0738 0.0021 1.0024
0.2422 0.0459 0.0009 1.0003
1.4023 0.1709 0.0260 1.0863
0.7368 0.0731 0.0053 1.0022
1.5850 0.1353 0.0174 1.1441
1.0386 0.0701 0.0038 1.0173
1.1848 0.0841 0.0038 1.0027
0.6170 0.0687 0.0035 1.0027
0.3260 0.0574 0.0012 1.0030
0.5183 0.0607 0.0027 1.0033
1.3690 0.1044 0.0058 1.0110

Average square error = 0.0104

Informative priors
Mean SD MCSE R

0.8409 0.0729 0.0034 1.0017
0.3779 0.0721 0.0032 1.0069
0.6090 0.0607 0.0026 1.0026
0.0623 0.0417 0.0007 1.0000
1.5662 0.1318 0.0143 1.0791
2.1719 0.1968 0.0231 1.0394
1.0129 0.1018 0.0071 1.0442
1.2755 0.0993 0.0063 1.0118
0.5694 0.0545 0.0015 1.0017
0.3137 0.0494 0.0016 1.0022
0.3507 0.0663 0.0028 1.0041
1.2299 0.1018 0.0075 1.0208
1.3344 0.1240 0.0141 1.0734
0.3572 0.0479 0.0014 1.0022
0.4628 0.0709 0.0047 1.0287
0.8097 0.0690 0.0027 1.0041

1.2528 0.0986 0.0060 1.0081
0.5087 0.0498 0.0014 1.0010
0.2586 0.0469 0.0011 1.0025
0.6954 0.0597 0.0017 1.0021
0.2331 0.0671 0.0031 1.0104
0.9605 0.0770 0.0039 1.0022
0.2441 0.0465 0.0012 1.0012
1.3651 0.1553 0.0235 1.1355
0.7361 0.0723 0.0027 1.0059
1.5484 0.1250 0.0066 1.0203
1.0327 0.0749 0.0019 1.0014
1.1742 0.0887 0.0070 1.0338
0.6122 0.0666 0.0032 1.0035
0.3254 0.0579 0.0028 1.0119
0.5194 0.0625 0.0025 1.0059
1.3559 0.1031 0.0048 1.0198

Average square error = 0.0067

Table 1: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for αv in the hierarchical model 1 where δ1 = .6 and
δ2 = .8 (chain length = 10,000, burn-in = 5,000).
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True

β1
−0.9783
−1.5911

0.6860
−1.2417
−0.5412

0.1742
−1.5993

0.1798
0.0593
0.4612
−1.3639
−0.9123

1.1756
−0.2556
−1.4649
−0.9086

β2
0.6280
0.0095
−0.4497
−0.5110

1.4806
0.5780
−0.1822
−1.9445
−1.0016

0.6201
0.0102
−0.3454

1.0597
−0.9957
−0.9956
−0.0211

Noninformative priors
Mean SD MCSE R

−0.9068 0.0587 0.0025 1.0005
−1.5623 0.0699 0.0023 1.0024

0.6906 0.0459 0.0010 1.0002
−1.2918 0.0544 0.0016 1.0060
−0.6128 0.0639 0.0057 1.0321

0.3166 0.0784 0.0068 1.0127
−1.5149 0.0870 0.0054 1.0310

0.2626 0.0503 0.0019 1.0002
0.1534 0.0419 0.0007 1.0004
0.4931 0.0422 0.0015 1.0019
−1.3449 0.0598 0.0029 1.0104
−0.9669 0.0705 0.0028 1.0090

1.0618 0.0763 0.0045 1.0243
−0.2636 0.0414 0.0009 1.0032
−1.4735 0.0706 0.0024 1.0012
−0.7995 0.0531 0.0017 1.0067

0.6431 0.0594 0.0035 1.0231
0.0167 0.0407 0.0008 1.0005
−0.4327 0.0414 0.0007 0.9997
−0.5810 0.0471 0.0016 1.0064

1.4481 0.0602 0.0017 1.0050
0.5553 0.0503 0.0015 1.0063
−0.1971 0.0400 0.0006 1.0008
−1.9836 0.1692 0.0260 1.0908
−1.0124 0.0597 0.0032 1.0002

0.6661 0.0693 0.0067 1.0663
0.0238 0.0474 0.0012 1.0042
−0.4190 0.0508 0.0023 0.9992

1.0731 0.0578 0.0020 1.0001
−1.0509 0.0522 0.0012 1.0023
−1.0600 0.0548 0.0019 1.0015
−0.0081 0.0515 0.0017 1.0070

Average square error = 0.0034

Informative priors
Mean SD MCSE R

−0.9041 0.0572 0.0018 1.0026
−1.5538 0.0712 0.0036 1.0044

0.6900 0.0483 0.0023 1.0069
−1.2868 0.0557 0.0017 1.0000
−0.6059 0.0638 0.0044 1.0305

0.2913 0.0674 0.0038 1.0100
−1.5121 0.0926 0.0067 1.0447

0.2567 0.0503 0.0023 1.0027
0.1530 0.0407 0.0012 1.0029
0.4909 0.0423 0.0014 1.0000
−1.3459 0.0608 0.0020 0.9999
−0.9598 0.0698 0.0040 1.0130

1.0549 0.0807 0.0077 1.0522
−0.2629 0.0413 0.0013 1.0037
−1.4679 0.0688 0.0036 1.0208
−0.7984 0.0533 0.0025 1.0145

0.6384 0.0580 0.0025 1.0071
0.0174 0.0405 0.0010 1.0046
−0.4311 0.0417 0.0009 1.0014
−0.5790 0.0468 0.0007 0.9997

1.4414 0.0617 0.0018 1.0025
0.5536 0.0516 0.0023 1.0082
−0.1980 0.0404 0.0010 1.0013
−1.9512 0.1574 0.0229 1.1256
−1.0116 0.0605 0.0021 1.0047

0.6546 0.0653 0.0031 1.0190
0.0228 0.0458 0.0011 1.0028
−0.4151 0.0507 0.0027 1.0092

1.0697 0.0581 0.0021 1.0038
−1.0496 0.0506 0.0012 1.0003
−1.0544 0.0546 0.0020 1.0010
−0.0104 0.0507 0.0008 1.0016

Average square error = 0.0031

Table 2: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for βv in the hierarchical model 1 where δ1 = .6 and
δ2 = .8 (chain length = 10,000, burn-in = 5,000).
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True

α1

0.9200
0.4367
0.5408
0.0189
1.6427
1.8599
0.9943
1.3165
0.6044
0.2940
0.4665
1.1079
1.4760
0.3414
0.4347
0.8841

α2

1.2562
0.4675
0.1689
0.7057
0.2663
0.9276
0.1900
1.4285
0.7349
1.5261
0.9510
1.1355
0.5615
0.3012
0.4418
1.3371

Noninformative priors
Mean SD MCSE R

0.9367 0.0794 0.0032 1.0073
0.4709 0.0739 0.0049 1.0219
0.5393 0.0558 0.0022 1.0129
0.1795 0.0593 0.0015 1.0022
1.4750 0.1143 0.0075 1.0215
2.1168 0.2207 0.0348 1.1330
0.9745 0.0973 0.0061 1.0289
1.4624 0.1163 0.0083 1.0068
0.5947 0.0567 0.0016 1.0025
0.3290 0.0498 0.0015 1.0031
0.5210 0.0755 0.0046 1.0194
1.2433 0.1047 0.0082 1.0298
1.4776 0.1265 0.0117 1.0544
0.3244 0.0471 0.0010 0.9998
0.4343 0.0770 0.0061 1.0277
0.9643 0.0802 0.0041 1.0148

1.3276 0.1120 0.0095 1.0535
0.4770 0.0505 0.0010 1.0010
0.1541 0.0457 0.0015 1.0029
0.8328 0.0683 0.0035 1.0193
0.2081 0.0668 0.0037 1.0055
0.9285 0.0783 0.0041 1.0064
0.2760 0.0470 0.0021 1.0029
1.4849 0.1632 0.0193 1.1127
0.7410 0.0708 0.0021 1.0070
1.4517 0.1306 0.0142 1.0840
1.0972 0.0825 0.0062 1.0201
1.2415 0.0982 0.0055 1.0237
0.6145 0.0704 0.0025 1.0025
0.2512 0.0554 0.0022 1.0054
0.4307 0.0577 0.0022 1.0059
1.5194 0.1254 0.0119 1.0419

Average square error = 0.0089

Informative priors
Mean SD MCSE R

0.9289 0.0851 0.0065 1.0540
0.4633 0.0726 0.0039 1.0276
0.5311 0.0576 0.0025 1.0096
0.1728 0.0584 0.0023 1.0083
1.4323 0.1143 0.0063 1.0131
2.0524 0.2100 0.0348 1.0916
0.9483 0.0942 0.0072 1.0234
1.4307 0.1122 0.0064 1.0117
0.5880 0.0560 0.0027 1.0206
0.3227 0.0494 0.0016 1.0080
0.5016 0.0729 0.0029 1.0056
1.2452 0.0997 0.0067 1.0218
1.4378 0.1267 0.0126 1.0297
0.3223 0.0485 0.0026 1.0181
0.4194 0.0697 0.0025 1.0058
0.9596 0.0817 0.0044 1.0207

1.3173 0.1169 0.0115 1.0852
0.4715 0.0510 0.0017 1.0001
0.1525 0.0447 0.0010 1.0006
0.8312 0.0677 0.0030 1.0203
0.2073 0.0668 0.0043 1.0000
0.9172 0.0730 0.0031 1.0112
0.2761 0.0464 0.0009 1.0016
1.4109 0.1424 0.0085 1.0123
0.7323 0.0728 0.0037 1.0027
1.4044 0.1113 0.0074 1.0067
1.0779 0.0807 0.0025 1.0034
1.2102 0.1030 0.0079 1.0073
0.6010 0.0672 0.0028 1.0050
0.2504 0.0552 0.0016 1.0010
0.4240 0.0582 0.0014 1.0002
1.4993 0.1247 0.0068 1.0069

Average square error = 0.0078

Table 3: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for αv in the hierarchical model 2 where δ1 = .6,
δ2 = .8 and ρ12 = .5 (chain length = 10,000, burn-in = 5,000).
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True

β1
−0.9783
−1.5911

0.6860
−1.2417
−0.5412

0.1742
−1.5993

0.1798
0.0593
0.4612
−1.3639
−0.9123

1.1756
−0.2556
−1.4649
−0.9086

β2
0.6280
0.0095
−0.4497
−0.5110

1.4806
0.5780
−0.1822
−1.9445
−1.0016

0.6201
0.0102
−0.3454

1.0597
−0.9957
−0.9956
−0.0211

Noninformative priors
Mean SD MCSE R

−0.9065 0.0655 0.0037 1.0110
−1.5377 0.0726 0.0040 1.0086

0.6606 0.0483 0.0019 1.0057
−1.2048 0.0533 0.0010 1.0012
−0.5109 0.0716 0.0031 1.0100

0.1900 0.0925 0.0060 1.0217
−1.5616 0.0936 0.0050 1.0152

0.1134 0.0677 0.0023 1.0066
0.0881 0.0461 0.0012 1.0012
0.5771 0.0438 0.0014 1.0047
−1.3755 0.0699 0.0033 1.0205
−0.9281 0.0768 0.0035 1.0017

1.1276 0.0941 0.0077 1.0427
−0.2459 0.0426 0.0010 1.0008
−1.5165 0.0719 0.0053 1.0283
−0.9033 0.0655 0.0035 1.0103

0.6841 0.0729 0.0066 1.0594
0.0759 0.0446 0.0019 1.0071
−0.3907 0.0422 0.0011 1.0055
−0.4442 0.0519 0.0028 1.0083

1.4154 0.0611 0.0017 0.9992
0.6841 0.0610 0.0037 1.0158
−0.1603 0.0411 0.0012 1.0028
−1.9879 0.1548 0.0200 1.1750
−0.9895 0.0604 0.0018 1.0020

0.6695 0.0773 0.0073 1.0707
−0.0105 0.0552 0.0028 1.0128
−0.2301 0.0585 0.0039 1.0194

1.1380 0.0629 0.0021 1.0019
−0.9963 0.0496 0.0018 1.0033
−0.9101 0.0508 0.0020 1.0135

0.0551 0.0681 0.0044 1.0273

Average square error = 0.0033

Informative priors
Mean SD MCSE R

−0.9057 0.0672 0.0040 1.0250
−1.5329 0.0708 0.0043 1.0313

0.6586 0.0495 0.0020 1.0075
−1.2019 0.0536 0.0019 1.0059
−0.5040 0.0755 0.0034 1.0073

0.1818 0.0896 0.0073 1.0297
−1.5483 0.0896 0.0068 1.0097

0.1093 0.0681 0.0037 1.0036
0.0883 0.0470 0.0021 1.0093
0.5767 0.0453 0.0013 1.0058
−1.3643 0.0668 0.0025 1.0085
−0.9350 0.0775 0.0039 1.0165

1.1130 0.0943 0.0088 1.0087
−0.2480 0.0420 0.0011 1.0022
−1.5023 0.0674 0.0026 1.0063
−0.9062 0.0673 0.0038 1.0147

0.6819 0.0728 0.0049 1.0395
0.0756 0.0440 0.0015 1.0054
−0.3922 0.0409 0.0006 1.0006
−0.4468 0.0545 0.0016 1.0056

1.4158 0.0600 0.0017 1.0052
0.6798 0.0596 0.0029 1.0177
−0.1600 0.0419 0.0008 0.9998
−1.9277 0.1384 0.0078 1.0122
−0.9865 0.0638 0.0028 1.0070

0.6491 0.0710 0.0027 1.0050
−0.0148 0.0578 0.0031 1.0127
−0.2304 0.0628 0.0033 1.0191

1.1304 0.0625 0.0028 1.0127
−0.9949 0.0489 0.0015 1.0029
−0.9093 0.0510 0.0016 1.0047

0.0501 0.0688 0.0024 1.0048

Average square error = 0.0032

Table 4: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for βv in the hierarchical model 2 where δ1 = .6, δ2 = .8
and ρ12 = .5 (chain length = 10,000, burn-in = 5,000).
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True

α01

0.3622
1.8023
0.8676
0.9131
0.3775
1.8610
1.5901
0.3591
0.4321
1.5851
1.0088
0.6340
0.1482
1.4812
1.9192
0.0574

α02

0.4049
0.3290
0.4107
0.6261
1.7202
1.0177
1.1805
1.1562
0.9309
0.1401
0.3970
0.8003
1.1214
0.8617
0.9304
1.8383

Noninformative priors
Mean SD MCSE R

0.3950 0.1020 0.0092 1.0257
1.7087 0.1764 0.0206 1.0069
0.8240 0.0877 0.0089 1.0287
1.0560 0.0988 0.0077 1.0462
0.3376 0.1539 0.0199 1.0435
1.8023 0.2156 0.0304 1.0632
1.6608 0.1819 0.0228 1.0548
0.5296 0.1330 0.0153 1.0345
0.4001 0.0766 0.0070 1.0153
1.5611 0.1233 0.0132 1.0315
1.0856 0.1140 0.0062 0.9995
0.5418 0.1166 0.0134 1.0369
0.1711 0.1202 0.0158 1.0401
1.6710 0.1478 0.0216 1.1396
2.0101 0.2118 0.0260 1.0508
0.0800 0.0669 0.0073 1.0455

0.1710 0.1175 0.0109 1.0409
0.2495 0.0707 0.0044 1.0190
0.4005 0.0625 0.0023 1.0016
0.6225 0.0881 0.0063 1.0138
1.5387 0.1537 0.0152 1.0667
0.9394 0.1108 0.0065 1.0042
1.3132 0.1028 0.0096 1.0273
1.0613 0.1691 0.0177 1.0476
0.8562 0.0978 0.0071 1.0126
0.1090 0.0927 0.0088 1.0484
0.3308 0.0900 0.0055 1.0168
0.8278 0.1250 0.0106 1.0285
1.0252 0.1047 0.0071 1.0314
0.8807 0.0979 0.0064 1.0247
0.7925 0.0970 0.0065 1.0202
1.8918 0.1763 0.0171 1.0301

Average square error = 0.0095

Informative priors
Mean SD MCSE R

0.3849 0.1051 0.0125 1.0679
1.6251 0.1468 0.0127 1.0211
0.8204 0.0844 0.0080 1.0769
1.0328 0.0926 0.0037 1.0021
0.3227 0.1467 0.0221 1.1052
1.7220 0.2044 0.0338 1.1313
1.5544 0.1440 0.0206 1.1514
0.5133 0.1377 0.0203 1.1252
0.3904 0.0762 0.0084 1.0661
1.5583 0.1289 0.0075 1.0311
1.0638 0.1065 0.0076 1.0173
0.5306 0.1137 0.0138 1.0716
0.1692 0.1179 0.0179 1.1214
1.6405 0.1449 0.0164 1.0898
1.8728 0.1734 0.0263 1.0155
0.0736 0.0609 0.0067 1.0668

0.2080 0.1374 0.0255 1.0717
0.2591 0.0768 0.0106 1.0266
0.4049 0.0633 0.0037 1.0054
0.6353 0.0870 0.0118 1.0282
1.4904 0.1547 0.0166 1.0750
0.9453 0.1205 0.0179 1.0164
1.3141 0.1021 0.0039 1.0106
1.0401 0.1787 0.0348 1.0617
0.8592 0.0979 0.0134 1.0029
0.1343 0.1106 0.0209 1.1045
0.3474 0.0993 0.0170 1.0592
0.8402 0.1353 0.0231 1.0733
1.0356 0.1084 0.0114 1.0167
0.8846 0.0974 0.0111 1.0192
0.7844 0.0958 0.0133 1.0531
1.8378 0.1995 0.0279 1.0549

Average square error = 0.0097

Table 5: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for α0v in the additive model where ρ01 = .4, ρ02 = .4
and ρ12 = .8 (chain length = 10,000, burn-in = 5,000).
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True

α1

0.9200
0.4367
0.5408
0.0189
1.6427
1.8599
0.9943
1.3165
0.6044
0.2940
0.4665
1.1079
1.4760
0.3414
0.4347
0.8841

α2

1.2562
0.4675
0.1689
0.7057
0.2663
0.9276
0.1900
1.4285
0.7349
1.5261
0.9510
1.1355
0.5615
0.3012
0.4418
1.3371

Noninformative priors
Mean SD MCSE R

0.8992 0.0980 0.0064 1.0175
0.4592 0.1197 0.0095 1.0388
0.4769 0.0749 0.0060 1.0139
0.0418 0.0371 0.0015 1.0026
1.5697 0.1674 0.0123 1.0094
1.5576 0.1766 0.0188 1.0279
1.0283 0.1448 0.0186 1.0728
1.3626 0.1256 0.0078 1.0090
0.5889 0.0728 0.0068 1.0471
0.2196 0.0944 0.0095 1.0224
0.4532 0.0968 0.0067 1.0096
1.0224 0.1078 0.0101 1.0284
1.3613 0.1546 0.0215 1.0510
0.4107 0.1081 0.0081 1.0259
0.1818 0.1066 0.0109 1.0590
0.8333 0.0871 0.0068 1.0456

1.5201 0.1504 0.0138 1.0218
0.5380 0.0708 0.0029 1.0089
0.1604 0.0619 0.0041 1.0052
0.6430 0.0819 0.0058 1.0359
0.3216 0.1113 0.0101 1.0241
0.9084 0.1076 0.0075 1.0324
0.1146 0.0715 0.0055 1.0139
1.4796 0.1979 0.0196 1.0891
0.6369 0.0966 0.0079 1.0487
1.3962 0.1372 0.0088 1.0168
0.8547 0.0887 0.0059 1.0339
1.2105 0.1244 0.0101 1.0257
0.5438 0.0892 0.0066 1.0138
0.3747 0.0918 0.0067 1.0126
0.5267 0.0910 0.0069 1.0209
1.3294 0.1841 0.0289 1.0553

Average square error = 0.0109

Informative priors
Mean SD MCSE R

0.8842 0.1007 0.0073 1.0405
0.4390 0.1089 0.0103 1.0674
0.4698 0.0766 0.0037 1.0163
0.0396 0.0339 0.0016 1.0040
1.5432 0.1521 0.0116 1.0226
1.4848 0.1628 0.0160 1.0284
0.9636 0.1264 0.0066 1.0064
1.3551 0.1315 0.0110 1.0227
0.5922 0.0703 0.0039 1.0304
0.2097 0.0923 0.0092 1.0513
0.4380 0.0949 0.0084 1.0202
1.0128 0.1039 0.0084 1.0665
1.3524 0.1345 0.0100 1.0258
0.3931 0.0989 0.0088 1.0473
0.1701 0.0996 0.0096 1.0437
0.8251 0.0818 0.0036 1.0124

1.5182 0.1488 0.0101 1.0157
0.5351 0.0732 0.0059 1.0085
0.1583 0.0631 0.0030 1.0035
0.6299 0.0880 0.0087 1.0115
0.3102 0.1136 0.0109 1.0344
0.8896 0.1029 0.0100 1.0075
0.1036 0.0658 0.0058 1.0277
1.4045 0.1940 0.0307 1.0095
0.6158 0.0952 0.0109 1.0261
1.3786 0.1326 0.0108 1.0163
0.8393 0.0902 0.0088 1.0049
1.1865 0.1274 0.0147 1.0126
0.5332 0.0982 0.0087 1.0157
0.3556 0.0875 0.0101 1.0299
0.5192 0.0911 0.0077 1.0021
1.2450 0.1618 0.0222 1.0449

Average square error = 0.0134

Table 6: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for αv in the additive model where ρ01 = .4, ρ02 = .4
and ρ12 = .8 (chain length = 10,000, burn-in = 5,000).
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True

β1
−0.9783
−1.5911

0.6860
−1.2417
−0.5412

0.1742
−1.5993

0.1798
0.0593
0.4612
−1.3639
−0.9123

1.1756
−0.2556
−1.4649
−0.9086

β2
0.6280
0.0095
−0.4497
−0.5110

1.4806
0.5780
−0.1822
−1.9445
−1.0016

0.6201
0.0102
−0.3454

1.0597
−0.9957
−0.9956
−0.0211

Noninformative priors
Mean SD MCSE R

−1.0321 0.0671 0.0030 1.0065
−1.4919 0.1118 0.0118 1.0090

0.7160 0.0541 0.0016 1.0007
−1.2544 0.0788 0.0057 1.0373
−0.5928 0.0706 0.0034 1.0033

0.1034 0.0687 0.0031 1.0184
−1.5733 0.1298 0.0173 1.0891

0.1345 0.0564 0.0024 1.0088
−0.0051 0.0442 0.0009 1.0026

0.3799 0.0583 0.0037 1.0165
−1.4328 0.0890 0.0034 1.0071
−0.9047 0.0676 0.0051 1.0189

1.0642 0.0880 0.0102 1.0258
−0.2793 0.0593 0.0043 1.0268
−1.4179 0.1343 0.0153 1.0400
−1.0148 0.0628 0.0034 1.0281

0.6330 0.0632 0.0040 1.0061
0.0281 0.0439 0.0010 1.0003
−0.5023 0.0443 0.0012 1.0043
−0.4396 0.0489 0.0012 1.0003

1.4643 0.1113 0.0118 1.0637
0.5512 0.0614 0.0032 1.0075
−0.1873 0.0512 0.0016 1.0046
−2.0231 0.1797 0.0225 1.1532
−1.0401 0.0662 0.0039 1.0169

0.6398 0.0666 0.0029 1.0118
−0.0407 0.0470 0.0015 1.0089
−0.3687 0.0603 0.0027 1.0013

1.0360 0.0711 0.0050 1.0323
−1.1128 0.0687 0.0039 1.0193
−0.9348 0.0648 0.0039 1.0046
−0.0540 0.0724 0.0056 1.0256

Average square error = 0.0033

Informative priors
Mean SD MCSE R

−1.0246 0.0669 0.0033 1.0131
−1.4376 0.1014 0.0066 1.0255

0.7184 0.0535 0.0027 1.0040
−1.2332 0.0749 0.0032 1.0015
−0.5801 0.0653 0.0042 1.0328

0.1190 0.0690 0.0037 1.0053
−1.4889 0.1119 0.0125 1.0442

0.1403 0.0540 0.0025 1.0080
−0.0039 0.0440 0.0011 1.0016

0.3905 0.0571 0.0014 1.0048
−1.4196 0.0872 0.0060 1.0204
−0.8984 0.0667 0.0042 1.0325

1.0626 0.0790 0.0036 1.0117
−0.2627 0.0590 0.0038 1.0159
−1.3331 0.1066 0.0149 1.0088
−1.0077 0.0607 0.0024 1.0126

0.6420 0.0672 0.0030 1.0075
0.0289 0.0431 0.0005 1.0001
−0.5010 0.0440 0.0013 1.0006
−0.4346 0.0495 0.0014 1.0025

1.4313 0.1058 0.0138 1.0952
0.5531 0.0578 0.0018 1.0017
−0.1840 0.0517 0.0017 1.0085
−1.9518 0.1738 0.0291 1.0318
−1.0306 0.0663 0.0030 1.0179

0.6400 0.0658 0.0048 1.0055
−0.0398 0.0462 0.0017 1.0054
−0.3615 0.0569 0.0018 1.0034

1.0355 0.0704 0.0029 1.0029
−1.1034 0.0679 0.0033 1.0166
−0.9229 0.0617 0.0034 1.0175
−0.0318 0.0703 0.0042 1.0067

Average square error = 0.0041

Table 7: Posterior mean, standard deviation (SD), Monte Carlo standard error of the estimate
(MCSE) and Gelman-Rubin R statistic for βv in the additive model where ρ01 = .4, ρ02 = .4
and ρ12 = .8 (chain length = 10,000, burn-in = 5,000).
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6.2. Model comparison

To illustrate the use of the Bayesian model choice or checking techniques for evaluating the
relative (mis)fit of a model, two 1000-by-30 dichotomous data matrices were simulated from
the hierarchical model 2 and the additive model, respectively, so that 15 items measured θ1 and
another 15 items measured θ2. This way, the three MIRT models incorporating both general
and specific latent dimensions could be evaluated and compared under the situation where the
actual structure was hierarchical or additive. To generate the data matrices, item parameters
were randomly drawn from the uniform distributions described in Section 5. The Gibbs
sampler assuming noninformative priors for the item and δ/λ parameters was subsequently
implemented for each of the three MIRT models so that 10, 000 samples were simulated with
the first 5, 000 set to be burn-in. The Gelman-Rubin R statistics suggest that the chains
converged to their stationary distributions within 10, 000 iterations. Hence, the Bayesian
deviance estimates, including D, D(ϑ̄), pD and DIC, were obtained from each implementation
and are displayed in Table 8. It is clear from the table that both posterior deviance (column 2)
and Bayesian DIC (column 5) estimates pointed to the more complicated additive model,
indicating that it provided a better description of the simulated data regardless of the actual
relationship between general and specific traits. A close examination of these estimates reveals
that compared with the situation where the latent structure was hierarchical, the additive
model resulted in a larger reduction in the deviance or DIC estimate and hence had a higher
improvement in model-data fit over the hierarchical models when the actual structure was
additive. Another interesting observation of Table 8 pertains to the effective number of
parameters (pD). Given the model complexity, the additive model consistently had a larger
pD than the two hierarchical models. Among the two scenarios considered, the difference
in pD between the two types of models was noticeably larger when the actual structure was
additive. It has to be noted that the difference between the DIC estimates for the two
hierarchical models was rather trivial. Indeed, the two models had almost identical values of
D, D(ϑ̄), pD and DIC, and hence were essentially similar in model-data fit in spite of different
assumptions made regarding the latent structure.

PPMC was also implemented to obtain PPP-values for the three MIRT models where odds
ratios were used as the discrepancy measure. Graphical representations of extreme PPP-
values are shown in Figure 2, where the upper diagonal is left blank due to symmetry. Here,

with a hierarchical structure
hierarchical model 1
hierarchical model 2

additive model
with an additive structure

hierarchical model 1
hierarchical model 2

additive model

D D(ϑ̄) pD DIC

23069.0215 21393.1488 1675.8727 24744.8942
23067.2464 21392.6289 1674.6174 24741.8638
22732.8392 20969.6988 1763.1404 24495.9796

17163.9692 15596.2537 1567.7155 18731.6848
17163.8166 15596.5737 1567.2429 18731.0595
16020.1091 14026.8340 1993.2751 18013.3842

Table 8: Bayesian deviance estimates for the three MIRT models fit to the simulated data
where the actual general and specific traits form a hierarchical structure or an additive struc-
ture.
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(a) with an actual hierarchical structure (b) with an actual additive structure

(hierarchical model 1)

(c) with an actual hierarchical structure (d) with an actual additive structure

(hierarchical model 2)

(e) with an actual hierarchical structure (f) with an actual additive structure

(additive model)

Figure 2: Plots of PPP-values for odds ratios for the three MIRT models fit to multidimen-
sional data involving general and specific traits. (Triangles represent extreme PPP-values,
where values smaller than 0.005 are denoted using left triangle signs and values larger than
0.995 are denoted using right triangle signs.)
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with a threshold of 0.01, the plots indicate that the additive model had relatively fewer
number of extreme predicted odds ratios and hence provided a better description than the
hierarchical models in the two situations considered. On the other hand, the overwhelmingly
larger numbers of extreme PPP-values clearly suggest the lack of fit of the hierarchical models
when the actual structure was additive (see Figures 2(b), 2(d)). The two hierarchical models
performed fairly similarly using PPMC. These results agree with those using DIC.

Hence, the model comparison results based on the Bayesian deviance and PPMC criteria
suggest that the additive model performs better than the hierarchical models in a wide range
of test situations and even when the actual latent structure is hierarchical. This is consistent
with findings from Sheng and Wikle (2009). The fact that the additive model works better
even when the hierarchical model is true can be explained by mathematically showing that
the latter is a special case of the former. Indeed, we can rewrite (2) and (3) as θvi = δvθ0i+εvi
and θ0i =

∑
λvθvi + εi, where εvi ∼ N(0, 1) and εi ∼ N(0, 1); replace θvi in the hierarchical

model so that the systematic component in (1) is αvjδvθ0i + αvjεvi − βvj or
αvj

λv
(θ0i − εi) −

αvj

λv

∑
v′ 6=v λv′θv′i−βvj ; and show that each of these two forms can be viewed as a constrained

version of the additive model as defined in (4). This is similar to Yung et al.’s (1999) finding
that the second-order factor model is hierarchically nested within the bifactor model.

6.3. Empirical example

A subset of the College Basic Academic Subjects Examination (CBASE ; Osterlind 1997)
English data was further used to illustrate the Bayesian approach for model choice or model
checking. The data contain independent binary responses of 1, 200 college students to a
total of 41 English multiple-choice items. The English test is further organized into levels
of increasing specificity by two subtests, namely, writing and reading, so that 16 items are
in one subtest and 25 are in the other. One may assume that the test measures an overall
English dimension with two specific trait dimensions. Model comparison is hence necessary
for establishing the model that provides a relatively better representation of the data. The
three MIRT models incorporating both general and specific traits were then each fit to the
CBASE data using Gibbs sampling with a run length of 10, 000 iterations and a burn-in
period of 5, 000, which was sufficient for the chains to converge. As expected, Bayesian
deviance and PPMC, displayed in Table 9 and Figure 3, respectively, pointed to the more
complicated additive model as it had a smaller Bayesian DIC estimate and fewer number of
extreme PPP-values for odds ratios. Given the observations made from the simulation study
in Section 6.2, comparisons of the DIC and pD estimates using Bayesian deviances or that of
the extreme PPP-values using PPMC suggest that the actual latent structure for the CBASE
data is closer to be additive, with the general and specific traits being moderately correlated.

hierarchical model 1
hierarchical model 2

additive model

D D(ϑ̄) pD DIC

53444.5661 51985.0857 1459.4805 54904.0466
53480.1684 52057.2671 1422.9013 54903.0698
52836.1005 51207.4303 1628.6702 54464.7707

Table 9: Bayesian deviance estimates for the three MIRT models with the CBASE data.
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(a) hierarchical model 1 (b) hierarchical model 2

(c) additive model

Figure 3: Plots of PPP-values for odds ratios for the three MIRT models with the CBASE
data. (Triangles represent extreme PPP-values, where values smaller than 0.005 are denoted
using left triangle signs and values larger than 0.995 are denoted using right triangle signs.)

7. Discussion

With functions for generating dichotomous response data from and implementing the Gibbs
sampler for the 2PNO MIRT models that incorporate a general trait and several specific trait
dimensions, IRTm2noHA allows the user the choice to set the number of total or burn-in
samples, specify starting values or prior distributions for model parameters, check convergence
of the Markov chain, as well as obtain Bayesian model choice or model checking statistics.
The package leaves it to the user to choose between uniform and conjugate priors for the
item parameters and certain hyperparameters. In addition, the user can choose to set the
location and scale parameters for the conjugate normal priors of αvj , βvj , and/or α0vj to reflect
different prior beliefs on their distributions. For example, if there is a stronger prior opinion
that the item intercept parameters in the additive model should be close to 0, a smaller σ2βv
can be specified in the gsm2noHA function such that xvar = [ones(m+1,1), ones(m+1,1),

0.5*ones(m+1,1)]. If, however, this prior opinion concerns with the item intercepts in
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the first subtest, not the entire test, the input argument becomes xvar = [ones(m+1,1),

ones(m+1,1), [0.5; ones(m,1)]]. This way, different prior distributions can be specified
for αvj , βvj , or α0vj across the m subtests.

The intertrait correlations can be estimated fairly accurately using gsm2noHA. In the examples
of parameter recovery in Section 6.1, ρ12 was set to be 0.5 for the hierarchical model 2, and it
was estimated to be 0.5505 assuming uniform priors and 0.5554 assuming informative priors.
Similarly, for the additive model, the actual ρ01, ρ02, and ρ12 parameters were 0.4, 0.4, and 0.8,
respectively. Their posterior estimates were 0.3865, 0.4615, and 0.8148, respectively, assuming
uniform priors, and 0.3728, 0.4758, and 0.8173, respectively, assuming informative priors.
Hence, in addition to item or person parameters, the package provides a good estimation of
the actual interrelations among latent traits provided that the latent structure is specified
correctly. As illustrated, the additive model allows the general trait to be correlated with
each specific trait. However, high correlations between them would give rise to collinearity
and create problem with the Gibbs sampler.

One should note that during an implementation of the Gibbs sampler, if a Markov chain does
not converge within a run length of certain iterations, additional iterations can be obtained
by invoking the gsm2noHA function with starting values th0, item0, sigma0, and/or b0 set
to be their respective posterior samples drawn on the last iteration of the Markov chain (see
Sheng 2008a, for a demonstration of such procedure).

The illustrative examples provided in Section 6 deal with two subtests for simplicity. On
a 2.8GHz Intel dual core processor with 2GB of RAM, the execution time for the three
examples is about 2-3 minutes, 5.5-6 minutes and 10.5-11 minutes, respectively. For tests with
three or more subtests, IRTm2noHA can be used in a similar fashion with possibly increased
complexity and consequently a longer computing time. In addition, Bayesian deviance and
PPMC are adopted in this paper to evaluate the model-data fit of a candidate model. One
may also want to consider Bayes factors, which provide more reliable and powerful results
for model comparisons in the Bayesian framework. However, they are difficult to calculate
due to the difficulty in exact analytic evaluation of the marginal density of the data (Kass
and Raftery 1995) and hence are not considered in the paper. Finally, this paper adopts
the Gelman-Rubin R statistic to assess convergence. Its multivariate extension, the Brooks-
Gelman multivariate potential scale reduction factor (Brooks and Gelman 1998), may be
considered as well.
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