3-14-2001

Numerics of Stochastic Systems with Memory
(Applied Mathematics and Numerical Analysis Seminars, University of Manchester)

Salah-Eldin A. Mohammed
Southern Illinois University Carbondale, salah@sfde.math.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_misc
Part of the Mathematics Commons
Applied Mathematics and Numerical Analysis Seminars; Department of Mathematics; University of Manchester; Manchester, England; March 14, 2001

Recommended Citation
http://opensiuc.lib.siu.edu/math_misc/15

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Miscellaneous (presentations, translations, interviews, etc) by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
NUMERICS
OF STOCHASTIC SYSTEMS
WITH MEMORY

Manchester: March 14, 2001

Salah-Eldin A. Mohammed

Southern Illinois University

Carbondale, IL 62901–4408

Web site: http://sfde.math.siu.edu
Outline

- Develop two numerical schemes for solving stochastic differential systems with memory.
- Strong Euler scheme for SDDE’s and SFDE’s with continuous memory. Order of convergence 0.5.
- Strong Milstein scheme for SDDE’s. Order of convergence 1.
- For Milstein scheme, use infinite dimensional Itô formula for “tame” functions acting on segment process of solution of SDDE. Presence of memory in SDDE requires use of Malliavin calculus + anticipating stochastic analysis of Nualart and Pardoux.
Types of SFDE’s

SDDE:

\[X(t) = \begin{cases}
\eta(0) + \int_0^t g(s, \Pi_1(X_s)) \, dW(s) + \\
\int_0^t h(s, \Pi_2(X_s)) \, ds, & t \geq 0 \\
\eta(t), & -r \leq t < 0.
\end{cases} \]

\[\Pi_i(\eta) := (\eta(s_{i,1}), \ldots, \eta(s_{i,k_i})) \in \mathbb{R}^{mk}, \quad \eta \in C \]

\(i = 1, 2. \)

SFDE with mixed discrete and continuous memory:

\[X(t) = \eta(0) + \int_0^t g(s, \Pi_1(X_s), Q_1(X_s)) \, dW(s) \]
\[+ \int_0^t h(s, \Pi_2(X_s), Q_2(X_s)) \, ds, \quad t \in [0, a], \]
\[X_0 = \eta \in C = C(J; \mathbb{R}^m) \]
Π₁, Π₂ two projections of discrete type;

Q₁, Q₂ two projections of continuous type:

\[Q_i(\eta) := (Q_{i,1}(\eta), \cdots, Q_{i,m_i}(\eta)), \quad i = 1, 2, \]
\[Q_{ij}(\eta) := \int_{-r}^{0} \phi_{ij}(\eta(s))a_{ij}(s) \, ds, \quad j = 1, \cdots, m_i. \]

\[a_{ij} \in C^{\frac{1}{2}}(J), \text{ and } \phi_{ij} : \mathbb{R}^m \to \mathbb{R}, i = 1, 2, j = 1, \cdots, m_i. \]

General SFDE:

\[
X(t) = \begin{cases}
\eta(0) + \int_{0}^{t} G(s, X_s) \, dW(s) \\
+ \int_{0}^{t} H(s, X_s) \, ds, & t \geq 0 \\
\eta(t), & -r \leq t < 0,
\end{cases}
\]
Numerical Schemes

Suppose rate of change of physical system depends on \textit{present state} and some noisy input. Model by SODE.

Rate of change depends on \textit{present} and \textit{past} states of the system: Model by SDDE or SFDE.

SDDE's and SFDE's cannot be solved explicitly: Need effective numerical techniques.

Numerical methods for SODE's: well developed; Kloeden and Platen, Kloeden, Platen and Schurz, McShane, Chapters 5 and 6), Hu, Talay, Protter, etc.. Cauchy-Maruyama scheme for
SFDE’s with continuous memory: On Delfour-Mitter state space $\mathbb{R}^m \times L^2([-r, 0], \mathbb{R}^m)$ developed by Ahmed, Elsanousi and Mohammed (Ahmed, M.Sc. thesis, Khartoum 1983), Baker and Buckwar. See also [M], 1984, p. 227, and Hu-Mohammed.

Aims.

- **Strong Euler schemes** for SFDE’s. Allows for several discrete delays and for SFDE’s with mixed discrete and continuous memory. Estimates in supremum norm on $C([-r, 0], \mathbb{R}^m)$ (cf. [A]).

- **Strong Milstein scheme** for SDDE’s. Solution of SDDE is non-anticipating. But need methods from *anticipating* stochastic analysis and Malliavin calculus to derive Itô’s
formula for segment process. Itô’s formula needed for convergence of Milstein scheme.
Preliminaries

\(\mathbb{R}^m := m \)-dimensional Euclidean space.

Euclidean norm \(|x| := \sqrt{x_1^2 + \cdots + x_m^2}, \ x = (x_1, \cdots, x_m) \in \mathbb{R}^m. \)

\(T := [0, a], \ J := [-r, 0], \)

\(C := C(J; \mathbb{R}^m), \ m, r, a > 0; \) sup norm:

\[
\| \eta \|_C := \sup_{-r \leq s \leq 0} |\eta(s)|, \quad \eta \in C.
\]

Projection \(\Pi : C \to \mathbb{R}^{mk} \) associated with \(s_1, \cdots, s_k \in [-r, 0]: \)

\[
\Pi(\eta) := (\eta(s_1), \cdots, \eta(s_k)) \in \mathbb{R}^{mk}, \quad \eta \in C
\]
Definition.

\[\Phi \in C(T \times C(J; \mathbb{R}^m); \mathbb{R}) \] is tame if there exist \(\phi \in C(T \times \mathbb{R}^{mk}, \mathbb{R}) \) and a projection \(\Pi \) such that

\[\Phi(t, \eta) = \phi(t, \Pi(\eta)) \]

for all \(t \in T \) and \(\eta \in C \).

Segment process \(X_t, t \in [0, a] \):

\[X_t(s) = X(t + s), \quad t \in [0, a], \quad s \in [-r, 0]. \]

for continuous m-dimensional process \(\{X(t)\}_{t \in [-r, a]} \).

\(\{X_t\} \) is a \(C \)-valued or \(L^2(J; \mathbb{R}^m) \)-valued process.

Distinguish between finite-dimensional current state \(x(t) \) and infinite-dimensional segment \(X_t, t \in [0, a] \).
Lipschitz Condition:

\[|g(t, x) - g(t, y)| \leq L|x - y|, \quad x, y \in \mathbb{R}^{mk_1} \]

\[|h(t, z) - h(t, w)| \leq L|z - w|, \quad z, w \in \mathbb{R}^{mk_2} \]

for all \(t \in T; \ L > 0 \) constant.

Boundedness Condition:

\[\sup_{0 \leq t \leq a} \left[|g(t, 0)| + |h(t, 0)| \right] < \infty. \]

\(\Pi_1, \Pi_2: \) Two projections based on \(s_{1,1}, \ldots, s_{1,k_1} \in [-r, 0] \) and \(s_{2,1}, \ldots, s_{2,k_2} \in [-r, 0] \), respectively.

\(\{W(t) := (W^1(t), \ldots, W^d(t)) : t \geq 0\}, \ d\)-dimensional standard Brownian motion on \((\Omega, \mathcal{F}, P)\).

\((\mathcal{F}_t)_{t \geq 0} = \) Brownian filtration.
\(\eta \in C([-r, 0]; \mathbb{R}^m) = \) random initial path independent of \(\{W(t) : t \geq 0\}\).

Itô SDDE’s:

\[
X(t) = \begin{cases}
\eta(0) + \int_0^t g(s, \Pi_1(X_s)) dW(s) + \\
\int_0^t h(s, \Pi_2(X_s)) ds, & t \geq 0 \\
\eta(t), & -r \leq t < 0.
\end{cases}
\]

Lipschitz + bounded conditions imply SDDE has unique strong solution such that for each \(q \geq 1\), there exists a constant \(C = C(q, L, a) > 0\) such that

\[
E\|X_t\|_C^{2q} \leq C(1 + E\|\eta\|_C^{2q})
\]

for all \(\eta \in C, t \in [0, a]\) ([M], 1984).
Strong versus Weak:

SFDE’s do not lead to diffusions on Euclidean space. *(Highly degenerate infinite-dimensional diffusions on C.)* Hence no natural link to deterministic PDE’s. Strong schemes give information on sample paths dynamics, a.s. financial option-pricing models with delays.
Strong Euler Scheme

Develop Euler scheme for SFDE’s (discrete and/or continuous memory).

For simplicity, assume:

\[a = \text{positive integer}, \ T := [0, a], \ J := [-1, 0]. \]

Uniform partitions: \(\pi_n := \{t_i : -l \leq i \leq n\} \) of \([-1, a]\)
such that \(t_i + s_{j,i} \in \pi_n \) for \(1 \leq i \leq k_j \) and \(j = 1, 2 \).

\(\delta_n := |\pi_n| \)

\(X^n := X^{\pi_n}, \ n \) positive integer.

SFDE:

\[
X(t) = \begin{cases}
\eta(0) + \int_0^t G(s, X_s) \, dW(s) \\
+ \int_0^t H(s, X_s) \, ds, \ t \geq 0 \\
\eta(t), \quad -r \leq t < 0,
\end{cases}
\]
Euler scheme for SFDE’s has strong order of convergence 0.5 (as in SODE).

Euler scheme for SFDE:

\[
X^n(t) = \begin{cases}
X^n(t_i) + G(t_i, X^n_{t_i})(W(t) - W(t_i)) \\
+ H(t_i, X^n_{t_i})(t - t_i), & t \in (t_i, t_{i+1}], \quad t_i \in (0, a] \\
\eta^n(t), & -1 \leq t \leq 0
\end{cases}
\]

Approx. initial path \(\eta^n \in C(J, \mathbb{R}^m)\) is prescribed (e.g. a piece-wise linear approximation of \(\eta\) using partition points \(\{t_{-l}, \cdots, t_0\}\)).

Error function \(Z^n:\)

\[
\begin{cases}
Z^n(t) := X^n(t) - X(t), & 0 \leq t \leq a, \\
Z^n_0 := \eta^n - \eta.
\end{cases}
\]
Theorem 1.

Assume that the coefficients $G : T \times C([-r, 0], \mathbb{R}^m) \to L(\mathbb{R}^d; \mathbb{R}^m)$ and $H : T \times C([-r, 0], \mathbb{R}^m) \to \mathbb{R}^m$ in SFDE satisfy the following Lipschitz and regularity conditions:

$$\|G(t, \eta) - G(t, \xi)\| + |H(t, \eta) - H(t, \xi)| \leq L\|\eta - \xi\|_C, \ t \in T,$$

$$\sup_{0 \leq t \leq a} \left[\|G(t, 0)\| + |H(t, 0)|\right] < \infty.$$

$$\begin{cases}
\|G(s, \eta) - G(t, \eta)\| \leq L_1(1 + \|\eta\|_C)|s - t|^\gamma, \ s, t \in T, \\
|H(s, \eta) - H(t, \eta)| \leq L_1(1 + \|\eta\|_C)|s - t|^\gamma, \ s, t \in T,
\end{cases}$$

for all $\eta, \xi \in C([-r, 0], \mathbb{R}^m)$, where L and L_1 are positive constants.

Fix any integer $q \geq 2$. Suppose that $\eta : [-r, 0] \to L^q(\Omega, \mathbb{R}^m)$ is independent of W and Hölder continuous with exponent $\gamma \in (0, 1]$, i.e., there is a
positive constant K such that

$$E|\eta(s) - \eta(t)|^q \leq K|s - t|^\gamma q$$

for all $s, t \in [-r, 0]$. Suppose also that there is a positive constant $C' := C'(q)$ such that

$$E||\eta^n - \eta||_C^q \leq C' \delta_n^q$$

Then there is a constant $C'' := C''(q, a) > 0$, depending on a and q, such that

$$E \sup_{0 \leq s \leq a} ||Z^n_s||_C^q \leq C'' \delta_n^{\tilde{\gamma} q}$$

where $\tilde{\gamma} := \gamma \wedge (1/2)$.

Proof.

Based on moment estimates:

$$E||X_t||_C^{2q} \leq C(1 + E||\eta||_C^{2q}), \ for \ q \geq 1$$
for all $\eta \in C, t \in [0, a]$ ([M], 1984), and Burkholder’s inequality. □

Theorem 1 applies to SDDE’s under Lipschitz and boundedness conditions. Also to SFDE’s with mixed discrete and continuous memory:

\[
X(t) = \eta(0) + \int_0^t g(s, \Pi_1(X_s), Q_1(X_s)) \, dW(s)
+ \int_0^t h(s, \Pi_2(X_s), Q_2(X_s)) \, ds, \quad t \in [0, a],
\]

\[
X_0 = \eta \in C = C(J; \mathbb{R}^m)
\]

Π_1, Π_2 two projections of discrete type;
Q_1, Q_2 two projections of continuous type:

\[
Q_i(\eta) := (Q_{i,1}(\eta), \cdots, Q_{i,m_i}(\eta)), \quad i = 1, 2,
\]

\[
Q_{ij}(\eta) := \int_{-1}^0 \phi_{ij}(\eta(s)) a_{ij}(s) \, ds, \quad j = 1, \cdots, m_i.
\]
\(a_{ij} \in C^{\frac{1}{2}}(J) \), and \(\phi_{ij} : \mathbb{R}^m \to \mathbb{R} \), \(i = 1, 2, j = 1, \ldots, m_i \), satisfy Lipschitz and linear growth conditions.

Euler scheme for SFDE with mixed discrete and continuous memory:

\[
X^n(t) = X^n(t_i) + g(t_i, \Pi_1(X^n_{t_i}), Q^n_1(X^n_{t_i}))(W(t) - W(t_i)) \\
+ h(t_i, \Pi_2(X^n_{t_i}), Q^n_2(X^n_{t_i}))(t - t_i), \quad t \in (t_i, t_{i+1}],
\]

\[
X^n(t) = \eta^n(t), \quad -r \leq t \leq 0,
\]

where \(Q^n_i(\eta), i = 1, 2 \), are approximations of \(Q_i(\eta) \) using partial sums of Riemann integral. Strong order of convergence 0.5 under Lipschitz and regularity conditions as in Theorem 1.
Example: Exact convergence rate.

One-dimensional SDDE:

\[
\begin{align*}
 dX(t) &= b(t)X(t - 1)\,dW(t), \quad 0 \leq t \leq a \\
 X(t) &= \eta(t), \quad -1 \leq t \leq 0.
\end{align*}
\]

Use partitions \(\{\pi_n(h)\}\) of \([-1, a]\) generated by a continuous (strictly positive) function \(h : [0, a] \to (0, \infty)\). For each integer \(n\), choose partition points \(t_{k,n} \equiv t_k\) of the partition \(\pi_n(h)\) in \([0, a]\) are chosen such that

\[
t_0 = 0, \quad \int_{t_k}^{t_{k+1}} h(s)\,ds = \frac{1}{n}, \quad k = 0, 1, \ldots, n - 1.
\]

i.e. subdivide interval in such a way that the areas under \(h\) over each subinterval are all equal to \(1/n\). Then

\[
\lim_{n \to \infty, t_k \to t} n(t_{k+1} - t_k) = 1/h(t).
\]
e.g. $h(t) \equiv 1 \implies (t_{k+1} - t_k) = 1/n$, $k = 0, 1, \ldots, n - 1$.

Euler scheme gives

$$X_{\pi_n}(t) = \begin{cases} X_{\pi_n}(t_k) + b(t_k)X_{\pi_n}(t_k - 1)(W(t) - W(t_k)), & t_k \leq t < t_{k+1}, \\ \eta(t), & t \in J, \end{cases}$$

for $0 \leq k \leq n-1$. By Theorem 1, there is a positive constant C (independent of n) such that

$$nE|X(t) - X_{\pi_n}(t)|^2 \leq C,$$

for all $n \geq 1, t \in [0, a]$. Theorem 2 (below) show that as $n \to \infty$, the left hand side of the above inequality has a limit satisfying a deterministic DDE.
Theorem 2.

Suppose $\eta \in C^\gamma(J, \mathbb{R}^m), 1/2 < \gamma \leq 1$. Let $a \geq 1$.

Suppose $b : [0, a] \to \mathbb{R}$ is a bounded continuous function such that

$$|b(t) - b(s)| \leq K|t - s|^{(1/2)+\alpha}$$

for all $s, t \in [0, a]$ and some $K, \alpha > 0$. Let X be the solution of the SDDE and X^{π_n} its Euler approximation. Then $Z(t) := \lim_{n \to \infty} n \mathbb{E}|X(t) - X^{\pi_n}(t)|^2$ exists for each $t \in [0, a]$. Furthermore, $Z(t)$ satisfies the following deterministic linear DDE

$$Z'(t) = b^2(t)Z(t - 1) + b^2(t)b^2(t - 1)EX^2(t - 2)/h(t), \quad 1 < t < a,$$

$$Z(t) = 0, \quad -1 \leq t \leq 1,$$

where $EX^2(t)$ is given by the integral equation

$$EX^2(t) = \begin{cases}
\eta(0)^2 + \int_0^t b^2(s)EX^2(s - 1) \, ds, & t \in [0, a], \\
\eta(t)^2, & t \in [-1, 0].
\end{cases}$$
Milstein Scheme

Strong higher order scheme for SDDE:

\[X(t) = \begin{cases}
\eta(0) + \int_0^t g(s, \Pi_1(X_s)) \, dW(s) \\
+ \int_0^t h(s, \Pi_2(X_s)) \, ds, & t \geq 0 \\
\eta(t), & -1 \leq t < 0,
\end{cases} \]

(\ r = 1 \).

Requires infinite-dimensional Itô formula for “tame” functions of segments of semimartingales or (anticipating) processes. Proof based on Nualart-Pardoux anticipating calculus techniques.
\(a = \text{positive integer}, \ T := [0, a], \ J := [-1, 0].\)

Uniform partitions: \(\pi_n := \{t_i : -l \leq i \leq n\}\) of \([-1, a]\)
such that \(t_i + s_{j,i} \in \pi_n\) for \(1 \leq i \leq k_j, \ j = 1, 2.\)

\(\delta_n := |\pi_n|\)

\(X^n := X^\pi_n, \ n \text{ positive integer}.\)

Milstein approximations for SDDE:

\[
X^{i,n}(t) = X^{i,n}(t_k) + h^i(t_k, \Pi_2(X^n_{t_k}))(t - t_k) + g^{il}(t_k, \Pi_1(X^n_{t_k}))(W^l(t) - W^l(t_k)) + \sum_{i_1, j_1, l} \frac{\partial g^{il}}{\partial x_{i_1 j_1}}(t_k, \Pi_1(X^n_{t_k}))g^{i_1 j_1}(t_k + s_{1,j_1}, \Pi_1(X^n_{t_k+s_{1,j_1}})) \times
\]
\[
\times 1_{[0,T]}(t_k + s_{1,j_1}) \times I_{l,l_1}(t_k + s_{1,j_1}, t + s_{1,j_1}; s_{1,j_1}),
\]

for \(t_k < t \leq t_{k+1}, \ i = 1, 2, \ldots, m,\) where

\[
I_{l,l_1}(t_0+s_{i,j}, t+s_{i,j}; s_{i,j}) = \int_{t_0}^{t} \int_{t_0+s_{i,j}}^{t_1+s_{i,j}} \diamond dW^l(t_2) \diamond dW^{l_1}(t_1).
\]

23
\(X^i, h^i, g^{il} \) = coordinates of \(X, h \) and \(g \) with respect to standard bases in Euclidean space.

Milstein scheme has strong order of convergence 1.

Theorem 3.

Consider the Milstein scheme for the SDDE \((r = 1)\). Let \(0 < \gamma \leq 1 \). Suppose that \(\eta : [-1, 0] \to L^2(\Omega, \mathbb{R}^m) \) is Hölder continuous with exponent \(\frac{\gamma}{2} \), i.e. there is a positive constant \(K \) such that

\[
E|\eta(s) - \eta(t)|^2 \leq K|s - t|^{2\gamma}
\]

for all \(s, t \in J \). Suppose that \(g \in C^{1,2}(T \times \mathbb{R}^{mk_1}, L(\mathbb{R}^d, \mathbb{R}^m)) \), \(h \in C^{1,2}(T \times \mathbb{R}^{mk_2}, \mathbb{R}^m) \) and have bounded first and second spatial derivatives. Let

\[
\begin{align*}
Z^n(t) &:= X^n(t) - X(t), \quad 0 \leq t \leq a, \\
Z^n_0 &:= \eta^n_0 - \eta.
\end{align*}
\]
Assume that

$$\sup_{-1 \leq s \leq 0} E(|Z^n(s)|^2) \leq C' \delta_n^{2\gamma}$$

for some positive constant C', where $\delta_n := |\pi_n|$. Then there exists a constant $C > 0$ (depending on a and independent of π_n) such that

$$\sup_{-1 \leq s \leq a} E|Z^n(s)|^2 \leq C\delta_n^{2\gamma}$$

for any $n \geq 1$.
Proof.

Itô’s formula for “tame” functionals

\[C(J, \mathbb{R}^m) \to \mathbb{R} \]

of the segment \(X_t \). Use formula + moment estimates on weak derivatives of \(X \) to get global error estimate for the Milstein approximations. □

Example:

Formally expect something like:

\[
\begin{align*}
 f(W(t - 1), W(t)) - f(W(-1), W(0)) &= \int_0^t \frac{\partial f}{\partial x_2}(W(s - 1), W(s))dW(s) \\
 &+ \int_0^t \frac{\partial f}{\partial x_1}(W(s - 1), W(s))dW(s - 1) \quad (\text{anticipating!}) \\
 &+ \frac{1}{2} \left(\int_0^t \frac{\partial^2 f}{\partial x_1^2}(W(s - 1), W(s))ds + \int_0^t \frac{\partial^2 f}{\partial x_2^2}(W(s - 1), W(s))ds \right) \\
 &+ \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x_1 \partial x_2}(W(s - 1), W(s))dW(s - 1) dW(s)(= 0!)
\end{align*}
\]
LHS is adapted but anticipating integral on RHS.

$(\Omega, \mathcal{F}, P) :=$ probability space.

$W(t) := (W^1(t), \cdots, W^d(t)), t \geq 0, := d$-dimensional standard Brownian motion on (Ω, \mathcal{F}, P).

$D := (D_1, \cdots, D_d) :=$ Malliavin differentiation operator associated with $\{W(t): t \geq 0\}$.

Pathwise-continuous process:

$$X(t) := \begin{cases}
\eta(0) + \int_0^t u(s) \, dW(s) + \int_0^t v(s) \, ds, & t > 0, \\
\eta(t), & -r \leq t \leq 0,
\end{cases}$$

Skorohod integral. $\eta \in C, BV$.

$u = (u^1, \cdots, u^m)^T, u^i \in \mathbb{L}^{2,4}_{d,loc}$;

$v = (v^1, \cdots, v^m)^T, v^i \in \mathbb{L}^{1,4}_{loc} ([Nualart])$.

27
u and v may not be adapted to the Brownian filtration $(\mathcal{F}_t)_{t \geq 0}$. Set $u(t) := 0$ for $t < 0$ or $t > a$,

$$v(t) := \begin{cases} 0, & t > a \\ \eta'(t), & -r \leq t \leq 0. \end{cases}$$

$W(t) := 0$ if $t < 0$ or $t > a$.

$$U(t) := \int_0^t u(s) dW(s), \quad V(t) := \begin{cases} \eta(0) + \int_0^t v(s) ds, & t > 0 \\ \eta(t), & -r \leq t \leq 0. \end{cases}$$

Then

$$D_s X_t = u_s 1_{[0,a]}(t-s) + D_s X_0 + \int_0^t D_s v_r dr + \int_0^t D_s u_r dW_r,$$

$T := [0, a], \ J := [-r, 0], \ C := C(J; , \mathbb{R}^m)$.

$\Pi :=$ projection associated with $s_1, \cdots, s_k \in J$.

Cannot apply multi-dimensional Itô formula to $\phi(t, \Pi(X_t))$ because $\Pi(U_t)$ is of the form

$$\left(\int_0^t u(s + s_1) dW(s + s_1), \cdots, \int_0^t u(s + s_k) dW(s + s_k) \right),$$
and the components \((W(t + s_1), \cdots, W(t + s_k))\) are not independent. Use anticipating calculus (Nualart-Pardoux) to derive an Itô formula for \(\phi(t, \Pi(X_t))\).

Assume \(\phi \in C^{1,2}(T \times \mathbb{R}^{mk}), \; \vec{x} = (\vec{x}_1, \cdots, \vec{x}_m), \; \vec{x}_i = (x_{i1}, \cdots, x_{ik}) \in \mathbb{R}^k\), Write

\[
\phi(t, \vec{x}) = \phi(t, \vec{x}_1, \cdots, \vec{x}_m). \tag{5.5}
\]

Theorem 4. (Itô’s formula).

Suppose \(X\) satisfies above conditions and let \(\phi \in C^{1,2}(T \times \mathbb{R}^{mk}, \mathbb{R})\). Then

\[
\phi(t, \Pi(X_t)) - \phi(0, \Pi(X_0)) = \int_0^t \frac{\partial \phi}{\partial s}(s, \Pi(X_s)) \, ds + \int_0^t \frac{\partial \phi}{\partial \vec{x}}(s, \Pi(X_s)) \, d(\Pi(X_s)) + \frac{1}{2} \sum_{i,j=1}^k \sum_{i_1,j_1=1}^m \int_0^t \frac{\partial^2 \phi}{\partial x_{i1} \partial x_{j1}}(s, \Pi(X_s)) u_{i_1}^i(s + s_i) D_{s+s_i} X_{j1}^j(s + s_j) \, ds
\]

a.s. for all \(t \in T\).
Example (Revisited)

\[f(W(t - 1), W(t)) - f(W(-1), W(0)) = \int_0^t \frac{\partial f}{\partial x_1}(W(s - 1), W(s)) dW(s) + \int_0^t \frac{\partial f}{\partial x_2}(W(s - 1), W(s)) dW(s - 1) + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x_1^2}(W(s - 1), W(s)) ds + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x_2^2}(W(s - 1), W(s)) 1_{(1, \infty)}(s) ds \]

\[t > 0. \]
Weak differentiability of solutions of SDDE’s.

Cf. Bell and Mohammed, Nualart.

$$\mathbb{D}^{k,\infty}_m := \cap_{p \geq 2} \mathbb{D}^{k,p}_m, \ k \in \mathbb{N}.$$

$$D^l_r, 1 \leq l \leq d,$$ weak differentiation with respect to $$l$$-th component of $$W$$.

Proposition.

_In the Itô SDDE, assume that $$g \in C^0_1(T \times \mathbb{R}^{k_1 m}; L(\mathbb{R}^d, \mathbb{R}^m))$$ and $$h \in C^0_1(T \times \mathbb{R}^{k_2 m}; \mathbb{R}^m)$$. Let $$X$$ be the solution of (1.6). Then $$X(t) \in \mathbb{D}^{1,\infty}_m$$ for all $$t \in T$$, and

$$\sup_{0 \leq r \leq a} E(\sup_{r \leq s \leq a} |D_r X(s)|^p) < \infty$$

for all $$p \geq 2$$. Furthermore, the “partial” weak derivatives $$D^l_r X^j(t)$$ with respect to the $$l$$-th coordinate of $$W$$ satisfy_
the following linear SDDE's a.s.:

\[
D^l_rX^j(t) = g^{jl}(r, \Pi_1(X^j_r)) + \int_r^t \sum_{i=1}^{k_1} \frac{\partial g^{jl}}{\partial \vec{x}_i}(s, \Pi_1(X^j_s))D^l_rX^j(s + s_{1,i}) dW^l(s) \\
+ \int_0^t \sum_{i=1}^{k_2} \frac{\partial h^j}{\partial \vec{x}_i}(s, \Pi_2(X^j_s))D^l_rX^j(s + s_{2,i}) ds, \quad t \geq r, \\
= 0, \quad t < r, \ l = 1, \cdots, d, \ j = 1, \cdots, m
\]

\(g^{jl} = (j, l)\) entry of the \(m \times d\) matrix \(g\),

\(h^j = j\)-th coordinate of \(h\).
References

Hu, Y., *Strong and weak order of time discretization schemes of stochastic differential equations*, In Séminaire de Probabilités XXX, ed. by J. Azema, P.A. Meyer and

