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BAYESIAN IRT MODELS INCORPORATING GENERAL AND
SPECIFIC ABILITIES

Yanyan Sheng∗ and Christopher K. Wikle∗∗

IRT-based models with a general ability and several specific ability dimensions are
useful. Studies have looked at item response models where the general and specific
ability dimensions form a hierarchical structure. It is also possible that the general
and specific abilities directly underlie all test items. A multidimensional IRT model
with such an additive structure is proposed under the Bayesian framework. Simulation
studies were conducted to evaluate parameter recovery as well as model comparisons.
A real data example is also provided. The results suggest that the proposed additive
model offers a better way to represent the test situations not realized in existing models.

1. Introduction

Unidimensional item response theory (IRT) models are useful when tests are designed
to measure only one ability that may be explained by one latent trait or a specific com-
bination of traits. However, psychological processes have consistently been found to be
more complex and an increasing number of educational measurements assess an exami-
nee on more than one latent trait. With regard to this, allowing separate inferences to
be made about an examinee for each distinct ability dimension being measured, multidi-
mensional IRT (MIRT) models have shown promise for dealing with such complexity in
educational and psychological measurement (Ackerman, 1993; Reckase, 1997). With the
use of Bayesian estimation procedures, different multidimensional models involving contin-
uous latent traits have been developed, including MIRT models where each item measures
multiple abilities (Béguin & Glas, 2001), multi-unidimensional IRT models where multiple
specific ability dimensions are involved in one test with each item measuring only one of
them (e.g., Lee, 1995; Sheng & Wikle, 2007), and hierarchical MIRT models where each
item measures a specific ability, which is further related to an underlying general ability
(Sheng & Wikle, 2008).

The hierarchical MIRT models proposed by Sheng and Wikle (2008) have been shown
to perform better than the traditional unidimensional IRT model. However, they assume
that the general and specific ability dimensions form a hierarchical structure so that each
specific ability is either a linear function of the general ability or linearly combines to form
the general ability. This structure requires the actual general ability to be correlated with
the specific abilities. Otherwise, little information can be drawn to make inference on the
underlying general ability. Hence, hierarchical models are not applicable in all educational
and psychological test situations. In this paper, we propose another IRT-based model in-
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corporating both general and specific ability dimensions under the Bayesian framework so
that the general ability and the specific ability dimensions form an additive structure, i.e.,
each item measures a general and a specific ability directly. We call this the additive MIRT
model and believe it is not restricted to situations where the general and specific ability
dimensions are correlated. It has to be noted that when referring to the specific ability,
we do not limit ourselves to what Spearman posited in his two-factor theory (Spearman,
1904), where specific abilities, or more precisely, specific factors can be thought of “nui-
sance” factors (Segall, 2001, p.80) that are not correlated among themselves or with the
general factor. Rather, given the number of mental ability theories that have emerged
since the early twentieth century, and the difficulty in coming up with an unanimously
accepted definition or classification of the non-general abilities, we consider here also cases
where specific ability is the cognitive process needed for an individual subtest that may
be related to the overall trait (e.g., reading comprehension ability vs. ability for reading,
writing, and listening), or may be related to those required for other subtests (such as
reading comprehension ability vs. writing ability). Hence, the additive MIRT model is
compared with hierarchical MIRT models under various situations where the underlying
abilities have different levels of correlation. Further, to illustrate the Gibbs sampling pro-
cedure for the proposed model, a subset of College Basic Academic Subjects Examination
(CBASE; Osterlind, 1997) English subject data is examined.

The remainder of the paper is organized as follows. Section 2 reviews the conventional
unidimensional and multi-unidimensional models as well as the hierarchical MIRT models
from Sheng and Wikle (2008), while Section 3 describes the proposed additive MIRT model
in the Bayesian framework. The Gibbs sampling procedure is also illustrated in this sec-
tion. Section 4 illustrates the Bayesian model selection techniques. To evaluate model per-
formance, simulation studies were conducted to recover parameters as well as to compare
the proposed additive model with the hierarchical models under different test situations
using Bayesian model selection procedures. The results from the simulation studies are
summarized in Sections 5 and 6. Section 7 gives an example where the proposed model
is implemented on a subset of CBASE English subject data and Bayesian model selection
procedures are subsequently performed to compare this model with the conventional IRT
models as well as the hierarchical models. Finally, a few summary remarks are given in
Section 8.

2. IRT models

In this paper, we focus primarily on two-parameter normal ogive (probit) models.

2.1 Unidimensional IRT model

The unidimensional IRT model provides the simplest framework for modeling the
person-item interaction by assuming one ability dimension. Suppose a test consists of
k binary-response items (e.g., multiple-choice items), each measuring a single unified abil-
ity, θ. Define yij as
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yij =

{
1, if person i answers item j correctly
0, if person i answers item j incorrectly

, i = 1, . . . , n, j = 1, . . . , k.

Then, the probability of person i obtaining the correct response for item j can be defined
as follows:

P (yij = 1|θi, αj , γj) = Φ(αjθi − γj) =
∫ αjθi−γj

−∞

1√
2π

e
−t2
2 dt, (1)

where αj is a scalar parameter describing the item discrimination, γj is associated with
item difficulty βj such that γj = αj βj , and θi is a scalar ability parameter.

2.2 Multi-unidimensional IRT model

Multi-unidimensional models allow separate inferences to be made about an examinee
for each distinct dimension being measured by a subtest question (Sheng & Wikle, 2007).
Consider a K-item test consisting of m subtests, each containing kv binary-response items
that measure one ability dimension. With a probit link, the probability of person i ob-
taining the correct response for item j of the v-th subtest can be defined as follows:

P (yvij = 1|θvi, αvj , γvj) = Φ(αvjθvi − γvj) =
∫ αvjθvi−γvj

−∞

1√
2π

e
−t2
2 dt, (2)

where αvj and θvi are scalar parameters representing the item discrimination and the
examinee ability in the v-th ability dimension, and γvj is a scalar parameter indicating
the location in that dimension where the item provides maximum information.

2.3 Hierarchical MIRT models

Incorporating the latent structure of second-order factor models (Schmid & Leiman,
1957) into IRT framework, the hierarchical MIRT model (Sheng & Wikle, 2008) assumes
the same probability function as that of the multi-unidimensional models specified in (2).
They specify a hierarchical structure so that each specific ability either 1) is a linear
function of the general ability (Figure 1b) so that θvi ∼ N(δvθ0i, 1), where θ0i is the i-
th examinee ability parameter corresponding to the overall test, or 2) linearly combines
to form the general ability (Figure 1c) so that θ0i ∼ N(

∑
v

λvθvi, 1). In this paper, we

refer to these two formulations as hierarchical MIRT model 1 and hierarchical MIRT
model 2, respectively. As Figure 1 shows, they can be considered as extensions of the
multi-unidimensional model (Figure 1a), with more complicated underlying dimensional
structures.
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Figure 1: Graphical illustrations of the multi-unidimensional IRT model, the two hierarchical
MIRT models and the proposed additive MIRT model. Circles represent latent traits,
and squares represent observed items.

3. The proposed Bayesian IRT model

3.1 Additive MIRT model

The proposed additive MIRT model differs from the hierarchical MIRT models in that
the general ability directly affects the examinee’s response to a test item (Figure 1d). In
other words, the latent trait dimensions form an additive structure.

For a K-item test containing m subtests, each with kv binary-response items, where
v = 1, . . . , m, yvij is the response for the i-th examinee on the j-th item of the v-th subtest.
With a two-parameter probit model, we define the probability function pvij = P (yvij = 1)
as

P (yvij = 1) = Φ(α0vjθ0i + αvjθvi − γvj), (3)

where θvi, θ0i, and γvj are as defined in the previous section, α0vj is the j-th item discrimi-
nation parameter associated with the general ability, θ0i, and αvj is the item discrimination
associated with the specific ability, θvi. Hence, the probability of answering an item cor-
rectly is assumed to be determined directly by two latent traits—a general and a specific
one.

One should note the similarity of this formulation with that of Bradlow, Wainer, and
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Wang’s (1999) so-called “testlet” model, whose systematic component takes the form
αjθ0i − γj − αjθi(v), where θi(v) ∼ N(0, σ2). It can be shown that the testlet model is a
special case of the proposed additive MIRT model where α0vj = αvj . That is, if expressed
in our context, each item differentiates between examinees in their general and specific
abilities equally, although in the opposite directions. Moreover, the proposed model allows
one to specify a different distribution for α0, α, or γ for each subtest, whereas the testlet
model does not. The latter is hence limited in the situations when, for instance, it is be-
lieved that items in a particular subtest are supposed to have very different characteristics
than those in other subtests. Finally, the testlet model assumes zero correlations among
the specific abilities, whereas the additive model, as is illustrated in the following section,
models their interdependence by introducing a covariance structure for their mean vectors
µi. This further illustrates that the additive model is more general and thus offers more
flexibility than the testlet model. Indeed, the result of the simulation study shown in Ap-
pendix A provides empirical evidence that the testlet model does not work as well as the
additive model when α0 and α are not constrained to be the same, and hence is limited
in situations where its model assumptions are violated. Given this, the testlet model was
not considered in the analyses presented here.

Additionally, one may reformulate the hierarchical MIRT model 1 so that its systematic
component takes the form αvjδvθ0i + αvjεvi − γvj , where εvi ∼ N(0, 1), and claim that
it is a constrained version of the additive model. However, the two models differ funda-
mentally in that their parameters, θvi and εvi, have different interpretations. Specifically,
θvi in the additive model denotes the specific ability for the v-th subtest, which can be
correlated with other specific abilities, or with the general ability, θ0i, as is illustrated in
the following section. Nevertheless, εvi in the hierarchical model 1 denotes independent
random error specific for the v-th subtest, and has a zero correlation with the general
ability, θ0i.

We denote each examinee’s abilities for all items as θi = (θ0i, θ1i, θ2i, . . . , θmi)
′, vectors

of m+1 ability parameters and θ = (θ1, . . . , θn)′. Also, denote ξvj = (α0vj , αvj , γvj)′ the
vector of item parameters for the j-th item of the v-th subtest and ξ = (ξ1, . . . , ξm)′,
where ξv = (ξv1, . . . , ξvkv

)′. With the assumption of local independence, i.e., conditional
on θ and ξ the responses are independent, the joint probability function of y, where
y = [yvij ]n×K is

P (y|θ, ξ) =
m∏

v=1

n∏
i=1

kv∏
j=1

p
yvij

vij (1−pvij)1−yvij , (4)

where pvij is as specified in (3).

3.2 Model specification

Assume that the prior distribution of θi, i = 1, . . . , n, is multivariate normal (MVN)
with mean µi, where µi = (µ0i, µ1i, . . . , µmi)′, and covariance matrix I, the identity ma-
trix, so the prior probability density function for the abilities is

ϕm+1(θi; µi, I) = (2π)−
m+1

2 exp{−(θi − µi)
′(θi − µi)/2}. (5)
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Note that any unconstrained covariance matrix can be adopted for the prior distribution.
However, the identity matrix is adopted here to set a strong prior for the latent traits
so as to get around the model indeterminacy problem (see Lee, 1995 for a statement of
the problem). Also, the hyperparameters µi,i=1, . . . , n, are assumed to be independent
MVN with mean 0, where 0 = (0, . . . , 0)′, and covariance matrix Σ, where Σ is assumed
to have an inverse-Wishart distribution Σ ∼ W−1(I, m+1). So the density function for
µi is

ϕm+1(µi;0,Σ) = (2π)−
m+1

2 |Σ|− 1
2 exp{−µ′

iΣ
−1µi/2}. (6)

It should be noted again that the correlations between θ0i, θ1i, θ2i, . . . , and θmi are mod-
eled through the common mean structure so that the dependence in hyperparameters µi

with the use of an unconstrained covariance matrix Σ leads to dependence in the ability
parameters θi. We set conjugate normal priors for ξvj , v = 1, . . . , m, j = 1, . . . , kv so
that α0vj ∼ N(0,∞)(0, 1), αvj ∼ N(0,∞)(0, 1) and γvj ∼ N(0, 1), and assume the prior
distributions of θ and ξ are independent.

Hence, by introducing an augmented continuous variable Z (Albert, 1992; Tanner &
Wong, 1987) such that Zvij ∼ N(ηvij , 1), where ηvij = α0vjθ0vi + αvjθvi − γvj and

yvij =

{
1, if Zvij > 0
0, if Zvij ≤ 0

, the joint posterior distribution of (θ, ξ, Z, µ, Σ) is then

p(θ, ξ,Z,Σ, µ|y) ∝ f(y|Z)p(Z|θ, ξ)p(ξ)p(θ|µ)p(µ|Σ)p(Σ). (7)

The full conditional distributions can be derived in closed form, as shown in Appendix B.
Hence, the Gibbs sampler can be adopted to iteratively update samples Z, θ, ξ, µ and Σ
from their respective full conditionals in (9), (11), (13), (15) and (17), with starting values
θ(0), ξ(0), µ(0) and Σ(0). The collection of all these simulated draws from p(θ, ξ|y) are
then used to summarize the posterior density of item parameters ξ and ability parameters
θ and can be used to compute quantiles, moments and other summary statistics. As with
standard Monte Carlo, with large enough samples, the posterior means of ξ and θ are
considered as estimates of the true parameters. It has to be noted that this model speci-
fication, however, does not directly model the correlation between the latent abilities. In
the situations where the inter-trait correlations are of interest, one has to estimate them
indirectly via correlating the posterior estimates of the ability parameters.

4. Bayesian model choice techniques

From the frequentist’s perspective, it is natural to compare several models using likeli-
hood ratio tests or other information criteria. Likewise, in the Bayesian framework, model
comparison/selection is made possible with several criteria, among which, Bayes factors,
Bayesian deviance and posterior predictive model checks are to be considered in this study.

4.1 Bayes factor

When a set of s different Bayesian hierarchical models M1, . . . , Ms are considered, the
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Bayes factor for comparing two models Mi and Mj is defined as BF =
p(y|Mi)
p(y|Mj)

, where

p(y|M) =
∫
ϑ

L(y|ϑ)p(ϑ|M)dϑ is the marginal probability of the data y (also referred to

as the prior mean of the likelihood) with ϑ denoting all model parameters, and p(ϑ|M)
is the prior density for the unknown parameters under the specific model M . This is the
Bayesian analogue of the likelihood ratio between two models, and describes the evidence
provided by the data in favor of Mi over Mj . The Bayes factors allow comparison of
non-nested models and ensure consistent results for model comparisons, but are usually
difficult to calculate due to the difficulty in exact analytic evaluation of the marginal den-
sity of the data. Some approximation methods, such as Laplace integration, the Schwarz
criterion, and reversible jump, etc. have been proposed and developed (see Kass & Raftery
(1995) for a detailed description). In more complex modeling situations, MCMC provides
another approximation for the marginal density. Although it can be unstable, research
shows that it often produces results that are accurate enough for interpreting the Bayes
factors (e.g., Carlin & Chib, 1993) and therefore it was used in this study.

To estimate the marginal density, one can draw MCMC samples of the parameters,

ϑ(1), . . . , ϑ(G), so that p(y|M) is approximated as
{

1
G

G∑
g=1

L(y|ϑ(g))−1

}−1

. This is defined

as the harmonic mean of the likelihood values (Newton & Raftery, 1994). In addition,

Aitkin (1991) proposed a posterior Bayes factor PBF =
p∗(y|Mi)
p∗(y|Mj)

for Bayesian models

with improper priors, where p∗(y|M) =
∫

ϑ|y
L(y|ϑ)p(ϑ|y, M)dϑ is the posterior mean of

the likelihood. To approximate this marginal density, one again uses the posterior samples

so that p∗(y|M) =
1
G

G∑
g=1

L(y|ϑ(g)). In this study, we considered both Bayes factor (BF )

and posterior Bayes factor (PBF ) although all model priors were chosen to be proper.

4.2 Bayesian Deviance

The Bayesian deviance information criterion (DIC) was introduced by Spiegelhal-
ter, Best, Carlin, and van der Linde (2002) who generalized the classical information
criteria to one that is based on the posterior distribution of the deviance. This cri-
terion is defined as DIC = D̄ + pD, where D̄ ≡ Eϑ|y(D) = E(−2 log L(y|ϑ)) is
the posterior expectation of the deviance (with L being the likelihood function), and
pD = Eϑ|y(D)−D(Eϑ|y(ϑ)) = D̄ −D(ϑ̄) is the effective number of parameters (Carlin &
Louis, 2000). In addition, let D(ϑ̄) = −2 log(L(y|ϑ̄)), where ϑ̄ is the posterior mean. To
compute Bayesian DIC, MCMC samples of the parameters, ϑ(1), . . . , ϑ(G), can be drawn

from the Gibbs sampler, then D̄ his approximated as D̄ =
1
G

(−2 log
G∏

g=1

L(y|ϑ(g))). Gen-

erally more complicated models tend to provide better fit. Hence, penalizing for number
of parameters makes DIC a more reasonable measure to use. However, unlike the Bayes
factor, DIC is not invariant to parameterization and sometimes can produce unrealistic
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results.

4.3 Posterior predictive model checks

Among the methods proposed for model checking, posterior predictive checking is easy
to carry out and interpret in spite of its limitation in being conservative (Sinharay &
Stern, 2003). The basic idea is to draw simulated values from the posterior predictive
distribution of replicated data, yrep, p(yrep|y) =

∫
p(yrep|ϑ)p(ϑ|y)dϑ, and compare them

to the observed data y. If the model fits, then replicated data generated under the model
should look similar to the observed data. A test statistic T(y, ϑ) has to be chosen to
define the discrepancy between the model and the data. If there are L simulations from
the posterior distribution of ϑ, one yrep can be drawn from the predictive distribution for
each simulated ϑ so there are L draws from the joint posterior distribution p(yrep, ϑ|y).
It is then easy to compare the realized test statistics T(y, ϑl) with the predictive test
statistics T(yrep, ϑl) by plotting the pairs on a scatter plot. Alternatively, one can cal-
culate the probability or posterior predictive p-value (PPP-value) (Sinharay, Johnson, &
Stern, 2006) that the replicated data could be more extreme than the observed data:
pB = Pr(T (yrep, ϑl) ≥ T (y, ϑl)|y).

5. Parameter recovery

In the proposed model, each test item is assumed to measure two ability dimensions,
namely, a general and a specific ability dimension, directly. This is reflected in the proba-
bility function of the model defined in (3). The additive nature of the latent traits in the
model leads to a potential problem of indeterminancy when item and person parameters
are estimated simultaneously. In the Bayesian framework, although some strong infor-
mative priors are specified for the ability parameters to help the convergence of Markov
chains, it is still uncertain how the Bayesian additive MIRT model performs in various
scenarios. Hence, a series of simulation experiments was carried out to evaluate the model
in item parameter recovery.

5.1 Methodology

Five simulations were conducted, where tests with one general ability and two specific
abilities were considered, i.e., m = 2. For each simulation, a 1,000-by-41 dichotomous
response data matrix y was simulated 10 times from the additive model defined in (3).
To generate y, α0, α, and γ were randomly drawn from uniform distributions so that
α0 ∼ U(0, 1), α ∼ U(0, 1), γ ∼ U(−1, 1), and θi were simulated from N3(0,R0), where

R0 is a correlation matrix and was specified to be R0 =

⎛
⎜⎝1

0 1
0 0 1

⎞
⎟⎠, R0 =

⎛
⎜⎝ 1

0.8 1
0.6 0 1

⎞
⎟⎠,
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Table 1: Average RMSD between the actual and estimated item parameters for Gibbs sampling
with the two additive models under five simulated scenarios (10 replications).

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

Known prior
α̂0 0.0808 0.1089 0.1336 0.1204 0.0894
α̂ 0.0797 0.1032 0.1479 0.1387 0.0966
γ̂ 0.0606 0.0571 0.0642 0.0675 0.0538

Proposed
α̂0 0.0794 0.3779 0.0996 0.3093 0.3065
α̂ 0.0772 0.1813 0.2019 0.1722 0.1738
γ̂ 0.0608 0.06 0.0637 0.0699 0.0542

R0 =

⎛
⎜⎝1

0 1
0 0.6 1

⎞
⎟⎠, R0 =

⎛
⎜⎝ 1

0.8 1
0 0 1

⎞
⎟⎠, and R0 =

⎛
⎜⎝ 1

0.5 1
0.5 0.5 1

⎞
⎟⎠ in the five simulations,

respectively. It has to be noted that although zero correlations are unusual in practice,
they were considered in the study to illustrate the extreme cases when the latent traits
are not related.

For each simulated y, the Gibbs sampler was implemented to fit two Bayesian additive
models. They differed only in the specification of the prior distribution for θi so that one
model assumed θi ∼ N3(0,R0), where R0 is the actual correlation matrix used to gener-
ate θi in each simulation, and the other assumed θi ∼ N3(µi, I), where µi ∼ N3(0,Σ).
It has to be noted that the former, referred to as the model with known prior, would
help detect any computational problem in the implementation of the Gibbs sampler, and
the latter is exactly the proposed model. Each implementation was carried out with a
run length of 7,000 iterations and a burn-in period of 2,000. Convergence was assessed
using the Gelman-Rubin R statistic (Gelman, Carlin, Stern, & Rubin, 2004) with multiple
chains and values close to 1 suggesting that stationarity had been reached. Hence, the
posterior estimates were obtained as the posterior expectations of the Gibbs samples and
the results for the five simulations are summarized as follows.

5.2 Results and Discussion

To examine the item parameter recovery in each case, root-mean-squared differences
(RMSD) between true and estimated item parameters were obtained from each replica-
tion and their averages were used to compare the two models with respect to parameter
recoveries in the five simulations. The results are summarized in Table 1.

A close examination of the results in Table 1 reveals that:

1) As expected, the model with the known prior performs relatively better in all the five
simulations. This further confirms that no computational problem occurred during
the implementation of the Gibbs sampling procedure.

2) With the proposed model, the location parameters γ are always well recovered and
hence they are not affected by various actual structures existing in the latent traits.
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On the contrary, α0 and α are affected, and this can be explained by the fact that
they are slopes for the corresponding abilities in the model. It is further noticed that
when there is no correlation between the general ability and each specific ability,
α0 and α are recovered well, as shown in simulations 1 and 3. However, when the
general ability is correlated with any of the specific abilities, the slopes, especially
α0, are less well recovered. Furthermore, a comparison between simulations 2, 4, and
5 indicates that the higher the correlations between θ0 and θ1 and/or θ2, the less well
the item parameters are recovered.

In general, the additive model implemented with Gibbs sampling is found to work well
when there is no or low correlation between the general ability and each specific ability.
This is because the model specifies a generalized linear function of the general ability and
a specific ability. The collinearity problem, i.e., high correlations between the general
ability and specific abilities, affects the accuracy of parameter estimation.

6. Model comparison

To further evaluate the performance, the proposed additive model was compared with
the hierarchical MIRT models under various simulated test situations using the Bayesian
model choice techniques.

6.1 Methodology

To compare the two types of MIRT models, eight simulations were conducted, where
tests with one general ability and two specific abilities were considered, i.e., m = 2. Four
of the eight simulations assumed that the hierarchical MIRT model was true, and the
other four assumed that the additive MIRT model was true. Dichotomous item responses
of 1,000 persons to 41 items were simulated so that, in the four simulations where the
hierarchical model was true, the responses yvij were generated from the probabilities as
defined in (2), where αvj ∼ U(0, 1), γvj ∼ U(−1, 1). On the other hand, in the four
simulations where the additive model was true, yvij were simulated from the probabilities
as defined in (3), where α0vj ∼ U(0, 1), αvj ∼ U(0, 1) and γvj ∼ U(−1, 1). Under both
of the two conditions described previously, the ability parameters θi were simulated from

N3(0,R0), where R0 is a correlation matrix and was specified to be R0 =

⎛
⎜⎝1

0 1
0 0 1

⎞
⎟⎠,

R0 =

⎛
⎜⎝ 1

0.8 1
0.6 0 1

⎞
⎟⎠, R0 =

⎛
⎜⎝1

0 1
0 0.6 1

⎞
⎟⎠, and R0 =

⎛
⎜⎝ 1

0.8 1
0.6 0.5 1

⎞
⎟⎠in the four simulations,

respectively.
With the simulated responses, the hierarchical and additive MIRT models were imple-

mented using Gibbs sampling where 7,000 iterations were obtained with the first 2,000 as
burn-in, which was sufficient for the chains to reach stationarity. Ten replications were
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used and the posterior expectations of the Gibbs samples were used to obtain the posterior
estimates necessary to derive Bayes factors as well as Bayesian deviance results.

6.2 Results and Discussion

The model comparison results in each simulation were averaged over the ten replica-
tions and are summarized in Table 2 and Table 3. To obtain Bayes factors, the marginal
densities p(y|M) and p∗(y|M) were approximated using MCMC and are displayed in the
first two columns of the tables. Since all the likelihoods for the simulated data were very
small, the values shown in the two columns are a constant multiple of p(y|M) or p∗(y|M),
as is noted below the tables. However, note that when computing Bayes factors, this con-
stant cancelled out. Bayes factors and posterior Bayes factors are ratios of the marginal

densities for comparing two models Mi and Mj , i.e., BF =
p(y|Mi)
p(y|Mj)

, PBF =
p∗(y|Mi)
p∗(y|Mj)

,

and values larger than 1 provide evidence in favor of Mi to Mj . As a BF or PBF greater
than 100 indicates decisive evidence in favor of Mi (cf., Robert, 2001), the additive MIRT
model was found to be consistently better than the two hierarchical MIRT models even
when the actual latent dimension conformed to the hierarchical structure. Taking the
ratio of its marginal density with that for any of the other two models resulted in BF or
PBF estimates greater than 100.

The remaining four columns of the tables show the Bayesian deviance results, and in
particular, the estimates averaged over the ten replications for the Bayesian DIC, the pos-
terior expectation of the deviance (D̄), the deviance of the posterior expectation (D(ϑ̄))
values, and the effective number of parameters (pD), respectively. The proposed addi-
tive MIRT model shows consistently smaller DIC, D̄, and D(ϑ̄), compared with the two
hierarchical MIRT models. Since small deviance values indicate better model fit, the ad-
ditive MIRT model is shown to provide a better description of the simulated data in all
the simulations, even after penalizing for model complexities, i.e., the effective number of
parameters. Hence, the Bayesian deviance results were consistent with the results using
Bayes factors in model comparisons.

After a close examination and comparison of the values shown in the two tables, a few
remarks can be drawn from these results:

1. No matter what the actual condition is, either when the additive MIRT model is
true or when the hierarchical MIRT model is true, the additive MIRT model always
outperforms the hierarchical MIRT models and thus provides a better description of
the simulated data. The degree of this improved performance is much higher when
the latent ability dimensions form an additive structure. The fact that the additive
model works better even when the hierarchical model is true poses a situation worth
noting. This may be due to the reason that each item is related to the general ability
directly in the additive model whereas they are related indirectly in the hierarchical
model. However, further analysis has to be conducted to investigate this result.

2. The effective number of parameters (pD) displayed in the last column of the two
tables gives rise to an interesting finding. When the hierarchical model is true, pD
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Table 2: Approximated marginal densities and Bayesian deviance estimates (averaged over 10
replications) for the three MIRT models under 4 simulated situations when the hierar-
chical model is true.

p(y|M)1 p∗(y|M)2 DIC D̄ D(J̄) pD

Simualtion 1
Additive model 9.36E+126 3.06E+104 45212 43601 41989 1611
Hierarchical model 1 3.06E+56 5.58E+13 45542 43925 42307 1618
Hierarchical model 2 2.94E+42 3.51E+10 45536 43925 42313 1611

Simualtion 2
Additive model 5.01E+140 7.87E+132 45193 43602 42011 1591
Hierarchical model 1 5.22E+80 2.86E+42 45538 43921 42304 1617
Hierarchical model 2 1.18E+79 5.39E+46 45532 43921 42309 1611

Simualtion 3
Additive model 4.91E+91 4.19E+89 45192 43711 42230 1481
Hierarchical model 1 6.82E+45 27E+09 45545 44021 42497 1524
Hierarchical model 2 2.39E+38 2.14E+07 45525 44038 42552 1487

Simualtion 4
Additive model 6.59E+81 79E+97 45199 43646 42093 1553
Hierarchical model 1 6.00E+31 8.69E−04 45523 43965 42408 1557
Hierarchical model 2 6.28E+31 9.15E−06 45506 43975 42444 1531

Note: 1. The reported values are p(y|M)∗exp(22048)
2. The reported values are p∗(y|M)∗exp(21736)

Table 3: Approximated marginal densities and Bayesian deviance estimates (averaged over 10
replications) for the three MIRT models under 4 simulated situations when the additive
model is true.

p(y|M) p∗(y|M) DIC D̄ D(ϑ̄) pD

Simualtion 1
Additive model 2.65E+2201 4.01E+1952 42286 40053 37819 2233
Hierarchical model 1 1.43E−1161 5.02E−1712 43331 41642 39954 1689
Hierarchical model 2 1.44E−1201 3.15E−1812 43314 41658 40002 1656

Simualtion 2
Additive model 4.44E+383 4.58E−564 39522 37619 35715 1903
Hierarchical model 1 1.20E−683 8.70E−1964 39967 38273 36579 1694
Hierarchical model 2 2.59E−853 7.5E−1974 39964 38301 36637 1663

Simualtion 3
Additive model 1.38E+2271 6.33E+1952 42331 40188 38045 2143
Hierarchical model 1 3.72E−1341 1.46E−1932 43312 41800 40288 1512
Hierarchical model 2 8.91E−1461 5.41E−1952 43295 41837 40380 1458

Simualtion 4
Additive model 1.83E+1553 5.48E+544 39308 37535 35761 1773
Hierarchical model 1 2.33E+503 4.96E−714 39688 38120 36552 1568
Hierarchical model 2 8.64E+273 3.68E−834 39683 38120 36654 1514

Note: 1. The reported values are p(y|M)∗exp(20440); 2. The reported values are p∗(y|M)∗exp(20150)
3. The reported values are p(y|M)∗exp(18900); 4. The reported values are p∗(y|M)∗exp(18400)

for the additive MIRT model is no more than any of those for the two hierarchical
models. However, when the additive model is true, the additive MIRT model always
has a larger pD value than the other two models.

3. When the latent ability dimensions form an additive structure, the additive MIRT
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model is more superior to the hierarchical models when there are no correlations be-
tween the general and specific abilities (as shown in simulations 1 and 3), as opposed
to the situation when the general and specific abilities are correlated (as shown in
simulations 2 and 4).

4. Among the two hierarchical MIRT models, model 1 is more favored by the Bayes fac-
tor in all the simulated situations. However, the posterior Bayes factor and Bayesian
DIC indicate that model 2 is better. Hence, there is no conclusive finding as to
which of the hierarchical model performs better than the other. This is similar to
the findings in Sheng and Wikle (2008).

7. An example with CBASE data

As an illustration, the proposed model was subsequently implemented on a subset of
CBASE English subject data. In real test situations, the true latent structure is not neces-
sarily known. Hence, model comparison is necessary to determine if the proposed additive
MIRT model provides a relatively better representation of the data compared with other
models.

7.1 Methodology

The overall CBASE exam contains 41 English multiple choice items, with the first 16
items forming a writing cluster and the remaining 25 a reading\literature cluster. The
data used in this study were from college students who took the same form of CBASE in
years 2001 and 2002. After removing missing responses and those who made multiple at-
tempts, a sample of 1,231 examinees was randomly selected. To assess the goodness-of-fit,
the proposed MIRT model was compared with four models, namely, the unidimensional
model, the multi-unidimensional model, and the two hierarchical MIRT models. Each of
the five candidate models was implemented on the CBASE English data using the Gibbs
sampling procedure, where 7,000 iterations were obtained with the first 2,000 set as burn-
in. The Gelman-Rubin R statistics were used to assess convergence and they were found
to be around or close to 1, suggesting that stationarity had been reached within the simu-
lated Monte Carlo chains for the model. Then, the five candidate models were compared
using Bayes factors, Bayesian DICs and predictive model checks.

7.2 Results and Discussion

After fitting the proposed additive MIRT model to the CBASE English data via the
Gibbs sampler, the posterior expectations of the posterior samples were used to estimate
item parameters and are displayed in Table 4. The Monte Carlo (MC) standard errors of
estimates are also reported in Table 4. Because subsequent samples in the Markov chain
are autocorrelated, they were estimated using batching (Ripley, 1987). That is, with a
long chain of samples being separated into contiguous batches of equal length, the MC
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Table 4: Posterior means and Monte Carlo standard error of estimate (MCSE) for each item
parameter when fitting the proposed model to the CBASE data.

Posterior Mean MCSE Posterior Mean MCSE
Item α0 α1 γ α0 α1 γ Item α0 α1 γ α0 α1 γ

1 0.3656 0.113 −0.5729 0.0055 0.0064 0.0011 21 0.5738 0.0666 −0.3271 0.0062 0.0016 0.0009
2 0.3202 0.0265 −0.6139 0.0048 0.0012 0.0014 22 0.4990 0.1154 −0.5026 0.0096 0.0024 0.0014
3 0.4027 0.0474 −1.0448 0.0047 0.0022 0.0016 23 0.5881 0.0778 −1.0336 0.0101 0.0045 0.0039
4 0.3437 0.1847 −1.4474 0.0111 0.0074 0.0012 24 0.4618 0.1834 −0.1439 0.0093 0.0021 0.0013
5 0.4135 0.1315 −1.2794 0.0086 0.0031 0.0033 25 0.3202 0.1731 −0.3153 0.0073 0.0036 0.0005
6 0.5889 0.0862 −0.8845 0.0076 0.0060 0.0020 26 0.5666 0.0347 −0.9357 0.0054 0.0012 0.0023
7 0.2169 0.0899 −0.5196 0.0059 0.0028 0.0007 27 0.2411 0.0715 −0.9282 0.0044 0.0022 0.0006
8 0.3020 0.1805 −1.228 0.0087 0.0112 0.0042 28 0.4444 0.0578 −0.6238 0.0057 0.0020 0.0004
9 0.4150 0.3997 −0.2107 0.0190 0.0123 0.0018 29 0.3391 0.3107 −0.3042 0.0117 0.0042 0.0010

10 0.5335 0.3508 −0.1145 0.0173 0.0115 0.0018 30 0.518 0.1202 −0.4452 0.0118 0.0037 0.0012
11 0.2925 0.0369 0.3662 0.0046 0.0012 0.0008 31 0.4053 0.3954 −0.8646 0.0156 0.0057 0.0010
12 0.3356 0.0784 −0.7815 0.0052 0.0057 0.0014 32 0.5058 0.3543 −1.077 0.0143 0.0079 0.0037
13 0.4114 0.0471 −0.1872 0.0063 0.0024 0.0014 33 0.2446 0.1699 −0.4488 0.0052 0.0044 0.0008
14 0.3001 0.2491 −0.1768 0.0096 0.0069 0.0012 34 0.2389 0.4873 −0.8346 0.0150 0.0076 0.0028
15 0.5562 0.1476 −0.8749 0.0065 0.0109 0.0037 35 0.3172 0.3600 −0.2555 0.0133 0.0068 0.0010
16 0.3415 0.2158 −0.1082 0.0099 0.0051 0.0012 36 0.3236 0.1766 0.3571 0.0078 0.0016 0.0003

37 0.2986 0.3209 0.3177 0.0131 0.0053 0.0017
17 0.4030 0.0345 −0.158 0.0040 0.0006 0.0005 38 0.2873 0.2522 −0.5023 0.0102 0.0024 0.0012
18 0.3411 0.0672 −0.3315 0.0042 0.0020 0.0011 39 0.4437 0.3707 −0.7481 0.0146 0.0068 0.0015
19 0.5785 0.1516 0.3097 0.0090 0.0031 0.0009 40 0.2761 0.5462 −0.4558 0.0184 0.0098 0.0023
20 0.8620 0.0695 −1.4365 0.0187 0.0043 0.0072 41 0.1674 0.2363 −0.3417 0.0080 0.0033 0.0003

standard error for each parameter is estimated to be the standard deviation of these batch
means, and the MC standard error of estimate is then a ratio of the standard deviation
and the square root of the number of batches. Generally, all the standard errors for the
posterior estimates of the item parameters were small, with those for item difficulties, γ,
being relatively smaller. It can be interpreted that, for example, an approximate 99% MC
interval for the true posterior expectation for the first item’s discrimination parameter as-
sociated with the general ability was 0.3656±3× (0.0055), suggesting the MC estimate of
this posterior mean was good to about two digits of accuracy. Hence, the item parameters
using the proposed Bayesian models were estimated with little error.

The model choice measures were subsequently obtained and the results are summarized
as follows. Table 5 displays the results for Bayes factors and Bayesian deviances. The
first two columns are the approximated marginal densities p(y|M) and p∗(y|M) for the
five candidate models. As a BF or PBF greater than 100 indicates decisive evidence in
favor of the model on the numerator, the additive MIRT model was found to be the best
among the five candidate models. Taking the ratio of its marginal density with that for
any other models resulted in BF or PBF estimates greater than 100. On the other hand,
there is much evidence against the unidimensional model when comparing it to either
the multi-unidimensional model, the hierarchical MIRT models or the proposed additive
MIRT model. Moreover, the hierarchical MIRT model 1 was shown to be better than the
multi-unidimensional model using the BF , but not the PBF estimate.

Table 5 also displays the Bayesian deviance results, where smaller values indicate better
model fit. Among the five candidate IRT models, the proposed additive MIRT model had
the smallest DIC and expected posterior deviance (D̄). Therefore, the additive MIRT
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Table 5: Approximated marginal densities of the data and Bayesian deviance estimates for the
five IRT models with the CBASE data.

p(y|M)1 p∗(y|M)2 DIC D̄ D(ϑ̄) pD

Unidimensional 1.2254E−224 8.55E−308 55639 54548 53457 1090.6
Multi-unidimensional 4.2856E−163 1.04E−207 55571 54160 52750 1410.5
Hierarchical model 1 2.568E−143 2.83E−215 55586 54121 52656 1464.6
Hierarchical model 2 8.0348E−177 4.6805E−220 55571 54188 52805 1382.7
Additive model 156 107.5633 55135 53318 51501 1817.3

Note: 1. The reported values are p(y|M)∗exp(26840)
2. The reported values are p∗(y|M)∗exp(26460)∗4000

model provided the best goodness-of-fit to the data compared with other models, even
after penalizing for a large effective number of parameters (pD = 1817.3), which is shown
in the last column of the table. Compared with the multi-unidimensional model, the two
hierarchical MIRT models did not show much better fit to the data using Bayesian DICs.
In addition, the additive MIRT model had a larger pD than the two hierarchical models.
Given the findings from the simulation study in Section 6, this indicated that the latent
structure for the general and specific abilities was closer to additive. On the other hand,
the unidimensional model was relatively worse than any of the multidimensional models.
The results were generally consistent with those obtained using the Bayes factors.

Next, the posterior predictive model checking procedure was implemented to compare
the five candidate models. To do so, a test statistic had to be chosen for describing the
discrepancy between the model and the data. For this analysis, the odds ratio was adopted
for measuring association among item pairs, T(y) = ORij =

n11n00

n01n10
,where nkk′ denotes

the number of examinees scoring k on item i and k′ on item j, k, k′ = 0, 1. This statistic
has been reported to be powerful for detecting unidimensionality in data (Sinharay et al.,
2006). Hence, for each fitted model, based on each pair of (θ, ξ) samples, a yrep was sim-
ulated and the replicated odds ratios T(yrep) were computed and further compared with
the actual odds ratios. The tail-area PPP-values (pB) were estimated as the proportion

of the simulated samples for which T(yrep) ≥ T(y), i.e., pB =
L∑

l=1

I(T(yrepl) ≥ T(y)).

Figure 2 summarizes the extreme PPP-values for the odds ratios with each model.
Here α = .05 was used as the critical level, so that the PPP-value larger than .975 was
denoted using a plus sign and the PPP-value smaller than .025 was denoted using a cross
sign. Since odds ratios are based on the responses to any pair of items, each plot is
symmetrical about its diagonal. Hence, the upper-diagonal was left blank for simplicity.
From the figure, it is immediately clear that the proposed additive MIRT model had far
fewer extreme replicated odds ratios. Indeed, the numbers of extreme PPP-values for the
five candidate models, namely, the unidimensional, multi-unidimensional, two hierarchical
MIRT, and the proposed additive MIRT models, were 39, 36, 37, 37 and 12, respectively.
The additive model showed remarkably less error in predicting odds ratios for item pairs
within clusters as well as those between clusters and is considered to be the best among
the five candidate models. On the other hand, the unidimensional IRT model had the
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Figure 2: Extreme tail-area PPP-values for odds ratios with the five IRT models for the CBASE
data.

largest number of extreme PPP-values and hence is shown to be the worst using the odds
ratio for posterior model checks. Although with slightly different prediction errors, the
two hierarchical MIRT models performed similarly in their abilities to predict the odds
ratio, which were not much different from the multi-unidimensional model.

Therefore, with Bayesian model checking techniques, the five candidate IRT models
were evaluated as to which model provided a better description, and hence a better
goodness-of-fit to the CBASE data. The results from Bayes factors, Bayesian deviances
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and posterior predictive checks all showed strong evidence in favor of the proposed additive
model, which was believed to fit the data much better than the other candidate models.
On the contrary, the unidimensional model provided a relatively worse description of the
data. Hence, for the CBASE English data, the model comparison results did not support
the more stringent unidimensionality assumption.

8. Discussion and Conclusion

In conclusion, IRT-based models incorporating both general ability and specific abil-
ities so that they directly affect how examinees answer each test item can be developed
from several perspectives. As the proposed model specifies a generalized linear function
of the general ability and a specific ability, the multicollinearity problem associated with
the linear models might potentially affect the accuracy of parameter estimation. Hence,
the additive MIRT model performs relatively better when the general ability and each
specific ability are less highly related. This is shown to be the case from the simulation
studies. In addition, the proposed additive MIRT model, using an MCMC procedure,
performs consistently better than the hierarchical MIRT models in various simulated test
situations and even when the latent structure of the general and specific abilities is not
additive. However, when the latent structure is additive, the additive MIRT model tends
to have a larger effective number of parameters than the two hierarchical MIRT models.
This may serve as an indicator on the actual latent structure with real data. Furthermore,
the proposed additive MIRT model is implemented on the CBASE English data via Gibbs
sampling with small standard errors. This suggests both general ability and specific abil-
ity dimensions can be estimated in one implementation with enough accuracy. As far as
the CBASE data is concerned, the proposed model provides a better description to the
data than the conventional unidimensional model, the multi-unidimensional model, or the
two hierarchical MIRT models. Consequently, the proposed additive MIRT model offers
a better way to represent the test situations not realized in existing models.

To paraphrase Box (1976), it is well accepted that all theoretical models are just simpli-
fied approximations of the real world. Some models represent reality better than others.
Therefore, it is vitally important to find the model(s) providing the most complete descrip-
tion of the data. In testing situations where IRT models are used for parameter estimation
as well as other applications, one has to decide the dimensionality structure for the latent
abilities in order to choose an appropriate model and hence obtain reliable estimates of
person abilities. Often, a unidimensional model is adopted by assuming one latent ability.
However, this assumption is more likely to be violated in real situations because the test
items are not always measuring a single trait. This point is easily seen from the findings
of the current study, where model comparisons indicate that the unidimensional model
describes the CBASE data the worst compared with models with multiple dimensions.
Therefore, using the unidimensional model for the CBASE English test is not validated.
The actual dimensionality for the test is closer to the structure with one general and two
specific ability dimensions so that they form an additive structure. In particular, the first
16 test items measure the overall English ability and a writing ability, and the last 25
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items measure the overall ability together with a reading/literature ability. All items are
affected by a general ability and a specific ability simultaneously and directly. However,
the actual relationship between the general ability and each of the two specific ability
dimensions cannot be estimated directly given the limitation of the model specification
noted in Section 3. Further studies are needed for a better solution.

In the current study, odds ratios were adopted as a discrepancy measure for the predic-
tive model checking technique. Other test statistics could also be considered, such as item
test biserial correlations, observed score distribution, or test information function, among
others. The choice of discrepancy measures is crucial with the method, as some measures
may fail to detect the differences between models, such as item proportion-correct (Sin-
haray et al., 2006). However, we note that this procedure has been criticized for being
conservative and the PPP-value is not uniformly distributed under the null hypothesis
(Sinharay & Stern, 2003). Future studies can adopt other methods for comparing models,
such as looking at the Bayesian residuals as proposed by Albert and Chib (1995). Ad-
ditionally, in our study, Bayes factors were approximated because of the difficulty with
the exact analytic evaluation for complicated hierarchical Bayesian models. The harmonic
mean of the likelihood, which is used to approximate the marginal likelihood of the data
using MCMC methods, converges to the correct value as the chain length goes to infinity.
However, it does not satisfy a Gaussian central limit theorem because the model param-
eter may take a “rare” value with small likelihood, which has a large effect on the final
result. Future studies can adopt more accurate methods that are based on estimation
of marginal likelihoods, such as the Chib’s method (Chib, 1995; Chib & Jeliazkov, 2001)
or the bridge sampling method (Meng & Wong, 1996; Meng & Shiling, 2002). Finally,
in the proposed model, a strong prior was adopted for the ability parameters by using
the identity matrix as the covariance matrix to avoid the model indeterminacy problem.
Future study may employ other approaches to resolve this nonidentifiability problem.

Appendix A. Comparing the additive model with the testlet model

A simulation study was carried out to compare the additive model with the more specific
testlet model. In the study, four simulations were conducted, where tests with one general
ability and two specific abilities were considered, i.e., m = 2. Dichotomous item responses
of 1,000 persons to 41 items were simulated so that the responses yvij were generated from
the probabilities as defined in (3), where α0vj ∼ U(0, 1), αvj ∼ U(0, 1), γvj ∼ U(−1, 1).
In addition, the ability parameters θi were simulated from N3(0,R0), where R0 is

a correlation matrix and was specified to be R0 =

⎛
⎜⎝1

0 1
0 0 1

⎞
⎟⎠, R0 =

⎛
⎜⎝ 1

0.8 1
0.6 0 1

⎞
⎟⎠,

R0 =

⎛
⎜⎝1

0 1
0 0.6 1

⎞
⎟⎠, and R0 =

⎛
⎜⎝ 1

0.8 1
0.6 0.5 1

⎞
⎟⎠ in the four simulations, respectively.

With the simulated responses, the additive and the testlet models were each imple-
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Table A1: Approximated marginal densities and Bayesian deviance estimates (averaged over 10
replications) for the additive model and the testlet model under 4 simulated situations.

p(y|M) p∗(y|M) DIC D̄ D(ϑ̄) pD

Simualtion 1
Additive model 3.21E+1441 7.57E+2611 42491 40265 38039 2226
Testlet model 2.03E−1631 2.46E−661 43494 41812 40130 1682

Simualtion 2
Additive model 4.10E+782 6.23E+1942 39400 37484 35569 1916
Testlet model 3.23E−462 3.45E+432 39883 38124 36365 1759

Simualtion 3
Additive model 4.08E+1751 1.69E+2941 42257 40126 37996 2131
Testlet model 9.51E−1331 1.85E−401 43322 41668 40013 1654

Simualtion 4
Additive model 1.07E+1532 5.35E+2782 39203 37431 35660 1771
Testlet model 1.27E+502 6.20E+1352 39693 37950 36207 1743

Note: 1. The reported values are p(y|M)∗exp(20500) or p∗(y|M)∗exp(20500)
3. The reported values are p(y|M)∗exp(18800) or p∗(y|M)∗exp(18800)

mented using Gibbs sampling where 7,000 iterations were obtained with the first 2,000 as
burn-in, which was sufficient for the chains to reach stationarity. Ten replications were
used and the posterior expectations of the Gibbs samples were used to obtain the posterior
estimates necessary to derive Bayes factors as well as Bayesian deviance (see Section 4 for
a description of these measures) results.

The model comparison results in each simulation were averaged over the ten replications
and are summarized in Table A1. The marginal densities p(y|M) and p∗(y|M), displayed
in the first two columns of the table, are used to compute the Bayes factor (BF ) and

the posterior Bayes factor (PBF ) between two models Mi and Mj , i.e., BF =
p(y|Mi)
p(y|Mj)

,

PBF =
p∗(y|Mi)
p∗(y|Mj)

. As a BF or PBF greater than 100 indicates decisive evidence in favor

of Mi (cf., Robert, 2001), the additive MIRT model was found to be consistently better
than the more strict testlet model, even when the actual intertrait correlations were zero
(because the testlet model assumes that α0vj and αvj are equal whereas they were set
differently in the simulation study).

The remaining table summarizes the Bayesian deviance results. Specifically, the addi-
tive MIRT model shows consistently smaller DIC, D̄, and D(ϑ̄), than the testlet model.
Since small deviance values indicate better model fit, the additive MIRT model is sug-
gested to provide a better description of the simulated data in various simulated situations
considered, even after penalizing for model complexities. Hence, the testlet model was not
considered in the analysis of the study.
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Appendix B. Full conditional distributions for the Bayesian additive
MIRT model

The full conditional distribution for each parameter can be derived as follows:

1. For variable Zvij :

[Zvij |•] ∝ f(yvij |Zvij)p(Zvij |ηvij)

∝ exp{−1
2
(Zvij − ηvij)2}(I(Zvij > 0)I(yvij = 1) + I(Zvij ≤ 0)I(yvij = 0)). (8)

So, the full conditional of Zvij , denoted as Zvij |• has as a truncated normal distribution

Zvij |• ∼
{

N(0,∞)(ηvij , 1), if yvij = 1
N(−∞,0)(ηvij , 1), if yvij = 0

. (9)

2. For the person parameters θi:

[θi|•] ∝ p(Z|θ, ξ)p(θ|µ)

∝ exp{−1
2
(θi − µi)

′(θi − µi)}
m∏

v=1

kv∏
j=1

exp{ − 1
2
(Zvij − (α0vjθ0i + αvjθvi − γvj))2}

= exp{−1
2
(θi − µi)

′(θi − µi)} exp{−1
2
(Aθi − B)′(Aθi − B)}

∝ exp{−1
2
[θ′

i(A
′A + I)θi − 2(µi + A′B)′θi]}.

(10)
Thus, the full conditional for θi has a multivariate normal distribution,

θi|• ∼ Nm+1((A′A + I)−1(µi + A′B), (A′A + I)−1), (11)

where A =

⎛
⎜⎜⎜⎜⎝

α01 α1 0 · · · 0
α02 0 α2 · · · 0
...

...
...

. . .
...

α0m 0 0 · · · αm

⎞
⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

Z1i + γ1

Z2i + γ2

...
Zmi + γm

⎞
⎟⎟⎟⎟⎠ .

3. Then, for the item parameters ξvj :

[ξvj |•] ∝ p(Z|θ, ξ)p(ξ)

∝
n∏

i=1

exp{−1
2
(Zvij − (α0vjθvi + αvjθvi − γvj))2} exp{−1

2
ξ′

vjξvj}I(α0vj > 0)I(αvj > 0)

= exp{−1
2
[(Zv − xvξvj)

′(Zv − xvξvj) + ξ′
vjξvj ]}I(α0vj > 0)I(αvj > 0)

∝ exp{−1
2
[ξ′

vj(x
′
vxv + I)ξvj − 2(Z′

vxv)ξvj ]}I(α0vj > 0)I(αvj > 0). (12)
So, the full conditional for ξvj is
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ξvj |• ∼ N((x′
vxv + I)−1x′

vZv, (x′
vxv + I)−1)I(α0vj > 0)I(αvj > 0), (13)

where, Zv = [Zvij ]nxkv
, ξv = (ξv1, . . . , ξvkv

)′, xv = [θ0, θv,−1], and θ0 = (θ01, . . . , θ0n)′,
θv = (θv1, . . . , θvn)′, v = 1, . . . , m.

4. Next, for the hyperparameter µi:

[µi|•] ∝ p(θ|µ)p(µ) ∝ exp{−1
2 (θi − µi)′(θi − µi)} exp{−1

2µ′
iΣ

−1µi}

∝ exp{−1
2 [µ′

i(I + Σ−1)µi − 2θ′
iµi]}.

(14)

So, the full conditional for µi is distributed as

µi|• ∼ Nm+1((I + Σ−1)−1θi, (I + Σ−1)−1). (15)

5. Lastly, for the hyperparameter Σ:

[Σ|•] ∝ p(µ|Σ)p(Σ) ∝ |Σ|− 2(m+1)+1
2 exp{−1

2 tr(Σ−1)}
n∏

i=1

|Σ|− 1
2 exp{−1

2µ′
iΣ

−1µi}

= |Σ|− 2(m+1)+n+1
2 exp{−1

2 tr[(S + I)Σ−1])}.
(16)

Thus, the full conditional for Σ is an inverse Wishart distribution,

Σ|• ∼ W−1((S + I)−1, n + m + 1), (17)

where S =
n∑

i=1

µiµ
′
i
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