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Using a case study of the Yakima River Valley in Washington State, we show that 
relatively simple tools originally developed to forecast the impact of the El Niño phenomenon on 
water supplies to irrigated agriculture also can be used to estimate impacts during climate 
change.  The significantly shifted probability distribution of water shortages in irrigated 
agriculture during climate change can be used to estimate the impact on agriculture in a region.  
The more permanent nature of changes in the temperature and precipitation regime associated 
with climate change means that risk management options also take a more permanent form (such 
as changes in crops and cultivars, and adding storage).  
 

Total agricultural production in the Yakima Basin, including low-valued crops and 
livestock, is worth about $1.3 billion and annual net cash return (roughly, net farm income) is 
about $310 million.  The key irrigation season water supply concept for the Yakima is Total 
Water Supply Available (TWSA), which is computed as the estimated unregulated flow of the 
river, plus accumulated stored water on April 1, plus estimated irrigation return flow, less 
remaining storage on September 30. In years with low irrigation season flows, the sum of all 
users’ entitlements exceeds TWSA, leading to a deficit in available flow.  The deficit is resolved 



by proportionately reducing (prorationing) water allocations to the more junior irrigators, whose 
entitlements therefore are considered to be “proratable.”  The total annual value of high-valued 
crops in the Yakima Basin is about $750 million at the farm gate, of which junior growers appear 
to grow about two-thirds.  Senior users are considered to be “non-proratable” and generally 
receive their full allocation, regardless of drought.   
 

Earlier analysis (Scott et al. 2004) performed with the CROPSYST model (Stöckle and 
Nelson 1996) in the Yakima valley showed that most crops have an S-shaped relationship 
between water availability and yield during El Niño-associated drought.  Growing weather 
(mainly temperature regime) matters far less for yield than does the amount of irrigation water 
available (see Figure 1).  Figure 1 shows these relationships for sweet corn for a simple 2˚ C 
global warming and two different levels of atmospheric concentration of carbon dioxide.  The 
baseline yields and plus-2˚ C yields are virtually the same at all levels of water availability for 
either level of carbon dioxide, but levels of water availability below about 80% of normal rapidly 
reduce yields. 

 

 
Figure 1. Effect of 2˚ C Climate Warming, CO2 Atmospheric Concentration, and Water 
Availability on the Mean Yield of Sweet Corn for 40 Simulations with the CROPSYST model, 
with Yakima Valley Soils and Crop Management.   

 
Climate warming has similar effects on water availability and crop growth as recent El 

Niño episodes. Calculations for TWSA have been done for a number of future climate scenarios, 
both using downscaled transient (time-dependent) General Circulation Model (GCM) scenarios  
results and simple increases in average temperatures.  These mid-21st century simulations, as 
calculated by the Distributed Hydrologic Supply and Vegetation Model (DHSVM) (Wigmosta et 
al. 2002), show that climate warming substantially reduces the seasonal TWSA, even though 



annual runoff is similar to current climate.  This is because with warmer temperatures, the 
mountain snowpack in the Yakima basin is smaller and melts off as much as two months earlier. 
Storage in the basin is not adequate to capture the additional winter flow, so that the unregulated 
flow portion of TWSA is smaller than under current climate, and storage does not grow to 
compensate. As shown in Figure 2, with the current climate, severe prorationing of about 50% or 
more occurs roughly 14% of the time; with 2º C warming, about 54% of the time, and with 4º  C 
warming, almost 92% of the time.  The latter is equivalent to an almost continuous drought under 
today’s conditions.  
 
 

 
 
Figure 2.  Effect of Climate Warming of 2˚ C and 4˚ C on Total Water Supply Available and 
Prorationing of Water in the Yakima Valley for Average April 1 Reservoir Fill and 8.5 m3 (300 
cfs) Minimum Instream Flow.   
 

Periodic drought in the Yakima Valley can be quite costly to irrigated agriculture.  For 
example, in the water year October 2000-September 2001 (which was not an El Niño year), 
some water users experienced the most stringent water prorationing on record, and crop losses 
reportedly were in the range of $100 million.  Table 1 shows the potential impact of various 
water shortfalls on crop value among the major irrigation divisions of the Yakima Valley. 
The table is based on CROPSYST yield curves for the major Yakima Valley crops similar to 
Figure 1, on the distribution of crops and junior (proratable) water users among the major 
irrigation divisions of the Yakima Valley, and on average crop prices for the last ten years,.  

 



Table 1.  Effect of Reduced Water Availability in Current Climate for Yakima Valley 
Crop Value at Average Prices. 
 

Estimated Crop Value in Million $ When Water Availability to Junior Users is 

Division 100% 90% 80% 70% 60% 50% 40% 30% 20%

Roza $188 $187 $178 $162 $141 $119 $98 $80 $69

Wapato $177 $177 $172 $165 $155 $144 $133 $123 $117

Kittitas $24 $23 $22 $20 $18 $15 $12 $9 $7

Sunnyside $184 $184 $181 $176 $170 $164 $158 $152 $149

Tieton $93 $93 $91 $89 $85 $81 $78 $75 $73

Kennewick $14 $14 $14 $13 $12 $11 $10 $9 $9

Total $680 $677 $659 $624 $581 $534 $489 $448 $424
 

A number of water storage options have been proposed to deal with drought and would 
be more valuable under climate change. The most ambitious of the proposed storage projects is 
Black Rock, which would add about 617 million m3 (500,000 acre-feet [ac-ft]) of Columbia 
River water to the lower Yakima (mainly the Roza and Sunnyside Divisions) to supplement the 
Yakima’s current 1.4 billion m3 (1.1 million ac-ft) of storage, at a cost currently estimated at $1.9 
billion. For perspective, economic losses in the Yakima Valley reportedly have been about $100 
million in a drought year such as 2001. Under current circumstances, the expected annual 
fisheries benefits and periodic drought relief benefits may be large enough to justify the 
expenditure.  However, since drought damage has been only occasional, environmental 
consequences of new projects uncertain, and the price tag beyond the reach of all but the federal 
government, no projects have been built.   

 
Table 2 shows the approximate impact of different levels of prorationing on value of 

Yakima Valley crop production for normal climate years, El Niño years, all of current climate 
(including normal, El Niño, and La Niña years), and a future climate with 2˚ C average warming.  
The corresponding expected values of climate-related yield losses are shown at the bottom of the 
table, derived by applying the loss in crop value at a given level of water availability times the 
probability of that level of water availability occurring. For example, in normal years there is a 
about a 9% probability that TWSA will be less than or equal to 2.9 billion m3 (2.3 million ac-ft) 
(80% water availability for proratable water users).  The crop loss associated with that level of 
water supply is $21 million = ($680-$659 million), and the estimated value is applied to the 
segment in the cumulative probability function between 90% and 80% water availability, so that 
the marginal probability is calculated as 20% = (29%-9%), and the probability-weighted value 
for the segment $4.2 million. The expected value is simply the sum of the values of the 
individual segments. The normal and El Niño climate TWSA calculations were done for the 
water years 1926-1994, using reconstructed unregulated flows and estimated historical values for 
April 1 and September 30 reservoir contents and return flows.  The Current Climate and 2˚ 
Warming  scenarios of TWSA shown in the table were calculated from modeled unregulated 



flows for 50 years of record, and were standardized on April 1 and September 30 reservoir 
content corresponding to long-term average values of  919 million m3 (745, 000 ac-ft) and  480 
million m3 (389,000 ac-ft), respectively.  Return flows were standardized at 413 million m3 
(335,000 ac-ft).  The individual modeled current climate scenario TWSAs depart somewhat from 
their estimated historical values, and therefore produce a slightly different cumulative probability 
function. However, the differences are mostly at the high-flow end, where crop losses are small 
to begin with.  There is almost no impact on the expected value of crop losses. 

 
Table 2.  Loss of Yakima Crop Production Associated with Low Water Supplies with 

Various Levels of Prorationing 
 

 TWSA and Crop Value Corresponding to Percentage of Full Water Availability to 
Proratable Water Users  

 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 
TWSA (106 m3) 3221 3050 2879 2707 2536 2365 2193 2022 1851 1679 1508 
Crop Value 
(10^6)$ 

$680 $677 $659 $624 $581 $534 $489 $448 $424 $421 $420 

Cumulative Probability that TWSA is Less than Value Above: 
Normal Years 31% 29% 9% 3% <2% <2% <2% <2% <2% <2% <2% 
El Nino Years 75% 65% 60% 50% 35% 25% 10% 5% <2% <2% <2% 
Current Climate 50% 38% 20% 14% 12% 8% 6% 4% 2% <2% <2% 
2 ˚ C Warming 82% 80% 70% 60% 48% 26% 14% 10% 8% 4% 2% 
Expected Annual Value of Crop Losses Due to Insufficient Water (Million$) 
Normal $8.16 
El Nino $83.58 
Current Climate $28.38 
2 Degrees 
Warming 

$104.06 

 

 
The expected values of crop losses that could be prevented by additional storage may be 

compared to that portion of the costs of new storage that might reasonably be attributed to the 
water provide in the lower Yakima River.  We compare a storage project modeled loosely on the 
proposed Black Rock project that would add up to 617 million m3 (500,000 ac-ft) of water to the 
lower Yakima River (Washington Infrastructure Services, Inc. and Benton County Sustainable 
Development 2002).  Although the actual picture is far more complicated, for purposes of this 
analysis it is assumed that 

• the storage project costs $1.9 billion (present value) for 2.1 billion m3 (1.7 
million ac-ft) of total water storage, 617 million of which would be available 
to supplement the Lower Yakima irrigation districts 

• even with climate change, water flows in the Columbia River are not 
materially affected by the withdrawal 

• pumped storage and other benefits (such as fish supplementation flows and 
recreation pay for all annual operating costs and the aspects of the project that 
do not involve supplementing irrigation flows) are equal to about $35 million 
(Washington Infrastructure Service’s mid-range estimate $28 million power 
benefits and $7 million other)  



• the project would be paid for by a federal government loan at 3% per annum, 
with the bonds retired in 50 years.  The farm sector would bear a portion of 
the costs commensurate with the total project costs, less non-farm benefits 

 
Using these assumptions, the annualized costs of the project (at 3% for 50 years) would 

be approximately $73 million.  Net costs to the farm sector (net of non-farm benefits) would be 
$38 million.  Under current climate, the costs of the project are in the range of one-third higher 
than the expected benefits of $28 million. 

 
However, benefits of storage appear to become more certain with warming. Repeating the 

above analysis with 2º C warming shows an expected benefit to agriculture greater than the total 
annualized costs of the project ($104 million benefit in Table 2 vs. $73 million annualized costs).  
It is not clear what the impacts of warming would be on such factors as anadromous fish and 
recreation.  Although more Yakima water could be devoted to instream flow supplementation in 
the Lower Yakima with the project, for example, the lower snowpack in the Cascade mountains 
might mean that some tributaries upstream might no longer sustain salmon or resident fish. On 
the other hand, Yakima flow supplementation may actually become more critical to salmon 
survival as a result. In addition, water may be less available from the Columbia River to operate 
the project with climate warming. 
 

Some other potentially important factors have not been taken into account in this 
preliminary analysis.  The demand for water has been assumed to be roughly constant at the 
higher average temperatures associated with climate warming.  Higher water demands would be 
favorable for more storage.  While it might seem that water demands would be higher with 
warmer temperatures, CROPSYST analyses do not necessarily bear this out on a seasonal basis 
because crops also mature more quickly and need not be watered as long.  Second, the cause of 
climate warming is assumed to be an increase in the atmospheric concentration of carbon 
dioxide, which acts both to increase the growth rate of many crops and to increase the efficiency 
with which the plant uses water.  Both of these factors offset the negative effects of warming to 
some degree and would reduce the agricultural benefits of storage.  Third, the analysis reported 
in this paper does not account for crop switching, water trading, and other attempts to reduce the 
impact of water shortages.  These would also reduce the net benefits of additional storage. 
Finally, while preliminary analysis has been done of the impacts of reduced farm production on 
the rest of the economy in the basin, this has not yet included the effects of increased storage.  

 
Conclusions 

 
 Additional water storage sometimes has been suggested as a method for reducing the 
negative effects of climate change on agriculture.  This paper has used analysis tools hitherto 
focused on the effects of drought under current climate to assess the benefits of one frequently-
discussed storage project on the Yakima River.  The specific preliminary analysis presented in 
this paper suggests that supplementing the water supply of the Yakima River may create net 
agricultural benefits due to the likely greater certainty of water shortages with warmer climate, 
whereas the current expected agricultural benefits do not appear to be large enough.  While a  
more complete analysis of climate change may change these conclusions, it is evident that the 
tools used may be useful in helping determine whether water storage is a valuable option to deal 



with climate change in the Yakima Valley.  The same tools may also prove valuable in screening 
options for other river basins.  
 
Author Contact Information: 
Michael J. Scott 
Staff Scientist 
Battelle Pacific Northwest Division 
P.O. Box 999 
Mail Stop K6-05 
Richland , WA 99352 
(509) 372-4273 
michael.scott@pnl.gov 
 
References 
 
Scott, M.J., L.W. Vail, J.A. Jaksch, C.O. Stöckle, and A. R. Kemanian. 2004. Water exchanges: 
tools to beat El Niño climate variability in irrigated agriculture. Journal of the American Water 
Management Association 40 (1):15-31. 
 
Stöckle, C.O. and R. Nelson. 1996. Cropsyst User’s Manual (Version 2.0). Biological Systems 
Engineering Department, Washington State University, Pullman, WA. 
 
Washington Infrastructure Services, Inc. and Benton County Sustainable Development. 2002. 
Yakima River Storage Enhancement Initiative Black Rock Reservoir Study.  Final Report.  
 
Wigmosta, M.S., B. Nijssen, and P. Storck. 2002. The Distributed Hydrology Soil Vegetation 
Model. In Mathematical Models of Small Watershed Hydrology and Applications, V.P. Singh 
and D.K. Frevert, eds.  Littleton, CO: Water Resource Publications. 
 
 
 
 


	Southern Illinois University Carbondale
	OpenSIUC
	7-20-2004

	Climate Change and Adaptation in Irrigated Agriculture - A Case Study of the Yakima River
	Scott
	Recommended Citation



