II. MARKOV BEHAVIOR
AND THE WEAK GENERATOR

Campinas, Brazil
June 27, 2002

Salah-Eldin A. Mohammed
Southern Illinois University
Carbondale, IL 62901–4408 USA
Web page: http://sfde.math.siu.edu
II. MARKOV BEHAVIOR AND THE GENERATOR

Consider the sfde

\[dx(t) = H(t, x_t) \, dt + G(t, x_t) \, dW(t), \quad t > 0 \]
\[x_0 = \eta \in C := C([-r, 0], \mathbb{R}^d) \] (XIII)

with coefficients \(H : [0, T] \times C \to \mathbb{R}^d, \quad G : [0, T] \times C \to \mathbb{R}^{d \times m}, \) \(m \)-dimensional Brownian motion \(W \) and trajectory field \(\{^\eta x_t : t \geq 0, \eta \in C\} \).

1. Questions

(i) For the sfde (XIII) does the trajectory field \(x_t \) give a diffusion in \(C \) (or \(M_2 \))?

(ii) How does the trajectory \(x_t \) transform under smooth non-linear functionals \(\phi : C \to \mathbb{R} \)?

(iii) What “diffusions” on \(C \) (or \(M_2 \)) correspond to sfde’s on \(\mathbb{R}^d \)?

We will only answer the first two questions. More details in [Mo], Pitman Books, 1984, Chapter III, pp. 46-112. Third question is OPEN.
Difficulties

(i) Although the current state $x(t)$ is a semimartingale, the trajectory x_t does not seem to possess any martingale properties when viewed as C- (or M2)-valued process: e.g. for Brownian motion W ($H \equiv 0, G \equiv 1$):

$$[E(W_t|\mathcal{F}_{t_1})](s) = W(t_1) = W_{t_1}(0), \quad s \in [-r, 0]$$

whenever $t_1 \leq t - r$.

(ii) Lack of strong continuity leads to the use of weak limits in C which tend to live outside C.

(iii) We will show that x_t is a Markov process in C. However almost all tame functions lie outside the domain of the (weak) generator.

(iv) Lack of an Itô formula makes the computation of the generator hard.

Hypotheses (M)

(i) $\mathcal{F}_t :=$ completion of $\sigma\{W(u) : 0 \leq u \leq t\}$, $t \geq 0$.

(ii) H, G are jointly continuous and globally Lipschitz in second variable uniformly wrt the first:

$$|H(t, \eta_1) - H(t, \eta_2)| + \|G(t, \eta_1) - G(t, \eta_2)\| \leq L\|\eta_1 - \eta_2\|_C$$

for all $t \in [0, T]$ and $\eta_1, \eta_2 \in C$.

2. The Markov Property

$\eta_{x^{t_1}} :=$ solution starting off at $\theta \in L^2(\Omega, C; \mathcal{F}_{t_1})$ at $t = t_1$ for the sfde:

$$\eta_{x^{t_1}}(t) = \begin{cases}
\eta(0) + \int_{t_1}^{t} H(u, x_u^{t_1}) \, du + \int_{t_1}^{t} G(u, x_u^{t_1}) \, dW(u), & t > t_1 \\
\eta(t - t_1), & t_1 - r \leq t \leq t_1.
\end{cases}$$
This gives a two-parameter family of mappings
\[T_{t_2}^{t_1} : L^2(\Omega, C; F_{t_1}) \to L^2(\Omega, C; F_{t_2}), \ t_1 \leq t_2, \]
\[T_{t_2}^{t_1}(\theta) := \theta x_{t_2}^{t_1}, \quad \theta \in L^2(\Omega, C; F_{t_1}). \]
\[(1) \]

Uniqueness of solutions gives the \textit{two-parameter} semigroup property:
\[T_{t_2}^{t_1} \circ T_{t_1}^0 = T_{t_2}^0, \quad t_1 \leq t_2. \]
\[(2) \]

([Mo], Pitman Books, 1984, Theorem II (2.2), p. 40.)

\textbf{Theorem II.1} (Markov Property) ([Mo], 1984).

In (XIII) suppose Hypotheses (M) hold. Then the trajectory field \(\{ x_t : t \geq 0, \eta \in C \} \) is a Feller process on \(C \) with transition probabilities
\[p(t_1, \eta, t_2, B) := P(\eta x_{t_2}^{t_1} \in B) \quad t_1 \leq t_2, \quad B \in \text{Borel} \ C, \quad \eta \in C. \]
\[i.e. \]
\[P(x_{t_2} \in B | F_{t_1}) = p(t_1, x_{t_1}^{t_2}, t_2, B) = P(x_{t_2} \in B | x_{t_1}) \text{ a.s.} \]

Further, if \(H \) and \(G \) do not depend on \(t \), then the trajectory is time-homogeneous:
\[p(t_1, \eta, t_2, \cdot) = p(0, \eta, t_2 - t_1, \cdot), \quad 0 \leq t_1 \leq t_2, \quad \eta \in C. \]

\textbf{Proof.}

[Mo], 1984, Theorem III.1.1, pp. 51-58. [Mo], 1984, Theorem III.2.1, pp. 64-65. \(\Box \)
3. The Semigroup

In the autonomous sfde
\[
\begin{align*}
\frac{dx(t)}{dt} &= H(x_t)\, dt + G(x_t)\, dW(t) \quad t > 0 \\
x_0 &= \eta \in C
\end{align*}
\]
\text{(XIV)}

suppose the coefficients \(H : C \to \mathbb{R}^d, \ G : C \to \mathbb{R}^{d \times m} \) are \textit{globally bounded} and globally Lipschitz.

\(C_b := \) Banach space of all bounded uniformly continuous functions \(\phi : C \to \mathbb{R} \), with the sup norm
\[
\| \phi \|_{C_b} := \sup_{\eta \in C} |\phi(\eta)|, \quad \phi \in C_b.
\]

Define the operators \(P_t : C_b \hookrightarrow C_b, t \geq 0 \), on \(C_b \) by
\[
P_t(\phi)(\eta) := E\phi(\eta x_t) \quad t \geq 0, \ \eta \in C.
\]

A family \(\phi_t, t > 0, \) converges weakly to \(\phi \in C_b \) as \(t \to 0^+ \) if \(\lim_{t \to 0^+} < \phi_t, \mu > = < \phi, \mu > \) for all finite regular Borel measures \(\mu \) on \(C \). Write \(\phi := w - \lim_{t \to 0^+} \phi_t \). This is equivalent to
\[
\begin{align*}
\phi_t(\eta) &\to \phi(\eta) \text{ as } t \to 0^+, \text{ for all } \eta \in C \\
\{\|\phi_t\|_{C_b} : t \geq 0\} &\text{ is bounded}.
\end{align*}
\]

(Dynkin, [Dy], Vol. 1, p. 50). Proof uses uniform boundedness principle and dominated convergence theorem.

\textbf{Theorem II.2} ([Mo], Pitman Books, 1984)

(i) \(\{P_t\}_{t \geq 0} \) is a one-parameter contraction semigroup on \(C_b \).
(ii) \(\{P_t\}_{t \geq 0} \) is weakly continuous at \(t = 0 \):
\[
\begin{align*}
\{P_t(\phi)(\eta) \to \phi(\eta) \text{ as } t \to 0^+ \}
\{|P_t(\phi)(\eta)| : t \geq 0, \eta \in C \}\text{ is bounded by } \|\phi\|_{C_b}.
\end{align*}
\]

(iii) If \(r > 0 \), \(\{P_t\}_{t \geq 0} \) is never strongly continuous on \(C_b \) under the sup norm.

Proof.

(i) One parameter semigroup property
\[
P_{t_2} \circ P_{t_1} = P_{t_1+t_2}, \quad t_1, t_2 \geq 0
\]
follows from the continuation property (2) and time-homogeneity of the Feller process \(x_t \) (Theorem II.1).

(ii) Definition of \(P_t \), continuity and boundedness of \(\phi \) and sample-continuity of trajectory \(\eta x_t \) give weak continuity of \(\{P_t(\phi) : t > 0\} \) at \(t = 0 \) in \(C_b \).

(iii) Lack of strong continuity of semigroup:
Define the canonical shift (static) semigroup
\[
S_t : C_b \to C_b, \quad t \geq 0,
\]
by
\[
S_t(\phi)(\eta) := \phi(\tilde{\eta}_t), \quad \phi \in C_b, \quad \eta \in C,
\]
where \(\tilde{\eta} : [-r, \infty) \to \mathbb{R}^d \) is defined by
\[
\tilde{\eta}(t) = \begin{cases}
\eta(0) & t \geq 0 \\
\eta(t) & t \in [-r, 0).
\end{cases}
\]
Then \(P_t \) is strongly continuous iff \(S_t \) is strongly continuous. \(P_t \) and \(S_t \) have the same “domain of strong continuity” independently of \(H, G, \) and \(W \). This follows from the global boundedness of \(H \) and \(G \). ([Mo], Theorem IV.2.1, pp. 72-73). Key relation is
\[
\lim_{t \to 0^+} E\|\eta x_t - \tilde{\eta}_t\|_{C_b}^2 = 0.
\]
uniformly in \(\eta \in C \). But \(\{S_t\} \) is strongly continuous on \(C_b \) iff \(C \) is locally compact iff \(r = 0 \) (no memory) ! ([Mo], Theorems IV.2.1 and IV.2.2, pp.72-73). Main idea is to pick any \(s_0 \in [-r,0) \) and consider the function \(\phi_0 : C \rightarrow \mathbb{R} \) defined by

\[
\phi_0(\eta) := \begin{cases}
\eta(s_0) & \|\eta\|_C \leq 1 \\
\frac{\eta(s_0)}{\|\eta\|_C} & \|\eta\|_C > 1
\end{cases}
\]

Let \(C_b^0 \) be the domain of strong continuity of \(P_t \), viz.

\[
C_b^0 := \{ \phi \in C_b : P_t(\phi) \rightarrow \phi \text{ as } t \rightarrow 0^+ \text{ in } C_b \}.
\]

Then \(\phi_0 \in C_b \), but \(\phi_0 \notin C_b^0 \) because \(r > 0 \).

4. The Generator

Define the weak generator \(A : D(A) \subset C_b \rightarrow C_b \) by the weak limit

\[
A(\phi)(\eta) := w - \lim_{t \rightarrow 0^+} \frac{P_t(\phi)(\eta) - \phi(\eta)}{t}
\]

where \(\phi \in D(A) \) iff the above weak limit exists. Hence \(D(A) \subset C_b^0 \) ([Dy], Vol. 1, Chapter I, pp. 36-43). Also \(D(A) \) is weakly dense in \(C_b \) and \(A \) is weakly closed. Further

\[
\frac{d}{dt} P_t(\phi) = A(P_t(\phi)) = P_t(A(\phi)), \quad t > 0
\]

for all \(\phi \in D(A) \) ([Dy], pp. 36-43).

Next objective is to derive a formula for the weak generator \(A \). We need to augment \(C \) by adjoining a canonical \(d \)-dimensional direction. The generator \(A \) will be equal to the weak generator of the shift semigroup \(\{S_t\} \) plus a second order linear partial differential operator along this new direction. Computation requires the following lemmas.

Let

\[
F_d = \{ v\chi_{\{0\}} : v \in \mathbb{R}^d \}
\]

\[
C \oplus F_d = \{ \eta + v\chi_{\{0\}} : \eta \in C, v \in \mathbb{R}^d \}, \quad \|\eta + v\chi_{\{0\}}\| = \|\eta\|_C + |v|
\]
Lemma II.1. ([Mo], Pitman Books, 1984)

Suppose \(\phi : C \to \mathbb{R} \) is \(C^2 \) and \(\eta \in C \). Then \(D\phi(\eta) \) and \(D^2\phi(\eta) \) have unique weakly continuous linear and bilinear extensions

\[
D\phi(\eta) : C \oplus F_d \to \mathbb{R}, \quad D^2\phi(\eta) : (C \oplus F_d) \times (C \oplus F_d) \to \mathbb{R}
\]

respectively.

Proof.

First reduce to the one-dimensional case \(d = 1 \) by using coordinates.

Let \(\alpha \in C^* = [C([-r, 0], \mathbb{R})]^* \). We will show that there is a weakly continuous linear extension \(\pi : C \oplus F_1 \to \mathbb{R} \) of \(\alpha \); viz. If \(\{\xi^k\} \) is a bounded sequence in \(C \) such that \(\xi^k(s) \to \xi(s) \) as \(k \to \infty \) for all \(s \in [-r, 0] \), where \(\xi \in C \oplus F_1 \), then \(\alpha(\xi^k) \to \pi(\xi) \) as \(k \to \infty \). By the Riesz representation theorem there is a unique finite regular Borel measure \(\mu \) on \([-r, 0] \) such that

\[
\alpha(\eta) = \int_{-r}^{0} \eta(s) \, d\mu(s)
\]

for all \(\eta \in C \). Define \(\pi \in [C \oplus F_1]^* \) by

\[
\pi(\eta + v\chi_{\{0\}}) = \alpha(\eta) + v\mu(\{0\}), \quad \eta \in C, \quad v \in \mathbb{R}.
\]

Easy to check that \(\pi \) is weakly continuous. *(Exercise: Use Lebesgue dominated convergence theorem.)*

Weak extension \(\pi \) is unique because each function \(v\chi_{\{0\}} \) can be approximated weakly by a sequence of continuous functions \(\{\xi^k_0\} \):

\[
\xi^k_0(s) := \begin{cases} (ks + 1)v, & -\frac{1}{k} \leq s \leq 0 \\ 0 & -r \leq s < -\frac{1}{k}. \end{cases}
\]
Put $\alpha = D\phi(\eta)$ to get first assertion of lemma.

To construct a weakly continuous bilinear extension $\overline{\beta} : (C \oplus F_1) \times (C \oplus F_1) \to \mathbb{R}$ for any continuous bilinear form $\beta : C \times C \to \mathbb{R}$, use classical theory of vector measures (Dunford and Schwartz, [D-S], Vol. I, Section 6.3). Think of β as a continuous linear map $C \to C^*$. Since C^* is weakly complete ([D-S], I.13.22, p. 341), then β is a weakly compact linear operator ([D-S], Theorem I.7.6, p. 494): i.e. it maps norm-bounded sets in C into weakly sequentially compact sets in C^*. By the Riesz representation theorem (for vector measures), there is a unique C^*-valued Borel measure λ on $[-r, 0]$ (of finite semi-variation) such that

$$\beta(\xi) = \int_{-r}^{0} \xi(s) d\lambda(s)$$

for all $\xi \in C$. ([D-S], Vol. I, Theorem VI.7.3, p. 493). By the dominated convergence theorem for vector measures ([D-S], Theorem IV.10.10, p. 328), one could reach elements in F_1 using weakly convergent sequences of type $\{\xi_k\}$. This gives a unique weakly continuous extension $\hat{\beta} : C \oplus F_1 \to C^*$. Next for each $\eta \in C$, $v \in \mathbb{R}$, extend $\hat{\beta}(\eta + v\chi_{\{0\}}) : C \to \mathbb{R}$ to a weakly continuous linear map $\overline{\beta}(\eta + v\chi_{\{0\}}) : C \oplus F_1 \to \mathbb{R}$. Thus $\overline{\beta}$ corresponds to the weakly continuous bilinear extension $\overline{\beta}(\cdot)(\cdot) : [C \oplus F_1] \times [C \oplus F_1] \to \mathbb{R}$ of β. (Check this as exercise).
Finally use $\beta = D^2\phi(\eta)$ for each fixed $\eta \in C$ to get the required bilinear extension $D^2\phi(\eta)$.

\[\square\]

Lemma II.2. ([Mo], Pitman Books, 1984)

For $t > 0$ define $W_t^* \in C$ by

\[
W_t^*(s) := \begin{cases}
\frac{1}{\sqrt{t}}[W(t + s) - W(0)], & -t \leq s < 0, \\
0 & -r \leq s \leq -t.
\end{cases}
\]

Let β be a continuous bilinear form on C. Then

\[
\lim_{t \to 0+} \frac{1}{t} E\beta(\eta x_t - \tilde{\eta}_t, \eta x_t - \tilde{\eta}_t) - E\beta(G(\eta) \circ W_t^*, G(\eta) \circ W_t^*) = 0
\]

Proof.

Use

\[
\lim_{t \to 0+} E\|\frac{1}{\sqrt{t}}(\eta x_t - \tilde{\eta}_t - G(\eta) \circ W_t^*)\|_C^2 = 0.
\]

The above limit follows from the Lipschitz continuity of H and G and the martingale properties of the Itô integral. Conclusion of lemma is obtained by a computation using the bilinearity of β, Hölder’s inequality and the above limit. ([Mo], Pitman Books, 1984, pp. 86-87.)

\[\square\]

Lemma II.3. ([Mo], Pitman Books, 1984)

Let β be a continuous bilinear form on C and $\{e_i\}_{i=1}^m$ be any basis for \mathbb{R}^m. Then

\[
\lim_{t \to 0+} \frac{1}{t} E\beta(\eta x_t - \tilde{\eta}_t, \eta x_t - \tilde{\eta}_t) = \sum_{i=1}^m \beta(G(\eta)(e_i)\chi_{\{0\}}, G(\eta)(e_i)\chi_{\{0\}})
\]

for each $\eta \in C$.

Proof.
By taking coordinates reduce to the one-dimensional case $d = m = 1$:

$$
\lim_{t \to 0+} E\beta(W_t^*, W_t^*) = \mathcal{B}(\chi_{\{0\}}, \chi_{\{0\}})
$$

with W one-dimensional Brownian motion. The proof of the above relation is lengthy and difficult. A key idea is the use of the projective tensor product $C \otimes \pi C$ in order to view the continuous \textit{bilinear} form β as a continuous \textit{linear} functional on $C \otimes \pi C$. At this level β commutes with the (Bochner) expectation. Rest of computation is effected using Mercer’s theorem and some Fourier analysis. See [Mo], 1984, pp. 88-94. □

\textbf{Theorem II.3.} ([Mo], Pitman Books, 1984)

In (XIV) suppose H and G are globally bounded and Lipschitz. Let $S : D(S) \subset C_b \to C_b$ be the weak generator of $\{S_t\}$. Suppose $\phi \in D(S)$ is sufficiently smooth (e.g. ϕ is C^2, $D\phi$, $D^2\phi$ globally bounded and Lipschitz). Then $\phi \in D(A)$ and

$$
A(\phi)(\eta) = S(\phi)(\eta) + D\phi(\eta)\langle H(\eta)\chi_{\{0\}} \rangle
+ \frac{1}{2} \sum_{i=1}^{m} D^2\phi(\eta)\langle G(\eta)(e_i)\chi_{\{0\}}, G(\eta)(e_i)\chi_{\{0\}} \rangle.
$$

where $\{e_i\}_{i=1}^{m}$ is any basis for \mathbb{R}^m.

\textbf{Proof.}

\textbf{Step 1.}

For fixed $\eta \in C$, use Taylor’s theorem:

$$
\phi(\eta x_t) - \phi(\eta) = \phi(\tilde{\eta}_t) - \phi(\eta) + D\phi(\tilde{\eta}_t)(\eta x_t - \tilde{\eta}_t) + R(t)
$$

a.s. for $t > 0$; where

$$
R(t) := \int_0^1 (1 - u) D^2\phi(\tilde{\eta}_t + u(\eta x_t - \tilde{\eta}_t))(\eta x_t - \tilde{\eta}_t, \eta x_t - \tilde{\eta}_t) du.
$$
Take expectations and divide by $t > 0$:

$$
\frac{1}{t} E[\phi(nx_t) - \phi(\eta)] = \frac{1}{t} \left[S_t(\phi(\eta) - \phi(\eta)) + D\phi(\bar{\eta}_t) \left\{ E \left[\frac{1}{t} (nx_t - \bar{\eta}_t) \right] \right\} \right] \\
+ \frac{1}{t} ER(t)
$$

(3)

for $t > 0$.

As $t \to 0+$, the first term on the RHS converges to $S(\phi)(\eta)$, because $\phi \in D(S)$.

Step 2.

Consider second term on the RHS of (3). Then

$$
\lim_{t \to 0^+} \left[E \left\{ \frac{1}{t} (nx_t - \bar{\eta}_t) \right\} \right](s) = \begin{cases}
\lim_{t \to 0^+} \frac{1}{t} \int_0^t E[H(nx_u)] \, du, & s = 0 \\
0 & -r \leq s < 0.
\end{cases}
$$

$$
= [H(\eta)\chi_{\{0\}}](s), & -r \leq s \leq 0.
\]

Since H is bounded, then $\|E\{\frac{1}{t} (nx_t - \bar{\eta}_t)\}\|_C$ is bounded in $t > 0$ and $\eta \in C$ (**Exercise**). Hence

$$
w - \lim_{t \to 0^+} \left[E \left\{ \frac{1}{t} (nx_t - \bar{\eta}_t) \right\} \right] = H(\eta)\chi_{\{0\}} (\notin C).
$$

Therefore by Lemma II.1 and the continuity of $D\phi$ at η:

$$
\lim_{t \to 0^+} D\phi(\bar{\eta}_t) \left\{ E \left[\frac{1}{t} (nx_t - \bar{\eta}_t) \right] \right\} = \lim_{t \to 0^+} D\phi(\eta) \left\{ E \left[\frac{1}{t} (nx_t - \bar{\eta}_t) \right] \right\} \\
= \overline{D\phi(\eta)}(H(\eta)\chi_{\{0\}})
$$

Step 3.
To compute limit of third term in RHS of (3), consider

$$
\left| \frac{1}{t} ED^2 \phi [\tilde{\eta}_t + u(\eta x_t - \tilde{\eta}_t)](\eta x_t - \tilde{\eta}_t, \eta x_t - \tilde{\eta}_t)
- \frac{1}{t} ED^2 \phi (\eta)(\eta x_t - \tilde{\eta}_t, \eta x_t - \tilde{\eta}_t) \right|
$$

$$
\leq (E \|D^2 \phi [\tilde{\eta}_t + u(\eta x_t - \tilde{\eta}_t)] - D^2 \phi (\eta)\|^2)^{1/2} \left[\frac{1}{t^2} E \|\eta x_t - \tilde{\eta}_t\|^4 \right]^{1/2}
$$

$$
\leq K(t^2 + 1)^{1/2} \left[E \|D^2 \phi [\tilde{\eta}_t + u(\eta x_t - \tilde{\eta}_t)] - D^2 \phi (\eta)\|^2 \right]^{1/2}
\rightarrow 0
$$
as $t \to 0+$, uniformly for $u \in [0,1]$, by martingale properties of the Itô integral and the Lipschitz continuity of $D^2 \phi$. Therefore by Lemma II.3

$$
\lim_{t \to 0+} \frac{1}{t} ER(t) = \int_0^1 (1 - u) \lim_{t \to 0+} \frac{1}{t} ED^2 \phi (\eta)(\eta x_t - \tilde{\eta}_t, \eta x_t - \tilde{\eta}_t) \, du
$$

$$
= \frac{1}{2} \sum_{i=1}^m D^2 \phi (\eta)(G(\eta)(e_i)\chi_{\{0\}}, G(\eta)(e_i)\chi_{\{0\}}). \)
$$

The above is a weak limit since $\phi \in D(S)$ and has first and second derivatives globally bounded on C. \square

5. Quasitame Functions

Recall that a function $\phi : C \to \mathbb{R}$ is tame (or a cylinder function) if there is a finite set $\{s_1 < s_2 < \cdots < s_k\}$ in $[-r,0]$ and a C^∞-bounded function $f : (\mathbb{R}^d)^k \to \mathbb{R}$ such that

$$
\phi(\eta) = f(\eta(s_1), \cdots, \eta(s_k)), \quad \eta \in C.
$$

The set of all tame functions is a weakly dense subalgebra of C_b, invariant under the static shift S_t and generates Borel C. For $k \geq 2$ the tame function ϕ lies outside the domain of strong continuity C^0_b of P_t, and hence outside $D(A)$ ([Mo], Pitman Books, 1984, pp.98-103; see also proof of Theorem IV .2.2, pp. 73-76). To overcome this difficulty we introduce
Definition.

Say $\phi : C \to \mathbb{R}$ is quasitame if there are C^∞-bounded maps $h : (\mathbb{R}^d)^k \to \mathbb{R}$, $f_j : \mathbb{R}^d \to \mathbb{R}^d$, and piecewise C^1 functions $g_j : [-r, 0] \to \mathbb{R}, 1 \leq j \leq k - 1$, such that

$$
\phi(\eta) = h \left(\int_{-r}^{0} f_1(\eta(s))g_1(s) ds, \ldots, \int_{-r}^{0} f_{k-1}(\eta(s))g_{k-1}(s) ds, \eta(0) \right)
$$

for all $\eta \in C$.

Theorem II.4. ([Mo], Pitman Books, 1984)

The set of all quasitame functions is a weakly dense subalgebra of C_0^0, invariant under S_t, generates Borel C and belongs to $D(A)$. In particular, if ϕ is the quasitame function given by (4), then

$$
A(\phi)(\eta) = \sum_{j=1}^{k-1} D_j h(m(\eta))\{f_j(\eta(0))g_j(0) - f_j(\eta(-r))g_j(-r)
$$

$$
- \int_{-r}^{0} f_j(\eta(s))g_j'(s) ds \}
$$

$$
+ D_k h(m(\eta))(H(\eta)) + \frac{1}{2}\text{trace}[D_k^2 h(m(\eta)) \circ (G(\eta) \times G(\eta))].
$$

for all $\eta \in C$, where

$$
m(\eta) := \left(\int_{-r}^{0} f_1(\eta(s))g_1(s) ds, \ldots, \int_{-r}^{0} f_{k-1}(\eta(s))g_{k-1}(s) ds, \eta(0) \right).
$$

Remarks.

(i) Replace C by the Hilbert space M_2. No need for the weak extensions because M_2 is weakly complete. Extensions of $D\phi(v, \eta)$ and $D^2\phi(v, \eta)$ correspond to partial derivatives in the \mathbb{R}^d-variable. Tame functions do not exist on M_2 but quasitame functions do! (with $\eta(0)$ replaced by $v \in \mathbb{R}^d$).
Analysis of supermartingale behavior and stability of $\phi^{(\eta x_t)}$ given in Kushner ([Ku], JDE, 1968). Infinite fading memory setting by Mizel and Trützer ([M-T], JIE, 1984) in the weighted state space $\mathbb{R}^d \times L^2((-\infty, 0], \mathbb{R}; \rho)$.

(ii) For each quasitame ϕ on C, $\phi^{(\eta x_t)}$ is a semimartingale, and the Itô formula holds:

$$d[\phi^{(\eta x_t)}] = A(\phi)(\eta x_t) \, dt + D\phi(\eta)(H(\eta)\chi_{\{0\}}) \, dW(t).$$