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I. EXISTENCE

1. Examples

Example 1. (Noisy Feedbacks)

y(t)

o(z(t =)

o(x(t—r))

Box N: Input =y(t), output =z(t) at time ¢ > 0 related by

£(t) = 2(0) + / y(u) dZ(u) (1)

where Z(u) is a semimartingale noise.

Box D: Delays signal z(t) by r(> 0) units of time. A proportion o
(0 <o < 1) is transmitted through D and the rest (1 — o) is used for
other purposes.

Therefore
y(t) =ox(t —r)

Take Z(u) := white noise = W (u)
Then substituting in (1) gives the It6 integral equation

x(t) = z(0) + 0/0 x(u —r)dW (u)



or the stochastic differenial delay equation (sdde):
dr(t) = ox(t — 1)AW (),  t>0 (1)
To solve (I), need an initial process 6(t), —r <t < 0:
xz(t) =0(t) a.s., —r<t<0
r =0: (I) becomes a linear stochastic ode and has closed form solution

o2t
z(t) = 2(0)e” WO~ t>0.

r>0: Solve (I) by successive It6 integrations over steps of length r:
t
z(t) = 6(0) +a/ O(u—r)dW(u), 0<t<r
0

t (v—")
x(t) = z(r) + 0/ [6(0) + 0/0 O(uw—1r)dW (u)]dW (v), r <t <2r,

= 2r <t < 3r,

No closed form solution is known (even in deterministic case).
Curious Fact!

In the sdde (I) the Ito differential W may be replaced by the
Stratonovich differential odW without changing the solution z. Let z
be the solution of (I) under an Ito differential diW. Then using finite
partitions {u;} of the interval [0,4] :

/ x(u—r)o dW(t) = limz %[x(uk — 1)+ x(ugr1 — )] [Wugs1) — Wiug)]
0 k



where the limit in probability is taken as the mesh of the partition
{ui} goes to zero. Compare the Stratonovich and It6 integrals using
the corresponding partial sums:

limE(Z %[x(uk — 1) 4+ (g1 — 7)][W(ugs1) — Wug)]
k

= Yol = IV () ~ W) )

k

= hmE(Z %[x('U/kH_l —r) —x(ur — r)|[W(ug+1) — W(Uk>]>
3
= limz iE[x(ukH — 1) — x(up — )2 E[W (ups1) — Wug))?
k

- limz }lE[x(ukJrl —7) —z(up — 7)) (Ups1 — ug)
k

=0

because W has independent increments, z is adapted to the Brownian
filtration, u — x(u) € L%(Q, R) is continuous, and the delay r is positive.
Alternatively

t t 1
/Ox(u—r)o dW(u):/Ox(u—r)dW(u)+§<x(~—r,W>(t)
and < z(-—r,W > (t) =0 for all ¢+ > 0.

Remark.

When r > 0, the solution process {z(t) : t > —r} of (I) is a mar-
tingale but is non-Markov.

Example 2. (Simple Population Growth)

Consider a large population z(t) at time ¢ evolving with a con-
stant birth rate g > 0 and a constant death rate a per capita. Assume

immediate removal of the dead from the population. Let r > 0 (fixed,
4



non-random= 9, e.g.) be the development period of each individual
and assume there is migration whose overall rate is distributed like
white noise ¢W (mean zero and variance o > 0), where W is one-
dimensional standard Brownian motion. The change in population
Az(t) over a small time interval (¢,¢ + At) is

Ax(t) = —ax(t) At + fa(t — r)At + c WAL
Letting At — 0 and using It6 stochastic differentials,
dx(t) = {—ax(t) + fz(t —r)} dt + odW (t), t>0. (IT)

Associate with the above affine sdde the initial condition (v,n) € R x
LZ([_ra 0]7 R)

z(0) =v, x(s)=mn(s), —-r<s<0.
Denote by M, = R x L?([-r,0],R) the Delfour-Mitter Hilbert space of
all pairs (v,n), v € R, n € L*([-r,0],R) with norm

I, = (10 + " ()P ds)l/Q.

-7

Let W : Rt x Q — R be defined on the canonical filtered proba-
bility space (Q, F, (F;)ier+, P) Where

Q=CR"R), F= Borel Q, F, =0{p, :u <t}

pu : Q@ — R,u € RT, are evaluation maps w — w(u), and P = Wiener
measure on .

Example 3. (Logistic Population Growth)

A single population z(t) at time ¢ evolving logistically with de-
velopment (incubation) period r > 0 under Gaussian type noise (e.g.
migration on a molecular level):

#(t) = [a — Ba(t — r) 2(t) + yzOW (), t>0
5



1.e.
dr(t) = [a — Bx(t — r)| z(t) dt + yx(t)dW (t) t > 0. (II1)

with initial condition
z(t)y=0(t) —r<t<N0.

For positive delay r the above sdde can be solved implicitly using
forward steps of length r, i.e. for 0 <t <r, x(t) satisfies the linear sode
(without delay)

dz(t) = [a— Ot — )] x(t) dt + yx(t)dW (t) 0<t <. (I11)

z(t) is a semimartingale and is non-Markov (Scheutzow [S], 1984).
Example 4. (Heat bath)

Model proposed by R. Kubo (1966) for physical Brownian mo-
tion. A molecule of mass m moving under random gas forces with
position £(¢) and velocity »(t) at time ¢; cf classical work by Einstein
and Ornestein and Uhlenbeck. Kubo proposed the following modifi-
cation of the Ornstein-Uhenbeck process

dé(t) = v(t

(t) dt
! / / / (IV)
mdv(t) = —m[/t Bt —tHo(t) dt'] dt + v(&(t),v(t)) dW (t), t > to.

m =mass of molecule. No external forces.
B = viscosity coefficient function with compact support.

v a function R3 x R? — R representing the random gas forces on
the molecule.

£(t) = position of molecule € R3.
v(t) = velocity of molecule € R3.

W = 3— dimensional Brownian motion.

([Mo], Pitman Books, RN # 99, 1984, pp. 223-226).
6



Further Examples

Delay equation with Poisson noise:

dz(t) = a((t — r)=)dN(t) t> o}

(V)
xo =n € D([-r,0],R)

N := Poisson process with iid interarrival times ([S], Hab. 1988).
D([-r,0],R) = space of all cadlag paths [-r,0] — R, with sup norm.

Simple model of dye circulation in the blood (or pollution) (cf.
Bailey and Williams [B-W], JMAA, 1966, Lenhart and Travis ([L-T],
PAMS, 1986).

do(t) = {va(t) + px(t — 7))} dt + ox(t) dW(t) t> 0}
(V1)

(2(0),20) = (v,1) € My = R x L*([-r,0],R),

([Mo], Survey, 1992; [M-S], II, 1995.)
In above model:
z(t) := dye concentration (gm/cc)
r = time taken by blood to traverse side tube (vessel)
Flow rate (cc/sec) is Gaussian with variance o.

A fixed proportion of blood in main vessel is pumped into side
vessel(s). Model will be analysed in Lecture V (Theorem V.5).



0
dz(t) = {va(t) + px(t —r))} dt + {/ z(t+ s)o(s)ds}dW(t),
(2(0),20) = (v,n) € My = R x L*([-r,0],R), t > 0.
([Mo], Survey, 1992; [M-S], II, 1995.)

(VII)

Linear d-dimensional systems driven by m-dimensional Brown-
ian motion W := (Wy,---,W,,) with constant coefficients.

dz(t) = H(x(t —dy), - ,x(t —dn),z(t), x¢)dt
+) giz(t)dWi(t), t>0 (VIII)

(x(0),2z0) = (v,n) € My := R? x L*([-r,0],R%)
H := (RHN x M, — R? linear functional on (R*)¥ x My; g; d x d-matrices
[Mo], Stochastics, 1990).

Linear systems driven by (helix) semimartingale noise (N, L),

and memory driven by a (stationary) measure-valued process v and a
(stationary) process K ([M-S], I, AIHP, 1996):

da(t) = { /[ GO 9}

+dN(t) /O K(t)(s) x(t + ) ds + dL(t) z(t—), t>0

(2(0),z0) = (v,n) € My = RY x LQ([—T, 0],Rd)

J

Multidimensional affine systems driven by (helix) noise @ ([M-
S], Stochastics, 1990):

dz(t) = { /MO] v(t)(ds) z(t + s)} dt +dQ(t), t> o} .

(2(0),z0) = (v,n) € My := R* x L*([-r,0],RY)
8



Memory driven by white noise:
dx(t) = / t+des}th t>0
vy ={ [ st awis fawi -
z(0)=veR, z(s)=n(s), -r<s<0, r>0

([Mo], Survey, 1992).



Formulation

—r t—r 0

Slice each solution path z over the interval [t —r,t] to get segment z;

as a process on [—r,0]:
zi(s) :=a(t+s) a.s.,t>0seJ:=[-r0).

Therefore sdde’s (I), (II), (III) and (XI) become

dz(t) = oxy(—r)dW(t), t>0
} (1)
xo=60¢€ C([-r0],R)
dz(t) = {—ax(t) + Ba¢(—r)} dt + cdW(t), t>0
} (1)
(2(0),70) = (v,1) € R x L*([-r,0],R)

10



di(t) = o — Bire (—)Jae (0) dit + 7o (0) AW (1)
} (I11)
zg =6 € C([-r,0],R)
dz(t) = x¢(s)dW (s) o dW 0
O={ [, @@V} ave > .

(2(0),20) = (v,n) € R x L*([-r,0],R), r>0

Think of R.H.S.’s of the above equations as functionals of x;

(and z(t)) and generalize to stochastic functional differential equation

(sfde)

dx(t) = h(t,zy)dt + g(t,z¢)dW(t) t>0
} (XII)

1'0:9

on filtered probability space (Q,F, (F;)i>0, P) satisfying the usual con-

ditions:

(Fi)i>0 right-continuous and each F; contains all P-null sets in

C := C([-r,0],R%) Banach space, sup norm.

W (t) = m—dimensional Brownian motion.

11



L2(Q, C) := Banach space of all (F, BorelC)-measurable L? (Bochner

sense) maps Q — C with the L2-norm

16]| 200y = [ /Q “%H%dp(w)} 12

Coefficients:

h:[0,T] x L*(Q,C) — L*(2,RY)  (Drift)

g:10,T) x L*(Q,0) — L*(Q, LR™,R%)  (Diffusion).

Initial data:

0 € L2(Q,C,F).

Solution:

x: [-r, T]xQ — R? measurable and sample-continuous, z|[0,T] (F;)o<¢<7-

adapted and z(s) is Fy-measurable for all s € [-r,0].

Ezercise: [0,T] >t~ x, € C([-r,0],RY) is (F)o<i<r-adapted.

(Hint: Borel C is generated by all evaluations.)

12



Hypotheses (E;).

(i) h,g are jointly continuous and uniformly Lipschitz in the second

variable with respect to the first:

1A(t, 1) — h(t, ¥2)llL20,re) < LlY1 — ¥2llL20,0)

for all ¢t € [0,7] and 1,¢, € L?(Q,C). Similarly for the diffusion

coefficent g.
(ii) For each (F)o<:<r-adapted process y : [0,T] — L*(Q,0),

the processes h(-,y(-)),g(-,y(:)) are also (F;)o<i<7- adapted.

Theorem 1.1. ([Mo], 1984) (Existence and Uniqueness).
Suppose h and g satisfy Hypotheses (E1). Let 6 € L?>(Q,C; Fy).

Then the sfde (XII) has a unique solution %z : [~r,00) x  — R? starting
off at § € L?(Q,C; Fo) with t — %z continuous and °x € L?(Q, C([—r, TIR?)) for
all T > 0. For a given 6, uniqueness holds up to equivalence among all (F;)o<t<7-
adapted processes in L?(Q, C([—r, T], R%)).

Proof.

[Mo], Pitman Books, 1984, Theorem 2.1, pp. 36-39. O
13



Theorem 1.1 covers equations (I), (II), (IV), (VI), (VII), (VIII),
(XI) and a large class of sfde’s driven by white noise. Note that
(XI) does not satisfy the hypotheses underlying the classical results
of Doleans-Dade [Dol], 1976, Metivier and Pellaumail [Met-P], 1980,
Protter, Ann. Prob. 1987, Lipster and Shiryayev [Lip-Sh], [Met],

1982. This is because the coefficient

0
7 — / n(s) VW (s)

on the RHS of (XI) does not admit almost surely Lipschitz (or even

linear) versions C — R! This will be shown later.

When the coeffcients h, g factor through functionals
H:0,T]xC—RY G:[0,T] x C — R>™

we can impose the following local Lipschitz and global linear growth

conditions on the sfde

de(t) = H(t,z,) dt + G(t,z) dW(t) >0
} (XIII)

330:0

with W m-dimensional Brownian motion:

14



Hypotheses (E»)

(i) H,G are Lipschitz on bounded sets in C: For each integer n > 1

there exists L,, > 0 such that

|H(t,m) — H(t,n2)| < Ly|lm —n2llc

for all ¢t € [0,T] and 5,1, € C with ||ni]lc < n, |[|n2llc < n. Similarly

for the diffusion coefficent G.

(ii) There is a constant K > 0 such that

[H )|+ G < K1+ nllo)

for all t €[0,7] and n € C.

Note that the adaptability condition is not needed (explicitly)
because H,G are deterministic and because the sample-continuity and
adaptability of = imply that the segment [0,7] > ¢t — z;, € C is also

adapted.

FEzxercise: Formulate the heat-bath model (IV) as a sfde of the form

(XIII).(8 has compact support in R*.)

15



Theorem 1.2. ([Mo], 1984) (Existence and Uniqueness).
Suppose H and G satisfy Hypotheses (E3) and let § € L?(Q,C;Fp).

Then the sfde (XIII) has a unique (F;)o<¢<7-adapted solution ®x : [—r, T] x
Q — R? starting off at § € L?(Q,C;Fy) with t — %z, continuous and °x €
L3(Q,C([-r,T],RY)) for all T > 0. For a given 6, uniqueness holds up to equiva-

lence among all (F;)o<¢<r-adapted processes in L?(2, C([—r,T], R%)).
Furthermore if € L?*(Q,C; Fy), then %z, € L?*(Q,C; F;) and

Bl < Cull + 10175 0,0)]

for all t € [0,T] and some positive constants Cl,.

16



Proofs of Theorems 1.1, I.2.(Outline)

[Mo], pp. 150-152. Generalize sode proofs in Gihman and Sko-
rohod ([G-S], 1973) or Friedman ([Fr], 1975):

(1) Truncate coefficients outside bounded sets in C. Reduce to glob-

ally Lipschitz case.
(2) Successive approx. in globally Lipschitz situation.

(3) Use local uniqueness ([Mo], Theorem 4.2, p. 151) to “patch up”

solutions of the truncated sfde’s.

For (2) consider globally Lipschitz case and h = 0.

We look for solutions of (XII) by successive approximation in
L?(Q,C([~r,a],RY)). Let J := [-r,0].

Suppose 0 € L?(Q,C(J,RY)) is Fo-measurable. Note that this is

equivalent to saying that 6(-)(s) is Fy,-measurable for all s € J, because

6 has a.a. sample paths continuous.

We prove by induction that there is a sequence of processes

Fr:l-ra]l x Q— R k=1,2,--- having the

17



Properties P(k):
(i) *z e L*(Q,C([-r,a],R?)) and is adapted to (F;)icjo,q-
(ii) For each ¢ €[0,q], k2, € L?(Q,C(J,R%)) and is F;-measur-able.

(iii)
L
Mt — k93||L2(Q,C) < (ML*)F! (k—1)! [ 193||L2(Q,C)
tk_l (1)

(k—l)!”2

1t 2y — Fay || p20.0) < (ML?)P! x— "zl 20,0

where M is a “martingale” constant and L is the Lipschitz constant

of g.
Take 'z : [-r,a] x @ — R? to be

1 _ [ 0w)(0) tel0,d]
o= { o)) ted

a.s., and

Lt w) = { e(w)(0)+(w)/0 g(u,®2,))dW () (u)  t€[0,a] )

0(w)(t) teJ

a.S.

Since 0 € L?(Q,C(J,R%)) and is F;-measurable, then 'z € L2(Q, C([-r, a], R?))
and is trivially adapted to (F):c0,o. Hence 'z, € L2(Q,C(J,R?)) and is

Fi-measurable for all ¢ € [0,a]. P(1) (iii) holds trivially.

18



Now suppose P(k) is satisfied for some k£ > 1. Then by Hypothesis
(E1)(i), (i1) and the continuity of the slicing map (stochastic memory),

it follows from P(k)(ii) that the process
0,a] 3 u— g(u,*z,) € L*(Q, LR™, RY))

is continuous and adapted to (F,)icp0,a)- P(k+1)(i) and P(k+1)(ii) follow
from the continuity and adaptability of the stochastic integral. Check
P(k +1)(ii7), by using Doob’s inequality.

For each k > 1, write

Now L%(Q,C([-r,a],R%)) is closed in L?(Q, C([-r,a],RY)); so the series
Z(i—l—lx _ ZIL’)
=1
converges in L%(Q,C([-r,a], R?)) because of (1) and the convergence of
= gvic1 @' 1z
(=i

=1

Hence {*z}¢°, converges to some x € L% (2, C([-r,a], RY)).

19



Clearly z|J = 6 and is Fy-measurable, so applying Doob’s in-

equality to the Ito integral of the difference
ur— g(u, ) — g(u, z.)

gives

)

/0 9(u, Far,) W () (u) / 9(u,2) AW () (u)

E( sup
te[0,a)

< ML2a||k:v - IL‘||%2(Q7C)

— 0 as k — oo.

Thus viewing the right-hand side of (2) as a process in L?(Q2, C ([-7,a],R%))
and letting k¥ — oo, it follows from the above that =z must satisfy the

sfde (XII) a.s. for all ¢ € [-r,d].

For uniqueness, let & € L%4(Q, ([-r,a],R%)) be also a solution of

(XII) with initial process §. Then by the Lipschitz condition:

t
o = il rcy < MI? |l = dulaqo.c

for all ¢t € [0,a]. Therefore we must have x; — #; = 0 for all ¢ € [0,a]; so

r =217 in L*(Q,C([-r,a],RY)) a.s. O

20



Remarks and Generalizations.

(i) In Theorem 1.2 replace the process (t,W(t)) by a (square inte-
grable) semimartingale Z(¢) satisfying appropriate conditions.([Mo],

1984, Chapter II).

(ii) Results on existence of solutions of sfde’s driven by white noise
were first obtained by It6 and Nisio ([I-N], J. Math. Kyoto

University, 1968) and then Kushner (JDE, 197).

(iii) Extensions to sfde’s with infinite memory. Fading memory case:
work by Mizel and Triitzer [M-T],JIE, 1984, Marcus and Mizel
[M-M], Stochastics, 1988; general infinite memory: It6 and Nisio

[I-N], J. Math. Kyoto University, 1968.

(iii) Pathwise local uniqueness holds for sfde’s of type (XIII) under
a global Lipschitz condition: If coeffcients of two sfde’s agree
on an open set in C, then the corresponding trajectories leave
the open set at the same time and agree almost surely up to
the time they leave the open set ([Mo], Pitman Books, 1984,

Theorem 4.2, pp. 150-151.)

21



(iv) Replace the state space C by the Delfour-Mitter Hilbert space

My :=R% x L?([-r,0],RY) with the Hilbert norm

el = ('“'2 i /_OT in(s)? ds)1/2

for (v,n) € My (T. Ahmed, S. Elsanousi and S. Mohammed,

1983).

(v) Have Lipschitz and smooth dependence of ?z, on the initial pro-

cess 6 € L*(Q,0) ([Mo], 1984, Theorems 3.1, 3.2, pp. 41-45).

22
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II. MARKOV BEHAVIOR AND THE GENERATOR
Consider the sfde

dz(t) = H(t,x¢)dt + G(t,x) AW (t), t > O}
(XIIT)

xg=n€C:=C([-r, O],Rd)

with coefficients H : [0, T|xC — R?, G :[0,T]xC — R™™ m-dimensional
Brownian motion W and trajectory field {"x;:t > 0,7 € C}.

1. Questions
(i) For the sfde (XIII) does the trajectory field z; give a diffusion
in C (or M;)?
(i) How does the trajectory z; transform under smooth non-linear
functionals ¢ : C — R?
(iii) What “diffusions” on C (or M) correspond to sfde’s on R%?
We will only answer the first two questions. More details in

[Mo], Pitman Books, 1984, Chapter III, pp. 46-112. Third question
is OPEN.



Difficulties

(i)

(iv)

Although the current state z(t) is a semimartingale, the trajec-
tory z, does not seem to possess any martingale properties when
viewed as C-(or M,)-valued process: e.g. for Brownian motion
W (H=0,G=1):

[EW:|Fi)I(s) = W(t) = Wi, (0), s € [=r,0]

whenever t; <t —r.

Lack of strong continuity leads to the use of weak limits in C
which tend to live outside C.

We will show that z; is a Markov process in C. However al-
most all tame functions lie outside the domain of the (weak)
generator.

Lack of an Ito formula makes the computation of the generator
hard.

Hypotheses (M)

(i)
(i)

F; = completion of o{W(u):0<u<t}, t>0.

H, G are jointly continuous and globally Lipschitz in second vari-
able uniformly wrt the first:

[H (t,m) = H(t,n2)| + |G(E,m) — Gt m2) || < Llim = n2lle

for all t € [0,7] and 7,7, € C.

2. The Markov Property

sfde:

1zt .= solution starting off at 0 € L?(Q,C;F,) at t = t; for the

ngtn gy = | MO+ i Huwa du+ f Glua)dWw), >4
n(t —t), th—r<t<t.
3



This gives a two-parameter family of mappings
Tih: L2(Q,Cy Fy) — L2(Q,C5 F,), t1 < to,
TH () =2}, 6 c L*(Q,C;Fy)). (1)
Uniqueness of solutions gives the two-parameter semigroup property:

ty 0 _ 70
Ty, o1y, =T

to)

t < to. 2)

([Mo], Pitman Books, 1984, Theorem II (2.2), p. 40.)

Theorem I1.1 (Markov Property)([Mo], 1984).
In (XIII) suppose Hypotheses (M) hold. Then the trajectory field {"xz; : t >

0,n € C} is a Feller process on C' with transition probabilities
p(tl,T],tQ,B) = P(nl'g EB) ty <ty, B€ BorelC, necd.

ie.
P(z, € B|Fy,) = p(t1, 34, (), t2, B) = P(4, € Blzy,) as.

Further, if H and G do not depend on t, then the trajectory is time-homogeneous:

p(t17777t27'>:p(07nat2_t17')’ Ogtl §t27 UEC

Proof.
[Mo], 1984, Theorem III.1.1, pp. 51-58. [Mo], 1984, Theorem
I11.2.1, pp. 64-65. 0



3. The Semigroup

In the autonomous sfde

do(t) = H(zy) dt + G(zy) dW (t) t>0}
(XIV)

ro=neC

suppose the coefficients H : ¢ — RY, G : C — R¥™™ are globally
bounded and globally Lipschitz.

C, := Banach space of all bounded uniformly continuous functions
¢: C — R, with the sup norm

|9llc, :=sup [o(n)], ¢ € Cp.
neC

Define the operators P, : Cy, — Cy,t > 0, on C;, by

Py(¢)(n) := E¢("xy) t>0,neC.

A family ¢, t > 0, converges weakly to ¢ € C, as t — 0+ if tli%1+ <

b, p >=< ¢,u > for all finite regular Borel measures p on C. Write
¢i=w— tli%l+ ¢;. This is equivalent to

di(n) — ¢(n) as t — 04, for all n € C

{ll¢¢llc, = t >0} is bounded .

(Dynkin, [Dy], Vol. 1, p. 50). Proof uses uniform boundedness
principle and dominated convergence theorem.

Theorem II1.2([Mo], Pitman Books, 1984)

(i) {P:}+>0 is a one-parameter contraction semigroup on Cp.



(ii) {P;}i>0 is weakly continuous at t = 0:

Pi(¢)(n) — ¢(n) ast — 0+

{|P:(¢)(n)| : t > 0,n € C}is bounded by ||||c, -

(iii) If r > 0, {P;}+>0 is never strongly continuous on C} under the sup norm.

Proof.

(i)

One parameter semigroup property
Py,oP, =P 44,, 11,t202>0

follows from the continuation property (2) and time-homogeneity
of the Feller process z; (Theorem II.1).

Definition of P;, continuity and boundedness of ¢ and sample-
continuity of trajectory "z; give weak continuity of {P,(¢) : t > 0}
at t=01n Cy.

Lack of strong continuity of semigroup:

Define the canonical shift (static) semigroup
Sy Cp — Cy, t >0,

by
Se(@)(n) :==o(e), ¢€Cp, neC,
where 7 : [-r,00) — R% is defined by

i n)  t=0
0(t) =
n@)  tel-r0).
Then P, is strongly continuous iff S; is strongly continuous. P,
and S; have the same “domain of strong continuity” indepen-
dently of H, G, and W. This follows from the global bound-
edness of # and G. ([Mo], Theorem IV.2.1, pp. 72-73). Key
relation is
tl_if& E|"z; — 7)|E& =0
6



uniformly in n € C. But {S;} is strongly continuous on ¢, iff C is
locally compact iff » =0 (no memory) ! ([Mo], Theorems IV.2.1
and 1V.2.2, pp.72-73). Main idea is to pick any sy € [-r,0) and
consider the function ¢, : C — R defined by

n(so) lnlle <1
Po(n) =4 1(s0) Il > 1
Inllc
Let ¢ be the domain of strong continuity of P, viz.
CY:={pecCy:P(p) — ¢ as t — 0+ in Cy}.
Then ¢, € Cy,, but ¢y ¢ CP because r > 0. O

4. The Generator

Define the weak generator A: D(A) c C, — C, by the weak limit
o . Pi(o)(n) — o(n)
A@) () = w — lim “O
where ¢ € D(A) iff the above weak limit exists. Hence D(A) c C}
(Dynkin [Dy], Vol. 1, Chapter I, pp. 36-43). Also D(A) is weakly
dense in C, and A is weakly closed. Further
d
5 1e(0) = A(P(9)) = Pi(A(9)), t>0
for all ¢ € D(A) ([Dy], pp. 36-43).

Next objective is to derive a formula for the weak generator
A. We need to augment C by adjoining a canonical d-dimensional
direction. The generator A will be equal to the weak generator of
the shift semigroup {S;} plus a second order linear partial differential
operator along this new direction. Computation requires the following
lemmas.

Let
F; = {vx{o} TV E Rd}
C®F;={n+vxq:ne€CuveRY, |n+vxl=lnlc+]vl



Lemma II.1.([Mo], Pitman Books, 1984)
Suppose ¢ : C — R is C? and n € C. Then D¢(n) and D?*¢(n) have unique

weakly continuous linear and bilinear extensions

Do(n):CadF;—R, D?p(n): (CPFy) x (CHFy) —R

respectively.
Proof.

First reduce to the one-dimensional case d =1 by using coordi-
nates.

Let a € C* = [C([-r,0],R)]*. We will show that there is a weakly
continuous linear extension @ : C@ F; — R of «; viz. If {¢¥} is a bounded
sequence in C such that ¢*(s) — &(s) as k — oo for all s € [-r,0], where
£ € CaoF, then o(¢¥) — a(¢) as k — co. By the Riesz representation
theorem there is a unique finite regular Borel measure y on [—r, 0] such
that

a(n) = / n(s) du(s)

-7

for all n € C. Define a € [C @ Fy]* by

a(n+uvxgy) = an) +vu({0}), neC, veR.

Easy to check that @ is weakly continuous. (FEzercise: Use Lebesgue
dominated convergence theorem.)

Weak extension @ is unique because each function vy can be
approximated weakly by a sequence of continuous functions {¢}:

(ks+1)v, —5+<s<0

1
% S

1
0 —r<s<-—z.

5o = {



N

T _

0

=

Put a = D¢(n) to get first assertion of lemma.

To construct a weakly continuous bilinear extension 3 : (C® Fy) x
(C @ F1) — R for any continuous bilinear form
B:CxC — R, use classical theory of vector measures (Dunford and
Schwartz, [D-S], Vol. I, Section 6.3). Think of g as a continuos linear
map C — C*. Since C* is weakly complete ([D-S], 1.13.22, p. 341),
then g is a weakly compact linear operator ([D-S], Theorem 1.7.6, p.
494): i.e. it maps norm-bounded sets in C into weakly sequentially
compact sets in C*. By the Riesz representation theorem (for vector
measures), there is a unique C*-valued Borel measure A on [-r,0] (of
finite semi-variation) such that

0
36 = | €(s)ans)

for all ¢ € ¢. ([D-S], Vol. I, Theorem VI.7.3, p. 493). By the
dominated convergence theorem for vector measures ([D-S|, Theo-
rem 1V.10.10, p. 328), one could reach elements in F; using weakly
convergent sequences of type {¢}}. This gives a unique weakly con-
tinuous extension 3: C @ F; — C*. Next for each n € C, v € R, extend
B(n + vxqoy) : C — R to a weakly continuous linear map B(n + vx(o) :
C® F, — R. Thus 3 corresponds to the weakly continuous bilinear
extension B(-)(-): [C'® Fy] x [C & Fy] — R of 3. (Check this as exercise).



Finally use 8 = D?¢(n) for each fixed n € C to get the required

bilinear extension D2¢(n). O

Lemma II.2. ([Mo], Pitman Books, 1984)
For t > 0 define W} € C' by

Wi (s):=1q Vi

Liwets) —wo), —t<s<o,
0 —r<s< —t.

Let 3 be a continuous bilinear form on C'. Then

. 1 ~ ~ * *
i | BAC s~ 1, ) - BB(G () 0 W7, Gl 0 W7)] =0

Proof.

Use .

A Bl

The above limit follows from the Lipschitz continuity of # and G and
the martingale properties of the It6 integral. Conclusion of lemma
is obtained by a computation using the bilinearity of 3, Holder’s in-
equality and the above limit.([Mo], Pitman Books, 1984, pp. 86-87.)
0

("zy — i — G(n) o W[ = 0.

Lemma II.3. ([Mo], Pitman Books, 1984)

Let B be a continuous bilinear form on C' and {e;}[", be any basis for R™.
Then

1 mo_
t£%1+ ;Eﬁ(%t — M, Ty — M) = Zﬁ(G(n)(ei)X{o}, G(n)(ei)x{oy)
i—1

for each n € C.
Proof.



By taking coordinates reduce to the one-dimensional case d =

m = 1:
tl_i%lJrEﬁ(Wt*» Wy) = B(X{O}? X{O})

with W one-dimensional Brownian motion. The proof of the above
relation is lengthy and difficult. A key idea is the use of the projective
tensor product C ®, C in order to view the continuous bilinear form 3
as a continuous linear functional on C ®, C. At this level 5 commutes
with the (Bochner) expectation. Rest of computation is effected using
Mercer’s theorem and some Fourier analysis. See [Mo], 1984, pp. 88-
94. O

Theorem I1.3.([Mo], Pitman Books, 1984)

In (XIV) suppose H and G are globally bounded and Lipschitz. Let S :
D(S) C C, — Cyp be the weak generator of {S;}. Suppose ¢ € D(S) is sufficiently
smooth (e.g. ¢ is C?, D¢, D?¢ globally bounded and Lipschitz). Then ¢ € D(A)

and

where {e;}*, is any basis for R™.
Proof.
Step 1.

For fixed n € C, use Taylor’s theorem:

¢("xe) — @(n) = o) — ¢(n) + D(ie) (" — 1) + R(2)

a.s. for t > 0; where

1
R(t) = /0 (1= w)D?@[fy + u("wy — )] ("we — Ty, "we — 7t) du.

11



Take expectations and divide by t > 0:

FEL0(721) — o] = {18160 -0 + Dol Bl ~ )] .
4 %ER(t)

for t > 0.

As t — 0+, the first term on the RHS converges to S(¢)(n), be-
cause ¢ € D(S).

Step 2.
Consider second term on the RHS of (3). Then

e i
= [H(n)x{03](s), <5<

Since H is bounded, then ||E{}("z, — 7;)}|c is bounded in ¢ > 0 and
n € C (Ezercise). Hence

w- i {100~ }| = Hopx, (¢ 0)

t—0+4

Therefore by Lemma II.1 and the continuity of D¢ at »:

t—0+

lim qu(ﬁt){EE(”azt - ﬁt)] } = lim D¢(n){EE(”$t - ﬁt)} }

Step 3.

12



To compute limit of third term in RHS of (3), consider

1 B . . B
?ED%[% +u(Mwy — 7)) "y — 0, g — 1)

1 i i
— ;ED%(U)(% — ity Ty — Tr)

. . 1 . 1/2
< (B0l + uCon — 0] = D)2 | Bl — el
< K(8* + D)2 D*¢[ii + u("z: — 7)) — D*d(n)|*]/?
— 0
as t — 0+, uniformly for « € [0,1], by martingale properties of the Ito0
integral and the Lipschitz continuity of D?¢. Therefore by Lemma II1.3

1 ! 1
1 — = — 1 — n S —n
Jim ~ER(t) /0 (1) Mim —ED>¢(n)("xe — i, "y — i) du

= % Z D2¢p(n) (G(T])(ei>X{0}7 G(n)(ei)X{O})'

The above is a weak limit since ¢ € D(S) and has first and second
derivatives globally bounded on C. O

5. Quasitame Functions

Recall that a function ¢ : C — R is tame (or a cylinder function)
if there is a finite set {s; < sy < --- < s} in [-r,0] and a C*-bounded
function f: (R%)* — R such that

o(n) = f(n(s1),--- ,n(sk)), n e C.

The set of all tame functions is a weakly dense subalgebra of
Cy, invariant under the static shift S; and generates Borel C. For k > 2
the tame function ¢ lies outside the domain of strong continuity ¢y of
P;, and hence outside D(A) ([Mo], Pitman Books, 1984, pp.98-103; see
also proof of Theorem IV .2.2, pp. 73-76). To overcome this difficulty

we introduce
13



Definition.

Say ¢ : C — R is quasitame if there are C>~-bounded maps h :
(RY)* - R, f;: RY — R? and piecewise C! functions g; : [-r,0] — R,1 <
j < k-1, such that

oo =n( [ At Na@ ds [ fateaa@ dsao) @

for all n e C.
Theorem II1.4. ([Mo], Pitman Books, 1984)

The set of all quasitame functions is a weakly dense subalgebra of Cy, in-
variant under Sy, generates Borel C' and belongs to D(A). In particular, if ¢ is the

quasitame function given by (4), then
A(9)(n) = ) Dih(m(n){f;(n(0))g;(0) = f3(n(=r))g;(=7)

| Lin)g(s)ds)
+ Deh(m(n) (H () + 5 tracel DER(m(n) © (G(n) x G

for all n € C, where

0 0
mio) = ([ hen@ds [ feate) (o) dsn).

—r

Remarks.

(i) Replace C by the Hilbert space M,. No need for the weak ex-
tensions because M, is weakly complete. Extensions of D¢(v,n)
and D?¢(v,n) correspond to partial derivatives in the R-variable.
Tame functions do not exist on M, but quasitame functions do!
(with n(0) replaced by v € R9).

14



Analysis of supermartingale behavior and stability of ¢("z;) given
in Kushner ([Ku], JDE, 1968). Infinite fading memory setting
by Mizel and Triitzer ([M-T], JIE, 1984) in the weighted state
space R? x L?((—o0,0],R%; p).

(ii) For each quasitame ¢ on C, ¢("z,) is a semimartingale, and the
Ito6 formula holds:

dp("z,)] = A(¢) (") dt + D(n) (H(n)x10}) AW (t).

15
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Outline

Smooth cocycles in Hilbert space. Stationary trajec-

tories.

Linearization of a cocycle along a stationary trajec-
tory.

Ergodic theory of cocycles in Hilbert space.

Hyperbolicity of stationary trajectories. Lyapunov

exponents.

Cocycles generated by stochastic systems with mem-

ory. Via random diffeomorphism groups.

The Local Stable Manifold Theorem for stochastic differen-
tial equations with memory (SFDE’s): Existence of
smooth stable and unstable manifolds in a neighbor-

hood of a hyperbolic stationary trajectory.

Proofs based on Ruelle-Oseledec (non-linear) multi-

plicative ergodic theory and perfection techniques.



The Cocycle

(2, F, P) := complete probability space.

0:R* x Q — Q a P-preserving (ergodic) semigroup on
(Q, F,P).

E := real (separable) Hilbert space, norm | - ||, Borel

o-algebra.

Definition.

Let k be a non-negative integer and ¢ € (0,1]. A Ck<
perfect cocycle (X,0) on E is a measurable random field X :
Rt x F x Q — E such that:

(i) For each w € Q, the map R* x E > (t,r) — X(t,z,w) € E
is continuous; for fixed (t,w) € R* x Q, the map E >

r— X(t,r,w) € Eis OFF,

(ii) X(t+s,,w)=X(t,-,0(s,w))o0X(s,-,w) for all s,t € R* and

all we Q.

(iii) X(0,z,w) = for all z € E,w € Q.

3



X(t1,~,w) X(tg,-,H(tl,w))

X(t1,z,w)
X(t1 +t2,7,,w)
9(t17') i 9<t27 )
0 X X X
w H(tl,w) 9<t1 +t2,w)
t=0 t=t b=t + 1

Figure illustrates the cocycle property. Vertical solid
lines represent random fibers consisting of copies of E.

(X,0) is a “vector-bundle morphism”.



Definition

The cocycle (X,60) has a stationary point if there exists

a random variable Y : Q — E such that
X(t,Y(w),w) =Y (0(t,w)) (1)

for all t € R and every w € Q. Denote stationary trajectory

(1) by X(t,Y) =Y(0(t).



Linearization. Hyperbolicity.

Linearize a C*< cocycle (X,0) along a stationary ran-
dom point Y: Get an L(E)-valued cocycle (DX (¢,Y (w),w), 0(t,w)).

(Follows from cocycle property of X and chain rule.)

Theorem. (Oseledec-Ruelle)

Let T : RT xQ — L(E) be strongly measurable, such that (T, 6)

is an L(E)-valued cocycle, with each T'(t,w) compact. Suppose that

E sup log™ |T(t,)||nm) < oo, E sup log" |T(1—t,0(t,")|lrm) < .
0<t<1 0<t<1

Then there is a sure event Qo € F such that 0(t,-)(2o) C Qo for all

t € R, and for each w € Qq, the limit

lim [T(t,w)* o T(t,w)]/ ) := A(w)

n—aoo

exists in the uniform operator norm. A(w) is self-adjoint with a non-

random spectrum

eM > et s et s



where the \;’s are distinct. Fach e has a fized finite non-random

multiplicity m; and eigen-space F;(w), with m; := dimF;(w). Define

E\w)=FE, Eiw):=[®_tFWw)],i>1

Then
+C - C Fip1(w) C Ei(w)-++ C By(w) C Erj(w) =F,

lim %log T )] = \(w) i =€ Buw)\ B (w),

t—o0

and

T(t,w)(Ei(w)) € Ei(0(t,w))

forall t >0, 1> 1.

Proof.

Based on the discrete version of Oseledec’s multi-
plicative ergodic theorem and the perfect ergodic theo-
rem. ([Ru.1l], .LH.E.S Publications, 1979, pp. 303-304; cf.
Furstenberg & Kesten (1960), [Mo.1}). O



Spectral Theorem

T(t,w)
T

/ A / -
R - J\ |
Eaw) | || 210 Ee

Definition

A stationary point Y(w) of (I) is said to be hyperbolic

if the linearized cocycle (DX (t,Y (w),w),0(t,w)) has a non-



vanishing Lyapunov spectrum {--- < Ajy1 < X < -+ < Ay <

A}, viz. \; #0 for all i > 1.

Let ip > 1 be such that \;, <0< X\;,_1.

Suppose

Elog"™ sup [[DoX(t2, Y (0(t1)), 0(t1))lln(as)) < o0

Ogtl,tg ST‘
By Oseledec-Ruelle Theorem, there is a sequence of closed

finite-codimen-sional (Oseledec) spaces
. -E,-_l(w) C El(W) C - C EQ(W) C El(w) = E,

Fi(w) = {(v,n) € My : Jim ~log [DX (1, Y (@), «)(w,m)]| < A}, i > 1,
for all w € Q*, a sure event in F satisfying 0(¢,-)(Q*) = Q* for
all t € R.

Denote by {U(w), S(w) : w € Q*} the unstable and stable
subspaces associated with the linearized cocycle (DX, 0) as
given by ([Mo.1], Theorem 4, Corollary 2) and ([M-S.1],
Theorem 5.3). Then get a measurable invariant splitting

E=Uw)&S(w), we ",
9



DX(t,Y(w),w)U(w)) =U(0(t,w)), DX(t,Y(w),w)(Sw)) € S(O(t,w)),

for all ¢t > 0, together with the exponential dichotomies
IDX(t,Y (w),w)(x)|| > ||z||e®t for all ¢>7f zecl(w),

|IDX(t,Y (w),w)(x)| < ||x||e_52t for all t> 75,2 € S(w),

where 7 = 77(z,w) > 0,i = 1,2, are random times and §; >

0,i=1,2, are fixed.

10



S(0(t.0)

| U(0(t,w))




Stochastic Systems with Memory

“Regular” It6 SFDE with finite memory:

do(t) = H(x(t), z,) dt + Z Gi(z(t)) dW;(¢), )

(2(0),20) = (v,n) € My := R? x L*([-r,0],R%)

Solution segment x;(s) := z(t +s), t > 0,s € [-7,0].

m-dimensional Brownian motion W := (Wy,--- ,W,,), W(0) =

Ergodic Brownian shift § on Wiener space (Q,F, P).
F := P—completion of F.
State space M,, Hilbert with usual norm || - |.

Can allow for “smooth memory” in diffusion coeffi-

cient.

H : M, — R? of class €%, globally bounded.
G :R% — L(R?,RY) is of class ¢},

B((v,n),p) open ball of radius p and center (v,n) € My;

12



B((v,n), p) corresponding closed ball.

Then (I) has a stochastic semiflow X : Rt x M, x Q —
M, with X(¢,(v,n),) = (z(t),x;). X is of class C*< for any
€ (0,6), takes bounded sets into relatively compact sets

in M. (X,0) is a perfect cocycle on M, ([M-S.4]).

Theorem. ([M-S], 1999) (Local Stable and Unstable Manifolds)

Assume smoothness hypotheses on H and G. LetY : Q — My be
a hyperbolic stationary point of the SFDE (1) such that E(||Y (+)||°) <

oo for some €y > 0

Suppose the linearized cocycle (DX (t,Y (w),w),8(t,w),t > 0) of
(I) has a Lyapunov spectrum {--- < Xiy1 < Ay < --- < Ag < A1}
Define X\, := maz{\; : \; < 0} if at least one A\; < 0. If all finite \;
are positive, set \;;, = —oo. (This implies that \;,—1 is the smallest
positive Lyapunov exponent of the linearized semiflow, if at least one
Ai > 0; in case all \; are negative, set \j,—1 = 00.)

Fiz e1 € (0,—X;,) and €2 € (0, \j;—1). Then there exist

(i) a sure event Q* € F with 6(t,-)(2*) = Q* for all t € R,

13



(i) F-measurable random variables p;, B; : Q* — (0,1), B; > p; > 0,
1 = 1,2, such that for each w € Q*, the following is true:
There are C*¢ (e € (0,6) ) submanifolds S(w), U(w) of B(Y (w), p1(w))

and B(Y (w), p2(w)) (resp.) with the following properties:

(a) S(w) is the set of all (v,1) € B(Y (w), p1(w)) such that
1X (n, (v,m),w) = Y (6(n,0))|| < Br(w) ePioFe)
for all integers n > 0. Furthermore,

1
lim sup ? log HX(ta (’U, 77)7 (,U) o Y(e(tv w))” < )‘io

t—o0

for all (v,n) € S(w). Each stable subspace S(w) of the linearized
semiflow DX is tangent at Y (w) to the submanifold S(w), viz.
Ty(w)g(w) = S(w). In particular, codim S(w) = codim S(w), is
fized and finite.

L (X (o)) = X ().
(®) hms“ptlg[ p{ [(vor 1) — (ozoma)]

(v2s2)s (01,0, (o2,7) € @) b| < -

(v1,m) #

t— o0

14



(c) (Cocycle-invariance of the stable manifolds):

There exists 71 (w) > 0 such that
X(t,,w)(SW)) € S(O(t,w))
for allt > 1 (w). Also

DX(t,Y(w),w)(SW)) C S(O(t,w)), t>0.

(d) U(w) is the set of all (v,n) € B(Y (w), pa(w)) with the property
that there is a unique “history” process y(-,w) : {—nr : n >
0} — My such that y(0,w) = (v,n) and for each integer n > 1,

one has X (r,y(—nr,w),0(—nr,w)) = y(—(n — 1)r,w) and
Hy(—m“,w) - Y(Q(—m“,w))HM2 < 52(@0)6_0‘@‘0—1—62)”7“.

Furthermore, for each (v,n) € U(w), there is a unique continuous-
time “history” process also denoted by y(-,w) : (—oc0,0] — Mo
such that y(0,w) = (v,n), X(t,y(s,w),0(s,w)) = y(t + s,w) for
all s <0,0<t < —s, and

lim sup ~ log [y(—t,w) — ¥ ((—t,w))| < —Aip—1.

t—o0 t

15



FEach unstable subspace U(w) of the linearized semiflow DX is

tangent at Y (w) to U(w), viz. Ty (U (w) = U(w). In particular,

dim U(w) is finite and non-random.

(e) Let y(-, (vi,m;),w),i = 1,2, be the history processes associated

with (Ui777i) = y(07 (viani)7w) < d(w)7 1= 172 Then

t—o0

lim sup 1 log | sup Hy(_ta (Ulﬂh),w) - y(—t, (’U2,7]2),W>|| .
[(v1,m1) — (v2,m2)]] '

(v1,71) # (v3,1m), (vimi) € U(w), i = 1,2}] <

(f) (Cocycle-invariance of the unstable manifolds):

There exists To(w) > 0 such that

Uw) € X (L, 0(—t,w))U(O(—t,w)))

for allt > m(w). Also

and the restriction

DX(t,-,0(—t,w)|UO(—t,w)) : UO(—-t,w)) - Uw), t=>0,
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15 a linear homeomorphism onto.

(9) The submanifolds U(w) and S(w) are transversal, viz.
M2 - TY(w)a(w) D TY(w)‘g(w)

Assume, in addition, that H,G are Cy°. Then the local stable

and unstable manifolds S(w), U(w) are C>°.

Figure summarizes essential features of Stable Mani-

fold Theorem:

17



X(t,,w)

t> 7'1(&))

A picture is worth a 1000 words!
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Example

Consider the affine linear sfde
dr(t) = H(z(t), ) dt + GdW (1), t>0
II/
z(0)=v e R?, x9=nec L*[-r,0,R% )
where H : M, — R? is a continuous linear map, G is a fixed

(d x p)-matrix, and W is p-dimensional Brownian motion.

Assume that the linear deterministic (d x d)-matrix-valued
FDE

dy(t) = H o (y(t),y:) dt

has a semiflow
T, : L(R?Y) x L*([-r,0], L(RY)) — L(R?) x L?([-r,0], L(R)),t > 0,
which is uniformly asymptotically stable. Set

Y = / T (L0)GAW () (2)

where I is the identity (d x d)-matrix. Integration by parts
and

W(t, Q(tl,w)) = W(t + tl,w) — W(tl,w), t,t1 € R, (3)

imply that Y has a measurable version satisfying (1). Y is

Gaussian and thus has finite moments of all orders. See
19



([Mo.1], Theorem 4.2, Corollary 4.2.1, pp. 208-217.) More
generally, when H is hyperbolic, one can show that a sta-
tionary point of (I”) exists ([Mo.1]).

In the general white-noise case an invariant measure
on M, for the one-point motion gives rise to a stationary
point provided we suitably enlarge the underlying prob-
ability space. Conversely, let Y : O — M, be a station-
ary random point independent of the Brownian motion
W(t),t > 0. Let p:= PoY~! be the distribution of Y. By
independence of Y and W, p is an invariant measure for

the one-point motion

20



Outline of Proof

e By definition, a stationary random point Y (w) € M, is
invariant under the semiflow X; viz X(t,Y) =Y (0(t,))
for all times t.

e We linearize the semiflow X along the stationary point
Y(w) in M,. In view of the stationarity of Y and the
cocycle property of X, this gives a linear perfect cocy-
cle (DX (t,Y),0(t,-)) in L(M,), where D denotes spatial
(Fréchet) derivatives.

e Ergodicity of ¢ allows for the notion of hyperbolicity of
a stationary solution of (I) via Oseledec-Ruelle theo-
rem: Use local compactness of the semiflow for times
greater than the delay r ([M-S.4]), and apply multi-
plicative ergodic theorem in order to yield a discrete
non-random Lyapunov spectrum {); : i > 1} for the
linearized cocycle. Y is hyperbolic if \; # 0 for every i.

e Assuming that ||V is integrable (for small ¢) and
using the variational method of construction of the
semiflow, we show that the linearized cocycle satis-
fies the hypotheses for “perfect versions” of ergodic
theorem and Kingman’s subadditive ergodic theorem.
These refined versions yield invariance of the Oseledec
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spaces under the continuous-time linearized cocycle.
In particular, the stable/unstable subspaces will serve
as tangent spaces to the local stable/unstable mani-

folds of the non-linear semiflow X.

We establish continuous-time integrability estimates
on the spatial derivatives of the non-linear cocycle X
in a neighborhood of the stationary point Y. These
esitmates follow from the variational construction of
the stochastic semiflow coupled with known global
spatial estimates for finite-dimensional stochastic flows.

We introduce the auxiliary perfect cocycle
Z(t,w) = X(t,() + Y(w),w) — Y(0(t,w)), teR",we

By refining the arguments in ([Ru.2|, Theorems 5.1
and 6.1), we construct local stable/unstable mani-
folds for the discrete cocycle (Z(nr,-,w),0(nr,w)) near
0 and hence (by translation) for X(nr,-,w) near Y (w)
for all w sampled from a (¢, -)-invariant sure event
in Q. This is possible because of the continuous-
time integrability estimates, the perfect ergodic the-
orem and the perfect subadditive ergodic theorem.
By interpolating between delay periods of length r

and further refining the arguments in [Ru.2|, we then
22



show that the above manifolds also serve as local sta-
ble /unstable manifolds for the continuous-time semiflow
X near Y.

The final key step is to establish the asymptotic in-
variance of the local stable manifolds under the sto-
chastic semiflow X. This is achieved by appealing to
the arguments underlying the proofs of Theorems 4.1
and 5.1 in [Ru.2] and some difficult estimates using
the continuous-time integrability properties, and the
perfect subadditive ergodic theorem. The asymptotic
invariance of the local unstable manifolds follows by
employing the concept of a stochastic history process for
X coupled with similar arguments to the above. The
existence of the history process compensates for the
lack of invertibility of the semiflow.
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