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Abstract. While prevailing evidence supports that the amyloid cascade hypothesis is a key component of Alzheimer’s disease
(AD) pathology, many recent studies indicate that the vascular system is also a major contributor to disease progression.
Vascular dysfunction and reduced cerebral blood flow (CBF) occur prior to the accumulation and aggregation of amyloid-�
(A�) plaques and hyperphosphorylated tau tangles. Although research has predominantly focused on the cellular processes
involved with A�-mediated neurodegeneration, effects of A� on CBF and neurovascular coupling are becoming more
evident. This review will describe AD vascular disturbances as they relate to A�, including chronic cerebral hypoperfusion,
hypertension, altered neurovascular coupling, and deterioration of the blood-brain barrier. In addition, we will describe recent
findings about the relationship between these vascular defects and A� accumulation with emphasis on in vivo studies utilizing
rodent AD models.

Keywords: Amyloid-� peptide, amyloid cascade hypothesis, blood-brain barrier, cerebral amyloid angiopathy, chronic
cerebral hypoperfusion, functional hyperemia, in vivo mouse model, in vivo rat model, neurovascular coupling, vascular
hypothesis

INTRODUCTION: ALZHEIMER’S
DISEASE AND THE AMYLOID CASCADE
HYPOTHESIS

Alzheimer’s disease (AD) was first described by
Alois Alzheimer in 1906 after examining the brain of
Auguste Deter, a 51-year-old woman with aggressive
and progressive memory loss. Alzheimer’s find-
ings eventually became known as the pathological
hallmarks of AD [1]. AD is a devastating illness
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rology, Center for Alzheimer’s Disease and Related Disorders,
Southern Illinois University School of Medicine, P.O. Box 19628,
Springfield, IL 62794-9628, USA. Tel.: +1 217 545 6994; E-mail:
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characterized by a progressive decline in cogni-
tion, which is currently the 6th leading cause of
death in the United States, and the primary cause
of dementia [2]. Initially, AD was considered a
middle-age disease whereas senile dementia was sep-
arately defined as progressive dementia in the elderly.
However, since middle-age AD and senile dementia
patients share indistinguishable postmortem neu-
ropathology, including the abnormal accumulation
of amyloid plaques, both conditions are now identi-
fied as AD [3, 4]. The amyloid cascade hypothesis
describes the events leading to the development
of plaques in AD brains by preferential overpro-
duction of the amyloid-� (A�)42 isoform that is
prone to aggregation compared to the A�40 isoform
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[5]. This accumulation of toxic A�42 isoforms
begins when amyloid-� protein precursor (A�PP)
is cleaved sequentially by �-secretase BACE1 (�-
site APP-cleaving enzyme 1) and �-secretase [6].
Additional processes that increase the amount of
A�42 include impaired degradation by neprilysin
or insulin degrading enzymes [7, 8], or reduced
clearance across the blood-brain barrier (BBB) [9]
through low density lipoprotein receptor related pro-
tein 1 (LRP1) and receptor for advanced glycation
end products (RAGE) found on epithelial cells [10,
11]. Eventually, accumulation reaches a threshold
where A�42 begins to aggregate into low molecular
weight oligomers followed by formation of insolu-
ble plaques that are deposited throughout the brain
[12–14]. While femtomolar to picomolar concentra-
tions of A�42 play a role in the healthy brain [15, 16],
higher nanomolar concentrations of soluble A�42 is
known to increase neuronal activity that may create
an excitotoxic environment [17–20]. Excitotoxic-
ity includes an inflammatory response consisting of
microglial and astrocytic activation [21, 22], pro-
gressive neuronal/synaptic injury, altered neuronal
ionic homeostasis and oxidative injury, and aberrant
tau protein hyperphosphorylation and aggregation
[23]. The eventual neuronal dysfunction and cell
death associated with this cascade of events leads
to widespread cerebral atrophy [24] that is promi-
nent throughout the neocortex including the medial
temporal lobe, cingulate gyrus, parietal lobe, and
frontal lobe [25–27]. Altered neurotransmission and
the subsequent neurodegeneration are hypothesized
to contribute to the cognitive and behavioral decline
observed in AD [28, 29].

The identification of early-onset familial AD
caused by genetic mutations of APP, presenilin-1,
and presenilin-2 (the catalytic subunit of �-secretase),
strengthened the case for the amyloid cascade
hypothesis of AD pathogenesis [30]. These muta-
tions result in a higher ratio of A�42/A�40 production,
increased rates of A� oligomerization, and senile
plaque formation [28, 31]. Consequently, disease-
modifying therapies targeting A� production were
developed [32], but all clinical trials, to date, targeting
abnormal A� accumulation have been unsuccessful at
slowing or halting AD progression [33, 34]. However,
these studies primarily focused on mild-to-moderate
AD, presumably when pathological hallmarks and
neurodegeneration were already present. It is cur-
rently unclear if clinical trials designed to treat
AD prior to the development of severe pathological
changes might improve patient outcome. However,

obstacles exist to implementing this strategy in the
human population, such as the lack of a reliable early
biomarker for AD.

A surprising discovery came from ‘the Nun
Study’ in which cognition in elderly nuns (aged
77–103 years) was assessed with tests including
the Mini-Mental State Examination and postmortem
neuropathological changes were quantified [35]. A
subset of individuals with normal cognition had an
abundance of diffuse plaques in the neocortex and
hippocampus, indicating the involvement of addi-
tional unknown factors in the cognitive symptoms
of AD. Findings such as these suggest that the amy-
loid cascade hypothesis is not the sole contributor to
the etiology of AD and overlapping neuropathologies
may contribute to disease progression.

CEREBRAL VASCULATURE AND THE
TWO-HIT VASCULAR HYPOTHESIS OF
ALZHEIMER’S DISEASE

Blood is delivered to the brain by cardiovascular
circulation that is regulated by heart rate. The inter-
nal carotid artery supplies the frontal, parietal, and
lateral temporal lobes, while the vertebral arteries
supply the occipital lobe, brainstem, and cerebel-
lum. Under physiological conditions, systemic blood
flow delivery into the brain remains relatively con-
stant and entry is regulated by the precise architecture
of blood vessels branching into a vascular tree [36].
The large penetrating arteries break off and diverge
into arterioles, precapillary arterioles, and finally into
capillaries. The regulation of local cerebral blood
flow (CBF) requires different cell types distributed
along the vascular tree (Fig. 1). While all blood ves-
sels are coated by endothelial cells, the presence of
other cell types depends on the region of vascular
branching. For example, penetrating arteries have
2–3 layers of vascular smooth muscle cells (VSMCs)
whereas arterioles only have a single VSMC layer.
Capillaries share a common basement membrane
with cells called pericytes, and are covered by astro-
cytic endfeet that are innervated by local neurons
[36]. Neurons, astrocytes, VSMCs, pericytes, and
endothelial cells work in concert to form the neu-
rovascular unit (NVU). The NVU regulates local CBF
in response to brain activity, a process called neu-
rovascular coupling (NVC) or functional hyperemia
[37, 38].

Historically, it was postulated that the increase
in CBF in response to increased neuronal activity
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Fig. 1. Neurovascular deficits linked to Alzheimer’s disease. The illustration shows the various cell types involved in regulating localized
cerebral blood flow along an arteriole bifurcating into capillaries. Neurovascular deficits related to AD include (1) chronic cerebral hypop-
erfusion (CCH), a reduction in blood flow into the brain that occurs prior to symptomology, (2) neurovascular coupling (NVC) deficits, and
(3) blood-brain barrier (BBB) disruption that can be related to (4) cerebral amyloid angiopathy (CAA), characterized by the deposition of
A� in blood vessels. Image created with BioRender.com.

was associated with energetic costs and driven by
metabolic byproducts, such as carbon dioxide [39],
which was termed the ‘negative feedback’ hypothe-
sis. This has been superseded by the ‘feedforward’
CBF hypothesis that involves vasoactive messen-
gers including nitric oxide, which plays a role in
neuronal signaling and regulating CBF responses
[37, 40–43]. It is now well established that astro-
cytes also regulate CBF through release of vasoactive
substances, such as arachidonic acid and its metabo-
lites, prostaglandins and epoxyeicosatrienoic acids
[44, 45]. Thus, the NVU is sometimes more aptly
referred to as either the neurogliovascular or gliovas-
cular unit. Astrocytes have perivascular endfeet that
wrap around endothelial cells (Fig. 1, cross section) to
regulate CBF entry, as well as establish and maintain
the BBB integrity [44, 46, 47]. VSMCs and pericytes
both regulate CBF by physically controlling vascu-

lar reactivity of arterioles and capillaries on which
they respectively ensheathe [48]. In particular, per-
icytes possess the largest vascular resistance in the
brain and are estimated to increase CBF by 84% in
response to neuronal activity [49]. This makes per-
icytes promising targets to treat medical conditions
involving neurovascular dysfunction [36, 50, 51].

Recent evidence indicates a causal relationship
between cerebrovascular dysfunction and the devel-
opment of AD [52]. Vascular abnormalities are
present in at least 50% of AD cases and become
more prevalent with increasing age of diagnosis [53].
Furthermore, vascular risk factors associated with
AD, such as hypertension and atherosclerosis [54,
55], cause additional damage leading to progressive
cerebral hypoperfusion [56]. Over time, homeostatic
and hemodynamic disruption damages the cerebral
vasculature that perturbs delivery of macromolecules
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necessary to maintain neuronal activity. The subse-
quent oxidative stress damages cellular membranes,
leads to neuronal and astroglial cell death, and cul-
minates in the cognitive decline observed in AD [57].
Other factors are known to correlate with cogni-
tive deficits including stroke severity, hypertension,
atherosclerosis, and arteriosclerosis [58, 59], while
macroscopic cerebral infarcts increases the likelihood
of AD diagnosis [60]. As such, evidence support that
neurovascular dysregulation plays a role in determin-
ing the severity of the clinical symptoms of AD.

A neurovascular hypothesis that incorporates a
vascular pathogenic component and excessive A�
accumulation was initially proposed and developed
into the two-hit hypothesis of AD [61]. This model
hypothesizes that vascular damage, such as BBB dis-
ruption that concurrently impairs the machinery for
A� clearance (hit 1) is followed by the accumulation
of A� in the brain to vasculotoxic and neurotoxic
levels (hit 2) [62, 63]. Supporting this hypothesis are
early neuropathology studies that found AD patients
had A� peptides in [64, 65] and along the walls of
cerebral blood vessels [66, 67].

While it is difficult to address the most impor-
tant question “What causes Alzheimer’s disease?”,
and which hypothesis more precisely reflects its
pathogenesis, traditional models have focused on
the classic AD hallmarks of A� accumulation, tau
hyperphosphorylation, and neuronal loss [68]. How-
ever, retrospective neuroimaging analysis of healthy
controls, mild cognitive impairment (MCI), and
AD patients indicated that vascular abnormalities
occur first, followed by changes in A� deposition,
metabolic dysregulation, functional impairment, and
cerebral atrophy [69]. In addition, studies using arte-
rial spin labeling magnetic resonance imaging (MRI)
have detected changes in CBF years before AD symp-
toms appear [70]. Hence, a growing body of literature
support neurovascular dysregulation is a critical fac-
tor underlying AD pathogenesis.

Although numerous vascular risk factors and con-
ditions are associated with AD [71], in this review
we focus on neurovascular processes observed in AD
patients, including (1) chronic CBF reduction, (2)
NVC dysfunction, and (3) BBB disruption related to
cerebral amyloid angiopathy (CAA). We also discuss
findings from recent studies that examine these neu-
rovascular irregularities in AD amyloidogenic animal
models. With the advent of transgenic mouse models
that develop classical AD pathology, we are able to
study how the progression of AD relates to vascular
aberrations. While no model adequately recapitulates

either familial or sporadic AD, many transgenic amy-
loidogenic AD mouse models have been developed
by incorporating mutations from familial AD. All of
the transgenic AD mouse models described in this
review display parenchymal A� accumulation and
some also exhibit A� accumulation in blood vessels.
These models also vary according to the onset of A�
accumulation, the rate and spatial distribution of A�
accumulation, and the extent of cognitive decline.
A descriptive table of the models mentioned in this
review is presented in Table 1.

CHRONIC CEREBRAL BLOOD FLOW
REDUCTION IN ALZHEIMER’S DISEASE

Early ultrastructural studies showed that AD brains
with amyloid deposits had abnormally shaped blood
vessels [72, 73]. These finding led to the hypoth-
esis that amyloid fibrils caused blood vessel wall
deformations and lumen stenosis resulting in reduced
blood flow and restricted nutrient entry into the
brain [74]. Subsequent studies supported this hypoth-
esis by showing that people with MCI and AD
exhibit hypoperfusion in many brain areas, especially
those involved in learning and memory [75–79].
The gradual reduction in CBF observed during AD
progression is referred to as chronic cerebral hypop-
erfusion (CCH). It is unclear whether hypoperfusion
causes AD or if CBF deficits develop in response to
AD neuropathological changes. However, evidence
support that hypoperfusion is present at preclini-
cal AD stages [70, 80]. In agreement, patients with
chronic vertebra-basilar stenosis, resulting in CCH
to the posterior brain regions, display severe cogni-
tive impairment attributed to perfusion deficits [81].
While this study suggests that CCH in itself is detri-
mental to cognition, the relationship between CBF
and cerebrovascular A� has been examined using
florbetapir positron emission tomography (PET)
imaging. The presence of A� in cognitively normal,
older adults predicted an association between hip-
pocampal hyperperfusion and diminished memory
performance, whereas no association was observed
in older adults negative for A� [82]. However, others
have reported that increased A� was associated with
hypoperfusion that diminished in respect to the stage
of cognitive impairment [83]. Although these stud-
ies show discordant results regarding the relationship
between A� and CBF, they suggest that A� presence
does affect CBF in a spatially dependent manner.
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Table 1
Transgenic amyloidogenic AD mouse models and an AD rat model have been developed incorporating mutations from familial AD that
display progressive accumulation of A� in the brain. All of the transgenic AD mouse models described in this review display parenchymal

A� accumulation and some exhibit A� accumulation in blood vessels

Model Neuropathological and behavioral characterization References

Tg2576 elevated A� plaques in cortical and limbic structures, learning and memory [219]
impairments at 9–10 months of age [220]

PS1V97L prominent A� accumulation in the brain at 6 months, concurrent memory deficits [221]
APP23 develops extensive parenchymal and cerebrovascular A� deposits after 6 months of [222]

age, memory impairments begin at 3 months of age [223]
TgSwDI A� deposition in cerebral microvasculature and throughout the brain parenchyma [224]

starting at 6 months of age
APPSwInd high levels of A� accumulation throughout the brain, particularly in neocortex and [225]
or hAPPJ20 hippocampus, by 2–4 months of age, memory deficits observed at 6 months of age [226]
APP/PS1 develops A� plaques starting at 4 and 6 months in the cortex and hippocampus, [227]

respectively, progressive spatial memory impairment between 6–15 months of age [228]
3xTg-AD neocortical and hippocampal A� accumulation by 4 and 6 months of age, [229]

respectively, memory deficits detected at 2 months of age [230]
TgCRND8 early-onset A� accumulation (starting at 2 months) and significant cognitive deficits [231]

observed by 11 weeks of age
5xFAD early-onset A� accumulation (starting at 1.5 months) and memory deficits are seen [232]

at 3 months of age [233]
TgF344-AD* displays broad pathological changes of AD, including progressive A� accumulation, [234]

neurodegeneration, and cognitive deficits at 6 months of age

*Transgenic rat model.

Apolipoprotein E (ApoE) is a glycoprotein respon-
sible for triglyceride and cholesterol transport, but the
�4 allele is less efficient at this transport and is the
second biggest genetic risk factor for AD. Hyper-
perfusion has been observed in several brain areas,
including the medial temporal lobe of cognitively
normal or MCI patients that are APOE �4 carri-
ers [84, 85]. This phenomenon has been attributed
to a compensatory response in which increased
neuronal activation required by APOE �4 carriers
during memory formation requires hyperperfusion
[86]. However, as the disease progresses in these
APOE �4 carriers, reduced CBF is observed [85, 87],
which could be the result of vascular damage related
to neuropathological effects. Therefore, studies that
reported hyperperfusion in the medial temporal lobe
in early MCI or in non-amnestic MCI, might have
seen skewed results by not controlling for APOE �4
genotype status [88, 89]. The overall trend for the
majority of sporadic AD patients is reduced CBF
prior to MCI diagnosis that continues to decline
with disease progression and is affected by A�
accumulation.

ANIMAL STUDIES OF CHRONIC
CEREBRAL BLOOD FLOW REDUCTION
(OR CCH) IN ALZHEIMER’S DISEASE

Although some consider CCH to be ischemia, it
is important to note that CCH implies a moderate

reduction in CBF over a prolonged period of time. In
contrast, ischemic insults completely eliminate CBF
and delivery of metabolic substances, such as glu-
cose and oxygen, to specific brain regions resulting
in rapid damage to those areas lacking blood supply.
Since some animal models that induce CCH result in
different levels of brain hypoxia, they are considered
to be viable models of ischemia.

The established animal CCH model was first
developed in rats by performing bilateral common
carotid artery occlusion (BCCAO), also called 2-
vessel occlusion (2VO). This was performed by
ligating the common carotid arteries (CCAs) while
the vertebral arteries remained open resulting in
a partial CBF reduction [90, 91]. The BCCAO
CCH model reduced cortical and hippocampal CBF
leading to impaired spatial learning, deficient mem-
ory performance, and damage to neurons in the
hippocampal CA1 [92–95]. In addition, the CBF
reduction induced by BCCAO is thought to disrupt
the NVU leading to increased hippocampal astro-
cyte reactivity [96, 97]. Since inducing CCH in rats
with the BCCAO technique can elicit cognitive defi-
ciencies that recapitulate cognitive symptoms and
pathology seen in AD [98], additional studies have
examined the relationship between CCH and A� in
the brain. CCH induced by BCCAO in rats resulted
in increased A� accumulation in the hippocampus
[99], which has been attributed to increased A�PP
expression and enhanced �- and �-secretase activity
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[100–102]. A recent imaging study in rats confirmed
that BCCAO induced higher frontal cortex and hip-
pocampal A� levels and a concurrent reduction in
glucose metabolism in the hippocampus, entorhi-
nal cortex, and amygdala [103]. Injecting A� into
the brain of young rats that underwent CCH con-
ferred synergistic spatial memory impairments and
increased cortical and striatal A�PP levels compared
to CCH or A� alone [104, 105], indicating that A�
can influence CCH-induced changes.

While BCCAO has been employed in numerous
studies in rats, ligating arteries is thought to produce
a more profound and rapid reduction in CBF than the
gradual CCH observed in AD. Moreover, BCCAO is
not amenable to study CCH in C57Bl/6 mice because
chronically occluding both CCAs results in a high
mortality rate [106]. Chronic unilateral right CCA
occlusion (rCCAO) was developed to study CCH
in mice. This model decreases CBF to ipsilateral
brain regions, induces cognitive deficits, and results
in ipsilateral white matter lesion (WML) develop-
ment [107]. In two AD mouse models, rCCAO
exacerbates learning and memory deficits compared
to genetically- and age-matched controls without
rCCAO. In the PS1V97L mouse model, rCCAO exac-
erbated A� expression that was attributed to changes
in expression of A� degrading enzymes and clear-
ance proteins [108]. In the Tg2576 AD mouse model,
learning and memory deficits caused by rCCAO-
induced CCH were attributed to hypometabolism
[109]. Although these studies suggest that CCH
induced by BCCAO in rats or by rCCAO in mice
can induce or exacerbate AD-like pathology, the CBF
pattern does not fully represent the progressive CCH
seen in AD.

Bilateral carotid artery stenosis (BCAS) is an alter-
native CCH model for mice in which microcoils
of different sizes narrow bilateral CCAs, thereby
decreasing CBF based on CCA constriction [110].
Effects of BCAS-induced CCH indicate global CBF
reduction lasts for several weeks to months [111,
112]. Mice that underwent BCAS have memory
impairment, WML formation, and astroglia and
microglia activation [110, 113]. CCH induced in
mice have decreased hippocampal metabolism and
atrophy 6 to 8 months post BCAS, respectively
[114], and increased endogenous A� accumulation
throughout the hippocampus and cortex [115]. Stud-
ies using BCAS-induced CCH in amyloidogenic
AD mouse models showed a synergistic effect of
learning and memory impairment and A� accu-
mulation in APPSwInd mice [116, 117], increased

parenchymal and cerebrovascular A� accumulation
in Tg-SwDI mice [118], and increased A� aggrega-
tion in APP/PS1 mice without increasing total A�
levels [119]. Like the BCCAO CCH model in rats,
the BCAS CCH model in mice is thought to model
vascular cognitive impairment because it induces
formation of WMLs leading to behavioral/cognitive
deficits [120]. Although the BCAS model is popular
to study vascular dementia, it provides a useful model
to further study CCH in mouse models of AD.

Another approach to recapitulate CCH seen in
AD is the 2-vessel/bilateral gradual CCA occlu-
sion/stenosis (2VGO or BCCS or GCAS) model.
Instead of ligating CCAs, ameroid constrictors are
used to partially constrict the CCAs bilaterally that
narrow over time leading to progressive cerebral
hypoperfusion. In rats, compared to the BCCAO
model, using 2VGO improved survival while eliciting
an attenuated CBF decrease and neuroinflammatory
response. However, both CCH models showed com-
parable impaired working memory [121]. In mice,
2VGO elicits a distinct progressive CBF reduc-
tion compared to the rapid and profound decrease
observed after BCAS [122, 123]. But, 2VGO does
not consistently induce hippocampal neuronal loss.
Although 2VGO in these mice impaired working
memory, they were comparable to sham controls in
regard to hippocampal-dependent reference learning
[122]. The 2VGO model has been used extensively
in the Koji Abe laboratory to examine the effect
of CCH in APP23 mice. Overall, compared to age-
and genotype-matched controls, CCH in APP23 mice
enhances motor and cognitive deficits while increas-
ing hippocampal cell death. [124–127]. CCH in
APP23 mice also decreases LRP1 and increases
RAGE expression in vascular endothelial cells, which
would perturb A� clearance resulting in parenchymal
and cerebrovascular A� deposition [125]. CCH also
induced NVU dissociation as measured by decreased
astrocyte to blood vessel immunofluorescent staining
overlap that could be a consequence of A� accumu-
lation [124].

Since 2VGO results in increased mortality after 28
days when ameroid constrictors close, another CCH
model developed in mice is the asymmetrical gradual
carotid artery occlusion. This method consists of one
CCA progressively occluded with an ameroid con-
strictor while a microcoil is placed on the other CCA
resulting in decreased CBF and hippocampal neu-
ronal loss [128, 129]. However, despite the promising
translational implications of this model, it has not
been tested in AD mouse models yet.
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The majority of studies using AD mouse models
are in agreement that CCH exacerbates A� accumula-
tion and increases neuronal death. When interpreting
results from these studies, it is important to discern
the differences in CCH and AD models employed. As
mentioned, BCAS creates a prolonged CCH followed
by CBF recovery making this suitable to model vascu-
lar dementia [114]. Still, since BCAS is a long-lasting
CCH model, it might be the best model currently
available to study CCH in mice. More studies using
the BCAS CCH in AD mouse models are warranted
to further understand the impact of CCH on A�
accumulation and to identify potential therapeutic
interventions to counteract the negative CCH effects.
As stated, a recurring theme is that mice tend to be
more vulnerable to CCH than rats. It is plausible that
2VGO in TgF344-AD rats might be a viable model
to study the relationship between CCH and A� accu-
mulation.

BLOOD PRESSURE AND ALZHEIMER’S
DISEASE

Cerebral autoregulation refers to myogenic, auto-
nomic, and metabolic mechanisms that maintain
adequate blood perfusion to the brain despite changes
in blood pressure [130, 131]. Although a single
study of sporadic AD patients showed impaired cere-
brovascular autoregulation [132], most studies have
shown that cerebrovascular autoregulation is unaf-
fected in AD patients [133–135]. However, it is
established that having either low blood pressure
(hypotension) or high blood pressure (hypertension)
increases the likelihood of developing dementia and
AD [136–138]. In particular, elevated systolic blood
pressure (BP) is a major vascular risk factor for devel-
oping AD and is also associated with cerebrovascular
disease, including stroke and cerebral infarcts [54,
139, 140]. Accordingly, hypertension-induced vascu-
lar changes, such as small vascular lesions and BBB
damage [141], possibly contribute to the development
of CCH and cognitive deficits [142]. A neuroimag-
ing study showed AD patients with hypertension had
worse cognitive function and reduced hippocampal
metabolism compared to normotensive AD patients.
Interestingly, no differences in A� were observed
between these AD patients [143]. Another study
showed hypertension in AD patients accelerated the
rate of cognitive decline only in AD patients under
the age of 65 [144]. A study in older patients (aged
71–85) with moderate AD found decreases in BP as

the disease and cognition worsen [145], whereas oth-
ers showed a decrease in BP years before cognitive
decline [146]. Although a comprehensive report con-
cluded that reducing BP in hypertensive people does
not help prevent cognitive decline or the develop-
ment of dementia, methodological variation of these
studies resulted in self-reported problems with the
analyses performed [147].

The discordant results of these studies may be
attributed to the differential effect that CCH or BBB
deterioration would have on BP in subjects, thereby
skewing the selection criteria. For example, someone
who was hypertensive prior to AD diagnosis could
have developed a cardiovascular abnormality, such as
CCH, which would result in lower BP readings and
a subsequent “normotensive” categorization during
the study design. Therefore, prospective, longitudi-
nal studies are warranted to examine the effect of
lowering BP on the development of dementia or AD
that carefully factor in differences in BP and pres-
ence/absence of vascular irregularities, such as CCH.
One study following MCI patients for 6 years found
that higher plasma levels of atrial natriuretic peptide,
involved in diuresis and lowering BP, were associated
with conversion from MCI to dementia or proba-
ble AD. However, MCI patients with increased atrial
natriuretic peptide levels that received antihyperten-
sive treatment had a lower likelihood of converting to
probable AD [148]. It is thought that elevated atrial
natriuretic peptide is indicative of disturbed vascular
function, which could be used as an early biomarker
to determine the optimal therapeutic treatment win-
dow in MCI patients at risk for converting to AD.
Overall, we know that hypertension is implicated
with the development of dementia and AD, but the
effect of using antihypertensive medications to halt
the progression from early cognitive symptoms into
AD is still inconclusive. In addition to continuing
studies to test the effectiveness of antihypertensive
treatments, we must identify and study alternative tar-
gets related to hypertension-induced effects, such as
damaged blood vessels from microinfarcts.

ANIMAL STUDIES OF HYPERTENSION
AND ALZHEIMER’S DISEASE

While many animal studies described above per-
tain to CCH, very few animal studies have explored
the effects on A� and hypertension. It has been
shown that intra-arterial infusion of A�40 into
the right common carotid artery increased mean
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arterial blood pressure (MAP) in hypotensive rats
(MAP < 100 mm Hg), but had no effect in normoten-
sive (MAP = 100–129 mm Hg) or hypertensive rats
(MAP > 139 mm Hg) [149–151]. The Arendash et
al. study also showed that the A�42 isoform did
not increase BP in hypotensive rats. However, after
decreasing BP with the vasodilator sodium nitro-
prusside, both A�40 and A�42 infusion induced a
return to baseline BP, supporting that A� can con-
tribute to hypertension by constricting blood vessels.
These studies support that increased soluble A� can
exacerbate cerebrovascular dysfunction by inducing
cerebral and peripheral vasoconstriction contribut-
ing to hypertension during the early disease stages.
However, as amyloid aggregates in the brain, cere-
brospinal fluid levels drop potentially resulting in a
shift from a hyper to hypotensive state that reduces
amyloid clearance through the BBB. As such, a feed-
forward mechanism results contributing to reduced
CBF, further A� accumulation, and the eventual cog-
nitive and functional decline contributing to MCI and
AD progression.

Inducing hypertension in wildtype mice increased
A� levels in the cortex and hippocampus as well as
surrounding blood vessels that led to BBB deterio-
ration [152, 153]. An increased RAGE expression
in capillaries was also observed, indicating hyper-
tension might result in upregulated RAGE-mediated
A� influx into the brain [153]. Inducing hyper-
tension in APP/PS1 and TgSwDI mice led to
increased brain A� accumulation, damage to blood
vessels, and accelerated cognitive deficits compared
to genotype-matched normotensive controls [154,
155]. Compared to wildtype mice, APP/PS1 mice
were more responsive to hypertensive treatment,
but less responsive to antihypertensive treatment.
Reduced hippocampal CBF was also observed in
these mice, signifying that hypertension coupled with
hippocampal A� accumulation combines to disrupt
cerebral hemodynamics [156]. In addition, inducing
hypertension in APP/PS1 mice exacerbates cognitive
performance compared to normotensive APP/PS1
mice, which was attributed to decreased functional
connectivity in the brain measured by resting state
blood oxygen-level dependent (BOLD) fMRI [157].
This study employed useful methodology in rodents
that yielded deficits that are comparable to those
found in people with cognitive decline in resting
state fMRI studies. When examining age on vas-
cular parameters, 16–18-month-old APP/PS1 mice
had higher systolic BP, decreased cortical and thala-
mic CBF, and altered hippocampal vasoreactivity that

contributed to their behavioral and cognitive impair-
ments compared to age-matched control mice [158].
These studies support that hypertension has dele-
terious effects on AD-like neuropathology, and the
potential benefits of treating hypertension to quell AD
progression should be explored further.

NEUROVASCULAR COUPLING
DYSFUNCTION IN ALZHEIMER’S
DISEASE

Changes in CBF in humans are typically measured
with imaging techniques, including BOLD fMRI
and FDG-PET imaging. BOLD fMRI relies on the
observation that CBF increases to areas with neu-
ronal activation. In FDG-PET imaging, radiolabeled
fluorodeoxyglucose accumulation in tissue reflects
metabolic changes in response to neuronal activity
[159, 160]. Recently, a noninvasive MRI alternative
using arterial spin labeling perfusion to monitor CBF
has been developed that matches metabolic patterns
observed with FDG-PET and reflects CBF more pre-
cisely than BOLD fMRI [161]. These neuroimaging
techniques that measure CBF changes are consid-
ered to reflect NVC. By measuring brain activity
with BOLD fMRI, patients with MCI, mild AD, or
AD exhibit disruptions in functional connectivity in
a resting state default mode network (DMN). The
DMN is comprised of widespread cortical regions,
including the prefrontal, parietal, and temporal cor-
tices and the hippocampal formation [162–164] that
are commonly affected in AD [165]. A study combin-
ing arterial spin labeling perfusion and resting-state
fMRI in AD patients confirmed functional connectiv-
ity abnormalities in DMN regions, and also showed
regional CBF disruptions in brain areas affected in
AD [166]. By measuring A� levels with PET using
Pittsburgh Compound-B and resting-state DMN with
BOLD fMRI it was shown that disrupted func-
tional connectivity in DMN regions is associated
with increased A� deposition in AD patients even
though deposition was also evident in cognitively
normal subjects [167]. To measure changes in neu-
ronal activity, electroencephalogram recordings have
shown weaker alpha and beta rhythms, but enhanced
delta and theta rhythms in the DMN of AD patients
[168, 169]. Reduced associations between BOLD
signaling and alpha band power was also observed
in the DMN of probable AD patients [170]. While
deficits in DMN connectivity have been linked to
AD, these studies assess brain activity in a specific
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network during rest, which reflect global NVC
anomalies. Incorporation of memory tasks or other
sensory stimuli during BOLD fMRI measurements
have found region-specific NVC deficiencies in AD
patients [171–174]. For example, memory encoding
tasks show decreased activation of the medial tem-
poral lobe [172], while exposure to visual stimuli
indicates reduced CBF in numerous brain regions
of AD patients [175] compared to healthy elderly
controls. Recent studies have verified these results
in mild AD patients by showing normal CBF in the
visual cortex at rest, but upon presentation of visual
stimuli, hypoperfusion becomes evident [176]. Reti-
nal NVC measurements are a newer, less invasive
method for determining pathophysiological brain
processes while providing information regarding the
NVU integrity [177]. Retinal vessel reaction to a non-
invasive flicker stimulation found that AD patients
displayed more pronounced and delayed reactive
dilation compared to MCI and healthy controls,
which was attributed to a compromised NVU [178].

Many of these imaging studies have examined MCI
or early-stage AD to understand how NVU disrup-
tion changes during the course of AD progression.
With this information, a predictive biomarker can
be developed for earlier probable dementia diag-
nosis allowing for improved therapies and patient
outcome. Overall, these studies support a reduction
in NVC of AD patients, which may hinder amyloid
clearance leading to its accumulation and deposition
particularly within the DMN. Additional prospective,
longitudinal studies are needed to gain a better under-
standing of the role of NVC in AD progression.

ANIMAL STUDIES OF NEUROVASCULAR
COUPLING DYSFUNCTION IN
ALZHEIMER’S DISEASE

Measuring NVC functionally requires simultane-
ous measurements of neuronal/astrocytic activity and
vascular changes. Since this is technically challeng-
ing, there is a scarcity of research examining NVC
in rodent models of AD, but most studies indicate
NVU dysfunction. The TgF344-AD rat model has
diminished cerebrovascular reactivity that correlated
with increasing A� load in vessel walls as mea-
sured by changes in dilatory capacity induced by
hypercapnia [179]. At 9 months TgF344-AD rats
also have neuronal network dysfunction between the
hippocampus and medial prefrontal cortex that is
observed after onset of A� plaque deposition but

prior to cognitive deficits [180]. Two-photon imag-
ing of 3xTg-AD, TgSwDI, and Tg2576 mice that
overexpress A� in cerebral blood vessels showed
abnormalities in both astrocytic and vascular activity
in response to whisker stimulation [181]. More-
over, 3xTg-AD mice display impaired neurovascular
coupling induced by neuronal-derived nitric oxide
signaling [182]. In agreement, hAPPJ20 mice showed
NVU disruption characterized by astrocytic endfoot
separation from blood vessels as a result of A� depo-
sition [183]. Others have shown neutrophils cause
CBF deficits in APP/PS1 and 5xFAD mice [184].

A recent study in human tissue and in rat brain
slices showed that A� oligomers act specifically on
pericytes to constrict capillaries [185]. Thus, per-
icytes have become a potential target to alleviate
conditions characterized by blood flow deficiencies
[186]. Pericyte deficient mice are a useful model
for studying their contribution to NVC. These mice
develop neurovascular uncoupling, diminished cere-
bral oxygen supply, and metabolic stress [187, 188].
Crosses of pericyte-deficient mice with amyloid
mouse models of AD may elucidate the role of spe-
cific BBB cell types in AD progression.

BLOOD-BRAIN BARRIER, CEREBRAL
AMYLOID ANGIOPATHY, AND
ALZHEIMER’S DISEASE

The brain microvasculature supports the exchange
of critical metabolic substrates between the brain
and circulating blood [189]. Importantly, the BBB
protects the brain from entry of toxic compounds
and eliminates waste products, including A�, via
LRP1 and RAGE [10, 11, 190]. It is thought that
impaired A� clearance across the BBB is involved
in the pathogenesis of AD [191–193], and deficient
A� clearance, rather than A� overproduction, results
in aggregation and plaque pathology [9, 69]. AD
brains consistently display CAA, characterized by
A� deposition along the walls of cerebral blood
vessels and leptomeningeal blood vessels that are
located between the subarachnoid and pia mater [67].
Although CAA is considered a clinically distinct phe-
nomenon than AD, it shares common cerebrovascular
and neurodegenerative properties suggesting a mech-
anistic link [194]. Originally, sporadic CAA was
characterized according to the absence or presence
of A� deposition in capillaries, the latter referred
to as capillary cerebral amyloid angiopathy [195].
More recently, this has been reclassified to detail
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the cortical penetrance of accumulation along cap-
illaries [196], which has been reviewed elsewhere
[197]. Examination of autopsy-confirmed AD cases
reported an overlap with CAA in which 82.9% of AD
patients exhibited at least mild CAA in parenchymal
or leptomeningeal vessels and 25.6% with moder-
ate to severe CAA throughout various brain regions
[66]. CAA is prevalent in postmortem AD brains
and correlates with both A� deposition and demen-
tia severity as assessed by the clinical dementia rating
scale [198]. In agreement, CAA severity is associated
with lower cognition proximal to death of the patient
[199].

A recent study showed that microvessels from
the parietal cortex of AD patients or those with
advanced CAA contained higher concentrations of
vascular A�40 and A�42 [200]. Vascular levels of P-
glycoprotein and neprilysin, which are involved in
A� degradation, were lower in persons with AD,
positively correlated with cognitive function, and
inversely correlated with vascular A�40 levels. In
contrast, BACE1, a protein required to produce A�,
was increased in AD, negatively correlated with
cognitive function, and positively correlated with
A�40 in microvessel extracts. These studies support
the idea that CAA in AD reflects failed cerebral
A� clearance along perivascular lymphatic drainage
pathways and could be a factor in the etiology of
AD [201].

It is important to know that CAA is the most com-
mon form of cerebral small vessel disease, which
encompasses diseases affecting small arteries, arteri-
oles, venules, and capillaries. Initial studies indicated
no differences in BBB permeability between early
AD and non-demented individuals [202]. However,
advances in neuroimaging have allowed the assess-
ment of BBB deterioration in patients with cerebral
small vessel disease [203], but only a few studies have
examined BBB integrity in AD patients. These stud-
ies indicate increased BBB permeability in early AD
patients and a correlation between reduced CBF and
increased BBB leakage rate [204, 205].

ANIMAL STUDIES OF CAA AND BBB
DYSFUNCTION IN ALZHEIMER’S
DISEASE

Several different animal models exhibit vascu-
lar A� deposition similar to observations in human
CAA. Compared to control mice, 6–12-month-old
TgCRND8 have cortical arterioles with increased tor-

tuosity as well as decreased size and CBF [206].
These structural and functional deficiencies observed
in TgCRND8 mice were rescued by inhibiting A�
oligomerization. Similar to TgCRND8 mice, Tg-
SwDI mice develop cerebral microvascular amyloid
pathology with reduced CBF, vasoreactivity, and
cognitive deficits that can all be prevented by phar-
macologically blocking A� oligomerization [207].
Transplanting epithelial progenitor cells into the hip-
pocampus of APP/PS1 mice repaired BBB damage
and led to improved cognitive performance [208].
Removing A� from leptomeningeal and cerebral ves-
sels with immunotherapy in transgenic CAA mouse
models improved responsivity to vasodilators [209].
These studies strongly suggest that A� accumula-
tion in cerebral blood vessels plays a critical role in
cognitive decline, which highlights the importance of
additional research further investigating CAA mod-
els. For example, the stroke-prone spontaneously
hypertensive rats were crossed with TgF344-AD rats
to develop a novel mixed vascular dementia and
AD model. These rats have robust A� accumula-
tion, gliosis, and behavioral alterations [210], which
would be useful to study the relationship between
A� accumulation and damage to cerebral blood
vessels.

REVISITING THE VASCULAR
HYPOTHESIS FOR SPORADIC
ALZHEIMER’S DISEASE

Vascular risk factors for AD are known to alter
CBF although the mechanisms associated with these
changes have not been fully elucidated. As the vas-
cular and two-hit hypothesis for AD stipulate, aging,
genetic, and environmental factors compromise the
cerebral vasculature and BBB integrity [62, 71].
Microinfarcts or microhemorrhages may be early
contributors to BBB deterioration leading to CBF
deficits (Fig. 2). Subsequently, BBB deterioration,
NVC dysfunction, and reduced CBF impede phys-
iological clearance of A� causing its accumulation
and aggregation in the CNS and cerebral vascula-
ture. A second alternative is that pathological A�
accumulation occurs independently of neurovascu-
lar dysfunction. Since A� constricts the cerebral
vasculature, its accumulation results in further CBF
reductions [149, 211]. The scarcity of metabolic
substrates needed by astrocytes and neurons causes
oxidative stress and cell death that starts in regions
requiring higher energy demands, such as the
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Fig. 2. Vascular Theory of Alzheimer’s disease. Hypertension and
other vascular risk factors contribute to the likelihood of cerebral
blood vessels damage and microinfarcts. This causes blood-brain
barrier (BBB) deterioration and diminishes blood supply to the
affected cerebral regions. As the BBB breaks down, cells involved
in neurovascular coupling are affected and consequently, are not
able to properly regulate and supply local cerebral blood flow
(CBF). Concurrently, the abnormal accumulation of amyloid-�
(A�) in the brain parenchyma and in cerebral blood vessels con-
tributes to the local CBF deficits. Whereas soluble A� can decrease
CBF by directly constricting blood vessels, A� deposition is known
to contribute to CBF reduction or chronic cerebral hypoperfusion.
Over time, essential macromolecules to support neuronal network
activity becomes limited leading to oxidative, neuronal and glial
cell damage, and eventual neurodegeneration. Image created with
BioRender.com.

cortex and hippocampus. Over time, this extends to
other cortical areas causing widespread neurodegen-
eration. The alarming part about the neurovascular
complications associated with AD development, is
that they affect similar cell populations within the
NVU creating a vicious cycle of BBB deterio-
ration. This could explain the rapid progression
from MCI or early AD to late stage AD. Perhaps,
the association between small vascular lesions and
neurodegenerative diseases has been lacking due
to visualization methods. Initially, these vascular
lesions were only observed during postmortem analy-
sis; however, recent advances in human neuroimaging
methods are now able to detect cerebral microinfarcts
[212]. By employing advanced imaging methods, we
can identify ischemic small vessel disease on a macro
and microstructural scale [213], allowing us to design
prospective, longitudinal studies to better understand

the role of small vascular lesions in AD pathogenesis
and other neurodegenerative disorders.

SUMMARY: VASCULAR
DYSREGULATION IN ALZHEIMER’S
DISEASE

For nearly 30 years the majority of AD research has
been conducted under the assumption that the cause
of the disease is dependent upon accumulation of A�
plaques and hyperphosphorylated tau tangles, which
leads to a series of cellular events ultimately causing
neurodegeneration and cognitive decline [214, 215].
Although the familial form of AD is caused by muta-
tions in genes resulting in the abnormal accumulation
and perturbed clearance of A� and hyperphosphory-
lated tau, the cause of sporadic AD that represents
over 95% of all cases is still unclear [216–218]. While
evidence supports that A� accumulation contributes
to or exacerbates sporadic AD, many studies indicate
neurovascular dysfunction occurs prior to A� accu-
mulation and contributes to the development and/or
progression of AD. Regardless of which hypothesis
stands the test of time, a better understanding of the
relationship between neurovascular dysfunction and
AD is warranted. In addition to focusing on abnormal
A� accumulation as the key event in the pathogenesis
for AD, we need to identify alternative mechanisms
involved in AD pathogenesis. However, since many
rodent models of AD have been developed that over-
express A� and tau pathology, much research has
been devoted to understanding mechanisms related
to these proteinopathies. Fortunately, over the past
decade, there has been an increased interest in under-
standing how neurovascular dysfunction relates to
AD and the relationship between A� accumulation
and the NVU. The focus of this review was to describe
neurovascular dysfunction linked to AD as a contrib-
utor to AD pathogenesis. The hope is that a deeper
understanding of how the cellular components of
the NVU are affected in early AD will lead to the
identification of novel targets to prevent or repair neu-
rovascular dysfunction thereby slowing or stopping
AD progression. Understanding CBF dysregulation
during the development and progression of AD could
help identify novel targets for disease modifying
therapies. The interrelatedness of CBF dysfunctions
indicates the complexity of fully understanding indi-
vidual contributions to dementia. But, it also suggests
that multiple factors (including age, sex, environ-
ment, and genetic predilection) may initiate the neu-
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rodegeneration and cognitive decline observed in AD.
As such, individualized treatment therapies meant to
repair the NVU while clearing accumulated AD pro-
teinopathies may prove useful in a subset of patients.
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