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Current procedures for estimating compensatory multidimensional item response theory (MIRT)
models using Markov chain Monte Carlo (MCMC) techniques are inadequate in that they do not
directly model the interrelationship between latent traits. This limits the implementation of the
model in various applications and further prevents the development of other types of IRT models
that offer advantages not realized in existing models. In view of this, an MCMC algorithm is
proposed forMIRTmodels so that the actual latent structure is directlymodeled. It is demonstrated
that the algorithm performs well in modeling parameters as well as intertrait correlations and that
the MIRT model can be used to explore the relative importance of a latent trait in answering each
test item.

1. Introduction

Item response theory (IRT) is a popular approach used for describing probabilistic relation-
ships between correct responses on a set of test items and continuous latent traits (see [1–4]).
IRTmodels have also been used in other areas of appliedmathematics and statistical research.
Some examples include US Supreme Court decision-making processes [5], alcohol disorder
analysis [6–9], nicotine dependency [10–12], multiple-recapture population estimation [13],
psychiatric epidemiology [14–16], longitudinal data analysis [17, 18], latent regression
models [19, 20], and missing data analysis [21].

IRT has the advantage of allowing the inference of what the items and persons have
on the responses to be modeled by distinct sets of parameters. As a result, a primary concern
associated with IRT research has been on parameter estimation, which offers the basis for the
theoretical advantages of IRT. Specifically, of concern are the statistical complexities that can
often arise when item and person parameters are simultaneously estimated (see [1, 22–24]).
More recent attention has focused on fully Bayesian estimation where Markov chain Monte
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Carlo (MCMC) simulation techniques are used (e.g., [25, 26]). Over the past decade, MCMC
has been implemented in the context of IRT models where one latent trait is assumed (e.g.,
[3, 27–29]) as well as to models where multiple traits are considered (e.g., [30–36]), for a thor-
ough review on the historical and current developments of MCMC in terms of IRT, see [37].

The compensatory multidimensional IRT (MIRT; [38]) model assumes that each item
measures multiple latent traits. It differs from some other dichotomous models insofar as it
has an additional source of model indeterminacy that creates difficulties when using MCMC.
Some techniques have been developed to approach this problem by imposing a special
structure that constrains the item slope parameters [30, 36, 39]. However, these approaches
do not directly model the actual interrelation between the distinct latent traits and, thus, are
limited in certain applications. In view of the above, the present aim is to derive an efficient
MCMC algorithm via Gibbs sampling [40] that (a) obviates the additional source of model
indeterminacy associated with the MIRTmodel and (b) directly models the underlying latent
trait structure. The MIRT model considered herein is presented in normal ogive form as
more complicated MCMC procedures would have to be adopted for the logistic form (e.g.,
[3, 28, 35, 36]). Further, given that parametric probability functions of correct responses are
usually modeled by a normal ogive or a logistic function and noting that the logistic and
normal ogive forms of the IRT models are essentially indistinguishable in terms of model
fit or parameter estimates (given proper scaling, see [41]), MCMC procedures for logistic
models are not considered.

The remainder of this paper is organized as follows. In Section 2, the two-parameter
normal ogive (2PNO) MIRT model is outlined. In Section 3, the Gibbs sampler is derived,
and the prior specifications for the model parameters are described. Section 4 gives examples
of implementing the Gibbs sampling algorithm in the context of simulated and real data to
demonstrate the proposed methodology.

2. Preliminaries

The MIRT model is introduced by considering a test that consists of k dichotomous items
with each measuring m latent traits. Let y = [yij]n×k denote a matrix of n responses to the k
items where yij = 1 (yij = 0) if the ith person answers the jth item correctly (incorrectly) for
i = 1, . . . , n and j = 1, . . . , k.

Definition 2.1. The probability of the ith person obtaining a correct response on the jth item is
defined for the 2PNOMIRT model as

P
(
yij = 1 | θi,αj , βj

)
= Φ

(
αjθi − βj

)
= Φ

(
m∑

l=1
αljθli − βj

)
= Φ

(
ηij

)
. (2.1)

The vector θi = (θ1i, . . . , θli, . . . , θmi)
′ denotes latent trait parameters associated with the ith

person, and the vector αj = (α1j , . . . , αlj , . . . , αmj) denotes nonnegative slope parameters
where larger values of αlj have more influence on determining a success on the jth item.
The intercept parameter βj denotes the location in the latent space where the jth item is
maximally informative, andΦ denotes the unit normal cdf. The model in (2.1) is also referred
to as a compensatory MIRT model [38] because a low level of θli in one dimension can be
compensated by a high level of θli in another dimension.
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Remark 2.2. If the vector of slope parameters in (2.1) is such that αj = (0, . . . , 0, αlj , 0, . . . , 0),
then the MIRT model reduces to the 2PNO multi-unidimensional model as

P
(
ylij = 1 | θli, αlj , βlj

)
= Φ

(
αljθli − βlj

)
, (2.2)

where the test involves multiple parameters of θli and where each item measures one of
these latent variables (see [31, 32]). The difference between (2.1) and (2.2) is analogous to the
distinctionmade between factor analysis and that with a rotation to achieve a simple structure
[42]. As such, (2.2) can be viewed as a special case of (2.1)where each itemmeasures only one
of the several latent traits. Further, the two models differ in that (2.1) is exploratory whereas
(2.2) is confirmatory in nature.

The unidimensional IRT model, which has a systematic component form of αjθi − βj ,
has a well-known identification problem in terms of location and scale invariance (e.g., [43]).
Common practices of resolving this problem are to impose some constraint on the item
parameters, that is,

∏
αj = 1 and

∑
βj = 0, or select some specific values for the location

and scale parameters for the prior normal distribution of θi, for example, θi ∼ N(0, 1) (see,
e.g., [3, 27–29, 43]). Further, Bafumi et al. [5] proposed using a parameter transformation
to approach the identification problem in the context of unidimensional IRT models. More
specifically, the model parameters are transformed using a normalization procedure after
estimation is completed. Bafumi et al. [5] noted that this transformation procedure obviates
the problem of elusive convergence that results from highly correlated samples.

In terms of the multi-unidimensional IRT model in (2.2), Lee [31] extended
Tsutakawa’s [43] approach by adopting a constrained covariance matrix for the latent traits
and modeling the constrained covariance matrix indirectly. Lee’s [31]method not only solves
the model indeterminacy problem, but also appropriately estimates the interrelationship
between multiple latent traits (see also [32, 44]).

The more general MIRT model, as defined in (2.1), involves a new source of model
indeterminacy called rotational invariance and is statistically more complicated than the
unidimensional or multi-unidimensional models. As such, a Gibbs sampler is subsequently
derived based on the ideas suggested in [5, 31] to address the general MIRT model
identification problems and to model the latent structure directly.

It is noted that in an effort to develop computer software, Sheng [45] has shown
that the approaches based on [5, 31] are useful for the 2PNO additive MIRT model, whose
systematic component for modeling ylij takes the form α0ljθ0i+αljθli−βlj . The model assumes
that each itemmeasures two latent traits: θ0i, a common latent trait that all itemsmeasure, and
θli, a latent trait that is specific for items in the lth subtest. The difference between the model
in [45] and the general MIRTmodel presented herein is comparable to that between a bifactor
model (see [46]) and a general factor analysis model. The two models assume different latent
structures, and hence the approaches for resolving their model indeterminacies are not the
same.

3. The Gibbs Sampler

The derivation of the Gibbs sampler associated with the MIRT model defined in (2.1) begins
by considering a multivariate distribution for θi and a linear transformation on it, which will
be based on the following definitions.
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Definition 3.1. Let θi ∼ Nm(0,P), where P is a constrained covariance matrix or a correlation
matrix, with 1

′
s on the diagonal and with correlations ρst (between θsi and θti) on the off-

diagonal.

Definition 3.2. Let θ∗
i ∼ Nm(μ,Σ), where Σ = [σll′]m×m and Σ = DPD, where D is an m ×

m diagonal matrix. Note that this variance-correlation decomposition of Σ [47] makes the
interpretation easier [48] and is essential for modeling the correlation matrix indirectly while
solving the model indeterminacy in the context of the MIRT model.

From Definitions 3.1 and 3.2, it can be shown that

θ∗
i − μ = Dθi, (3.1)

where P can be transformed from Σ using

ρst =
σst√
σssσtt

(3.2)

for s /= t. To obviate the identification problem associated with the unconstrained parameters,
let θ∗

i be related with the item parameters (α∗
j and β∗j ) so that the likelihoods are preserved

given

α∗
jθ

∗
i − β∗j = αjθi − βj , (3.3)

where the item parameters (α∗
j and β∗j ) will have to be constrained such that

∏
jα

∗
lj
= 1 and

∑
j β

∗
j = 0. This leads us to the following proposition.

Proposition 3.3. If α∗
j are constrained such that

∏
jα

∗
lj = 1, then

D = diag

⎛

⎜
⎝

⎛

⎝
∏

j

α1j

⎞

⎠

1/k

, . . . ,

⎛

⎝
∏

j

αmj

⎞

⎠

1/k
⎞

⎟
⎠. (3.4)

Proof. It follows from (3.1) that θ∗
i = Dθi + μ, and thus, substituting Dθi + μ into (3.3) gives

α∗
j (Dθi + μ) − β∗j = αjθi − βj . (3.5)

Using (3.5), we can subsequently derive

α∗
jD = αj . (3.6)

Setting D = diag(d1, . . . , dm) in (3.6) and subsequently multiplying the left-hand side yields

α∗
ljdl = αlj , (3.7)
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which leads to
∏

j

α∗
ljdl =

∏

j

αlj , (3.8)

for l = 1, . . . , m. Hence, given the constraint that
∏

jα
∗
lj = 1, each nonzero element in D is

dl = (
∏

jαlj)
1/k.

To implement Gibbs sampling for the MIRT model in (2.1), a latent variable Z is
introduced such that Zij ∼ N(ηij , 1) (see, e.g., [27, 49]). Further, from Definition 3.1, we
assume that θi ∼ Nm(0,P) to ensure unique scaling for θ, which precludes the identification
problem associated with such models (see [45]). Furthermore, for the unconstrained
covariance matrix Σ, we assume that p(Σ) = |Σ|−(m+2)/2. Thus, if ξj = (αj , βj)

′ with assumed
prior distributions, then the joint posterior distribution of (θ, ξ,Z,Σ) is

p(θ, ξ,Z,Σ) ∝ f(y | Z)p(Z | θ, ξ)p(ξ)p(θ | P)p(Σ), (3.9)

where f(y | Z) = ∏n
i=1

∏k
j=1 p

yij

ij (1 − pij)
1−yij is the likelihood function, with pij being the model

probability function as defined in (2.1).
The proposed Gibbs sampler involves the following five steps:

(1) sampling of the augmented parameters from

Zij | • ∼
{
N(0,∞)

(
ηij , 1

)
if yij = 1,

N(−∞,0)
(
ηij , 1

)
if yij = 0,

(3.10)

(2) sampling of the latent variable (person) parameters θi from

θi | • ∼ Nm

((
A′A + P

)−1A′B,
(
A′A + P

)−1)
, (3.11)

where A =

[ α1

...
αk

]

k×m
and B =

⎡

⎣
Zi1+β1

...
Zik+βk

⎤

⎦

k×1

,

(3) sampling of the item parameters ξj from

ξj | • ∼ Nm

((
x′x + I

)−1x′Zj ,
(
x′x + I

)−1)
I
(
αlj > 0

)
, (3.12)

where x = [θ,−1], assuming uniform priors αlj > 0 and p(βj) ∝ 1, or from

ξj | • ∼ Nm

((
x′x + Σ−1

ξ

)−1(
x′Zj + Σ−1

ξ μξ

)
,
(
x′x + Σ−1

ξ

)−1)
I
(
αlj > 0

)
, (3.13)

where μξ = (μα1 , . . . , μαm, μβ)
′ and Σξ = diag(σ2

α1
, . . . , σ2

αm
, σ2

β), assuming conjugate
normal priors αlj ∼ N(0,∞)(μαl , σ

2
αl
), βj ∼ N(μβ, σ

2
β
),
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(4) sampling of the unconstrained covariance matrix Σ from

Σ | • ∼ W−1
(
S−1, n

)
, (3.14)

whereW−1 is an inverse Wishart distribution, S =
∑n

i=1(Dθi)(Dθi)
′, and whereD is

derived from (3.4),

(5) a transformation from Σ to P.

In view of the additional model indeterminacy that results from the additive nature of
θlj , the parameters are further normalized after each Markov transition step is completed
[5, 45]. More specifically, θli, αlj , and βj are transformed (t) to the following normalized
parameters: θt

li = (θli − θl)/sθl , α
t
lj = αljsθl and βtj = βj −

∑
l αljθl, where θl and sθl represent the

mean and standard deviation of θlj . This rescaling preserves the likelihood because
∑

l α
t
lj
θt
li
−

βtj =
∑

l αljθli − βj , while allowing the computation to proceed more efficiently [50]. Further,
the transformation also assists in terms of speeding up the convergence of the Markov chains
by reducing the posterior correlation in the posterior probability densities [51].

Thus, with initial starting values of θ(0), ξ(0), and P(0), the observations (i.e., Z(�),
θ(�), ξ(�), Σ(�), and P(�)) can be drawn or transformed iteratively from (3.10), (3.11), (3.12),
(3.14), and (3.2) (or (3.13) in lieu of (3.12)), respectively. This iterative process continues
for a sufficient number of samples after the posterior distributions reach stationarity (i.e., a
phase commonly referred to as burn-in). The posterior means of all the samples collected
after the burn-in stage are considered to be estimates of the model parameters (θ, ξ) and the
hyperparameter (P).

4. Numerical Examples

To demonstrate the methodology presented above, the proposed Gibbs sampler was imple-
mented using both simulated and real data. In terms of simulated data, tests that measure
two latent traits were considered. In particular, three 1000 × 18 (i.e., m = 2, n = 1000, and
k = 18) dichotomous data matrices were simulated from the 2PNO MIRT model where
the population correlation between the two latent traits was set to ρθ1i ,θ2i = 0.2, 0.4, 0.6, res-
pectively. The item parameters were generated randomly from uniform distributions so that
αlj ∼ U(0, 2), βj ∼ U(−2, 2). Gibbs sampling was subsequently implemented to recover the
model parameters assuming informative normal (i.e., μα1 = μα2 = μβ = 0 and σ2

α1
= σ2

α2
=

σ2
β = 1) or uniform priors for ξj . Convergence was evaluated using the Gelman and Rubin

[52] R statistic for each item parameter. While the usual practice is to use multiple Markov
chains from different starting points, a single chain can also be divided into subchains so that
convergence is assessed by comparing the between and within subchain variances (see [53]).
In view of the fact that a single chain is more economical in the number of iterations needed,
the latter approach was adopted. The posterior estimates of item parameters (α1, α2, β), the
intertrait correlation hyperparameter, and the associated Gelman-Rubin R statistics were
obtained and are listed in Tables 1, 2, and 3 (note that ρθ1i ,θ2i is denoted as ρ12 in these tables).

The Gelman-RubinR statistic provides a numerical measure for assessing convergence
for each item parameter. With values close to 1, it is determined that in the implementation of
the Gibbs sampler, Markov chains reached stationarity with a run length of 10,000 iterations
and a burn-in period of 5,000 iterations. The posterior estimates of the item parameters as
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Table 1: Posterior estimates andGelman-RubinR statistics for α1, α2, β, and ρ12 when the specified intertrait
correlation is 0.2 (chain length = 10,000, burn-in = 5,000).

True Uniform priors Normal priors True Uniform priors Normal priors

Estimate (R) Estimate (R) Estimate (R) Estimate (R)

α1 β

0.905 0.962 (1.036) 0.947 (1.223) −1.433 −1.593 (1.017) −1.553 (1.219)

0.310 0.229 (1.044) 0.237 (1.007) −1.552 −1.610 (1.027) −1.606 (1.010)

0.605 0.579 (1.068) 0.581 (1.007) −0.656 −0.627 (1.005) −0.626 (1.014)

0.117 0.082 (1.034) 0.091 (1.015) −0.146 −0.099 (1.011) −0.099 (1.010)

0.197 0.064 (1.008) 0.062 (1.003) −1.206 −1.176 (0.999) −1.169 (1.001)

0.498 0.517 (1.032) 0.518 (1.012) −1.457 −1.728 (1.100) −1.622 (1.021)

0.442 0.443 (1.043) 0.467 (1.085) 1.904 1.892 (1.025) 1.831 (1.057)

1.006 1.045 (1.008) 1.029 (1.117) 0.029 −0.046 (1.005) −0.045 (1.003)

1.881 1.903 (1.191) 1.837 (1.116) 0.805 0.758 (1.037) 0.737 (1.007)

0.733 0.838 (1.024) 0.828 (1.047) −1.267 −1.326 (1.037) −1.296 (1.049)

0.687 0.500 (1.012) 0.506 (1.042) 1.145 1.053 (1.021) 1.056 (1.024)

1.728 1.760 (1.090) 1.663 (1.148) −0.828 −0.898 (1.048) −0.861 (1.107)

1.429 1.582 (1.175) 1.450 (1.085) 0.786 0.948 (1.203) 0.876 (1.033)

0.888 0.895 (1.023) 0.893 (1.052) 1.116 1.137 (1.033) 1.135 (1.017)

1.223 1.346 (1.047) 1.301 (1.117) −0.197 −0.196 (1.005) −0.185 (1.010)

1.155 1.348 (1.028) 1.296 (1.049) 1.265 1.222 (1.260) 1.187 (1.052)

1.582 1.728 (1.085) 1.673 (1.170) −0.708 −0.856 (1.440) −0.838 (1.058)

1.427 1.097 (1.019) 1.084 (1.061) 0.513 0.426 (1.021) 0.424 (1.003)

α2 ρ12

1.504 1.722 (1.049) 1.666 (1.079) 0.2 0.183 (1.199) 0.163 (1.038)

0.886 1.047 (1.029) 1.042 (1.022)

1.829 1.792 (1.089) 1.792 (1.033)

1.578 1.589 (1.036) 1.558 (1.023)

0.131 0.088 (1.018) 0.089 (1.007)

1.562 1.888 (1.095) 1.731 (1.019)

1.833 1.616 (1.215) 1.531 (1.008)

0.210 0.190 (1.115) 0.197 (1.023)

1.533 1.635 (1.175) 1.573 (1.003)

1.436 1.309 (1.090) 1.263 (1.057)

0.961 0.879 (1.091) 0.888 (1.039)

0.678 0.807 (1.130) 0.783 (1.106)

1.888 2.341 (1.281) 2.134 (1.055)

0.618 0.744 (1.106) 0.751 (1.013)

1.967 1.921 (1.076) 1.837 (1.034)

1.862 1.934 (1.142) 1.862 (1.060)

0.062 0.135 (1.169) 0.143 (1.060)

1.389 1.223 (1.137) 1.215 (1.041)
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Table 2: Posterior estimates andGelman-RubinR statistics for α1, α2, β, and ρ12 when the specified intertrait
correlation is 0.4 (chain length = 10,000, burn-in = 5,000).

True Uniform priors Normal priors True Uniform priors Normal priors

Estimate (R) Estimate (R) Estimate (R) Estimate (R)

α1 β

0.905 0.977 (1.177) 0.918 (1.018) −1.433 −1.640 (1.035) −1.583 (1.035)

0.310 0.311 (1.138) 0.297 (1.076) −1.552 −1.790 (1.024) −1.739 (1.035)

0.605 0.609 (1.170) 0.575 (1.057) −0.656 −0.676 (1.039) −0.664 (1.027)

0.117 0.116 (1.291) 0.096 (1.071) −0.146 −0.303 (1.035) −0.297 (1.004)

0.197 0.243 (1.005) 0.257 (1.006) −1.206 −1.278 (1.004) −1.280 (1.004)

0.498 0.583 (1.141) 0.551 (1.065) −1.457 −1.567 (1.046) −1.549 (1.021)

0.442 0.371 (1.152) 0.356 (1.073) 1.904 2.013 (1.345) 1.830 (1.519)

1.006 0.897 (1.020) 0.896 (1.021) 0.029 −0.004 (1.010) −0.003 (1.000)

1.881 2.120 (1.007) 1.998 (1.361) 0.805 0.788 (1.040) 0.775 (1.197)

0.733 0.712 (1.126) 0.695 (1.113) −1.267 −1.363 (1.029) −1.353 (1.048)

0.687 0.710 (1.070) 0.692 (1.075) 1.145 1.100 (1.007) 1.104 (1.006)

1.728 2.277 (1.176) 2.026 (1.091) −0.828 −1.034 (1.132) −0.951 (1.131)

1.429 1.561 (1.081) 1.495 (1.075) 0.786 0.698 (1.045) 0.692 (1.012)

0.888 1.071 (1.006) 1.028 (1.068) 1.116 1.109 (1.005) 1.096 (1.004)

1.223 1.226 (1.230) 1.175 (1.036) −0.197 −0.397 (1.021) −0.386 (1.042)

1.155 1.185 (1.022) 1.115 (1.174) 1.265 1.017 (1.094) 1.005 (1.020)

1.582 1.450 (1.039) 1.451 (1.050) −0.708 −0.679 (1.035) −0.681 (1.005)

1.427 1.714 (1.062) 1.667 (1.110) 0.513 0.476 (1.069) 0.477 (1.048)

α2 ρ12

1.504 1.417 (1.045) 1.375 (1.114) 0.4 0.434 (1.288) 0.425 (1.058)

0.886 1.011 (1.045) 0.968 (1.103)

1.829 1.620 (1.013) 1.621 (1.127)

1.578 1.660 (1.069) 1.628 (1.015)

0.131 0.084 (1.012) 0.081 (1.011)

1.562 1.430 (1.053) 1.419 (1.038)

1.833 2.199 (1.342) 1.942 (1.335)

0.210 0.114 (1.065) 0.126 (1.155)

1.533 1.497 (1.097) 1.495 (1.093)

1.436 1.372 (1.054) 1.371 (1.025)

0.961 0.996 (1.025) 1.014 (1.132)

0.678 0.456 (1.115) 0.486 (1.212)

1.888 1.622 (1.152) 1.631 (1.071)

0.618 0.437 (1.073) 0.461 (1.108)

1.967 1.781 (1.129) 1.780 (1.290)

1.862 1.502 (1.093) 1.517 (1.047)

0.062 0.121 (1.083) 0.138 (1.237)

1.389 1.320 (1.073) 1.348 (1.198)
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Table 3: Posterior estimates andGelman-RubinR statistics for α1, α2, β, and ρ12 when the specified intertrait
correlation is 0.6 (chain length = 10,000, burn-in = 5,000).

True Uniform priors Normal priors True Uniform priors Normal priors

Estimate (R) Estimate (R) Estimate (R) Estimate (R)

α1 β

0.905 0.841 (1.159) 0.844 (1.007) −1.433 −1.263 (1.030) −1.251 (1.021)

0.310 0.201 (1.017) 0.216 (1.006) −1.552 −1.561 (1.015) −1.553 (1.046)

0.605 0.525 (1.064) 0.546 (1.098) −0.656 −0.594 (1.071) −0.581 (1.047)

0.117 0.105 (1.031) 0.132 (1.008) −0.146 −0.034 (1.013) −0.037 (1.017)

0.197 0.143 (1.003) 0.144 (1.005) −1.206 −1.237 (1.004) −1.237 (1.001)

0.498 0.750 (1.107) 0.723 (1.016) −1.457 −1.426 (1.030) −1.400 (1.060)

0.442 0.283 (1.149) 0.380 (1.199) 1.904 1.961 (1.122) 1.832 (1.119)

1.006 1.001 (1.212) 0.984 (1.054) 0.029 −0.003 (1.004) −0.007 (1.001)

1.881 1.586 (1.125) 1.493 (1.077) 0.805 0.808 (1.039) 0.776 (1.025)

0.733 0.745 (1.040) 0.759 (1.049) −1.267 −1.389 (1.022) −1.387 (1.025)

0.687 0.741 (1.127) 0.726 (1.054) 1.145 1.183 (1.027) 1.179 (1.021)

1.728 1.696 (1.166) 1.652 (1.056) −0.828 −0.675 (1.045) −0.676 (1.009)

1.429 1.690 (1.406) 1.610 (1.087) 0.786 1.085 (1.239) 1.015 (1.196)

0.888 0.956 (1.054) 0.926 (1.045) 1.116 1.056 (1.083) 1.048 (1.015)

1.223 1.283 (1.114) 1.238 (1.117) −0.197 −0.067 (1.077) −0.070 (1.046)

1.155 1.376 (1.372) 1.323 (1.079) 1.265 1.352 (1.155) 1.325 (1.022)

1.582 1.439 (1.076) 1.409 (1.045) −0.708 −0.676 (1.067) −0.677 (1.052)

1.427 1.679 (1.234) 1.548 (1.237) 0.513 0.513 (1.048) 0.477 (1.021)

α2 ρ12

1.504 1.459 (1.191) 1.419 (1.026) 0.6 0.646 (1.031) 0.608 (1.100)

0.886 0.968 (1.021) 0.958 (1.007)

1.829 2.192 (1.129) 2.048 (1.041)

1.578 1.637 (1.054) 1.592 (1.028)

0.131 0.099 (1.014) 0.100 (1.010)

1.562 1.247 (1.080) 1.230 (1.015)

1.833 1.986 (1.070) 1.746 (1.028)

0.210 0.287 (1.232) 0.302 (1.046)

1.533 1.468 (1.161) 1.426 (1.169)

1.436 1.611 (1.149) 1.591 (1.046)

0.961 0.816 (1.154) 0.827 (1.025)

0.678 0.606 (1.144) 0.640 (1.078)

1.888 2.479 (1.113) 2.288 (1.054)

0.618 0.560 (1.095) 0.572 (1.059)

1.967 2.146 (1.324) 2.000 (1.036)

1.862 1.727 (1.106) 1.695 (1.070)

0.062 0.082 (1.091) 0.105 (1.209)

1.389 1.394 (1.221) 1.355 (1.025)
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Table 4: Posterior estimates and Gelman-Rubin R statistics for α1, α2, and β for the CBASE data, assuming
uniform priors (chain length = 10,000, burn-in = 5,000).

j α̂1 R α̂2 R β̂ R

1 0.0807 1.0546 0.5486 1.0226 −0.5861 1.0020

2 0.1396 1.0313 0.3630 1.0089 −0.6092 1.0001

3 0.0758 1.0178 0.3234 1.0001 −1.0515 0.9996

4 0.0737 1.0579 0.4157 1.0471 −1.4012 1.0183

5 0.1608 1.0259 0.4287 1.0040 −1.2238 1.0025

6 0.3050 1.0558 0.6824 1.0106 −0.9232 1.0243

7 0.1306 1.0066 0.2844 1.0227 −0.4324 1.0002

8 0.2804 1.0080 0.3106 1.0307 −1.2559 1.0024

9 0.1905 1.0478 0.4238 1.0176 −0.1286 1.0000

10 0.2425 1.0145 0.4838 1.0052 −0.0581 1.0005

11 0.1250 1.0272 0.3620 1.0016 0.4158 1.0028

12 0.0466 1.0076 0.4509 1.0154 −0.8238 1.0046

13 0.1177 1.0351 0.4070 1.0061 −0.2584 1.0019

14 0.0514 1.0115 0.3165 1.0065 −0.0282 0.9998

15 0.1378 1.0354 0.4790 1.0029 −0.8686 1.0005

16 0.1698 1.0299 0.3259 1.0113 −0.0595 1.0017

17 0.1797 1.0300 0.3652 1.0037 −0.2178 1.0004

18 0.2006 1.0100 0.1696 1.0026 −0.2419 1.0001

19 0.3423 1.0486 0.4101 1.0374 0.2914 1.0035

20 0.3028 1.1008 0.8084 1.0204 −1.2920 1.0084

21 0.2741 1.0435 0.4980 1.0020 −0.2798 1.0018

22 0.3171 1.0810 0.3796 1.0272 −0.4662 1.0045

23 0.2517 1.0528 0.5849 1.0080 −0.9708 1.0087

24 0.3044 1.0269 0.3127 1.0388 −0.1639 0.9997

25 0.2126 1.0359 0.2268 1.0244 −0.3475 1.0008

26 0.1996 1.0497 0.4524 1.0142 −0.8906 1.0007

27 0.2709 1.0072 0.1593 1.0205 −0.9018 1.0025

28 0.1758 1.0547 0.4325 1.0450 −0.6202 1.0031

29 0.2979 1.0322 0.2235 1.0454 −0.2678 1.0013

30 0.2800 1.0731 0.4221 1.0215 −0.3751 1.0011

31 0.5042 1.0055 0.2511 1.0202 −0.9097 1.0005

32 0.6259 1.0326 0.3144 1.0243 −0.9608 1.0122

33 0.2224 1.0256 0.1425 1.0027 −0.3856 1.0012

34 0.5000 1.0014 0.0972 1.0461 −0.7270 1.0012

35 0.5429 1.0106 0.2085 1.0693 −0.2614 1.0024

36 0.4537 1.0295 0.1994 1.0359 0.4221 1.0060

37 0.4280 1.0037 0.0814 1.0230 0.3117 1.0018

38 0.4286 0.9996 0.0981 1.0251 −0.4062 0.9997

39 0.3901 1.0492 0.3072 1.0351 −0.6239 1.0044

40 0.6940 1.0144 0.0697 1.0656 −0.3961 0.9997

41 0.3930 1.0049 0.0436 1.0270 −0.3781 1.0006
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well as the intertrait correlation hyperparameter are fairly close to the specified parameters,
suggesting that the algorithm performs well in recovering these parameters when the latent
dimensions have a low to medium correlation. Further, the two sets of posterior estimates,
resulting from different prior distributions, differ only slightly from each other, signifying
that the posterior estimates are not sensitive to the choice of noninformative or informative
priors for the slope and intercept parameters.

In the context of real data, a subset of the College Basic Academic Subjects Examination
(CBASE; [54]) English datawas used to demonstrate themethodology. Specifically, these data
contain independent binary responses of 1,200 college students to 41 multiple-choice items.
The English test is further organized to have two subtests, namely, reading and writing,
so that 25 items are in the reading subtest and 16 are in the writing subtest. It is noted
that the test was designed in such a manner that it conforms to the multi-unidimensional
model, as each item measures one of the two latent traits. However, one may use the more
general MIRTmodel to explore the latent structure, and in particular, to assess individual test
items (i.e., to determine if the trait mainly involved in answering each item agrees with the
one that it is supposed to measure). This can be accomplished by examining the estimated
slope parameters, as a larger αlj corresponds to a latent dimension that is more important
in determining a person’s success on the item. Hence, assuming uniform priors for ξj , Gibbs
sampling was implemented to fit the MIRT model to the CBASE data with a run length of
10,000 iterations and a burn-in period of 5,000, whichwas sufficient for the chains to converge.
An examination of the posterior estimates of α shown in Table 4 suggests that all 16 items in
the writing subtest relies on the second dimension writing more than the first dimension
reading. However, some items in the reading subtest, such as items 17, 19–26, 28, and 30,
require further attention and modification, as they do not seem to measure mainly reading as
the rest of the items do.

In summary, the proposed MCMC algorithm provides computationally efficient and
accurate estimation in the context of both simulated and real data examples. Not only does
the algorithm appropriately model parameters, but also the algorithm efficiently models the
intertrait correlations for the compensatory MIRT model, which provides an exploratory
approach for examining the latent structure of a test and detecting items that do not measure
the trait they are designed to measure.

5. Concluding Remarks

The MCMC algorithm presented in this paper offers solutions for directly modeling the
underlying structure of IRT models with multiple continuous latent traits. The algorithm
works well when the actual intertrait correlation is low to moderate (less than 0.8), as a high
correlation tends to result in high collinearity, which makes it difficult to distinguish among
multiple latent traits and estimate them. With model parameters being accurately estimated,
the compensatory MIRT model can be used to explore the relative importance of a latent trait
in answering each test item. This is particularly useful when the underlying structure is not
known, or when it is desirable to confirm the structure by examining the performance of
individual items.
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