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Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the
Promoters of the Ribosomal Protein Genes for Transcriptional
Initiation In Vivo

Bhawana Uprety, Rwik Sen, Sukesh R. Bhaumik

Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA

NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated
factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how
NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribo-
somal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of
NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a �eaf1
strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promot-
ers of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in target-
ing the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4
plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo.
Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes
lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant
insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.

Histone H4 acetylation plays important roles in the regulation
of eukaryotic transcription and other biological processes (1–

3). In Saccharomyces cerevisiae, NuA4 (nucleosome acetyltrans-
ferase of H4) acetylates histone H4. In addition, NuA4 is involved
in acetylation of histones H2A and H2A.Z (4–7). NuA4 is a mul-
tisubunit protein complex and is conserved from yeast to humans
(Tip60 is the human homologue of yeast NuA4) (8). Like other
histone lysine (K) acetyltransferases (KATs), NuA4 is involved in
various cellular events, such as transcription, DNA repair, and cell
cycle progression (9–27). In addition, NuA4 is proposed to regu-
late cellular aging and autophagy via acetylation of nonhistone
proteins (28–30). Likewise, Tip60 has numerous nonhistone tar-
gets involved in various cellular activities (31, 32). In addition,
Tip60 has been found to be involved in performing critical func-
tions in DNA repair and stem cell regulation (33–36). Therefore,
NuA4 and its human homologue are multifunctional in maintain-
ing normal cellular functions.

Esa1p is the catalytic subunit of NuA4 with KAT activity (37,
38). In addition, NuA4 has 12 other subunits (39, 40). These sub-
units include Tra1p (ATM-related factor), Epl1p (enhancer of
polycomb homologue), Arp4p (actin-related protein), Yaf9p
(leukemogenic factor ENL/AF9 homologue), Act1p, and 7 Esa1p-
associated factors, Eaf1p to Eaf7p. Eaf2p and Eaf4p are also known
as Swc4p and Yng2p, respectively. Although Esa1p is the catalytic
subunit of NuA4, it cannot acetylate nucleosomal histones on its
own but can acetylate naked/free histones (4, 5). Esa1p acetylates
nucleosomal histones when it is present within the complex (5). In
addition to being a component of NuA4, Esa1p is also present in a
distinct and relatively small complex known as piccolo NuA4
(picNuA4) (5, 41). Esa1p forms picNuA4 in combination with
Yng2p and Epl1p (42). Yng2p and Epl1p are also integral compo-
nents of NuA4. Thus, picNuA4 is a smaller subcomplex of NuA4
and has been biochemically found to exist independently of NuA4
(5, 41–44). Therefore, Esa1p is present in two distinct complexes,

namely, NuA4 (or holo-NuA4) and picNuA4 (5, 41). Like NuA4,
picNuA4 is capable of acetylating nucleosomal histones. In fact,
picNuA4 has nucleosomal histone acetylation activity similar to
or even greater than that of NuA4 (5, 41). While both NuA4 and
picNuA4 have strong KAT activity toward nucleosomes, only
picNuA4 acetylates nucleosomal histone in preference to free/na-
ked histones (42–44). Previous studies demonstrated that pic-
NuA4 is not targeted to chromatin by transcription factors or
activators but rather interacts with nucleosomal DNA and his-
tones within chromatin (42–44). Such interaction of picNuA4
with chromatin has been implicated in nontargeted global histone
acetylation (42–44). On the other hand, NuA4 is recruited to the
active chromatin by transcription factors or activators, leading to
local/targeted histone acetylation for transcription (5, 10, 16, 17,
42, 45–47). NuA4 is also recruited to the sites of DNA double-
strand breaks in a targeted fashion via phosphorylation of histone
H2A for repair (18, 20).

NuA4 is targeted to the promoters of the ribosomal protein
genes via its interaction with an activator (10, 11, 14, 17, 46).
Subsequently, NuA4 facilitates transcriptional initiation of tran-
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scription factor IID (TFIID) (a complex of TBP and TBP-associ-
ated factors [TAFs])-dependent ribosomal protein genes (10, 11,
17). Further, we have recently demonstrated that the 19S base or
subcomplex of the 26S proteasome enhances the targeting of
NuA4 to the promoters of the ribosomal protein genes for tran-
scriptional initiation (17). It is not clearly understood how NuA4
enhances transcriptional initiation of the ribosomal protein genes.
In view of this, we impaired the recruitment of NuA4 to the pro-
moters of ribosomal protein genes, such as RPS5, RPL2B, and
RPS11B, following the depletion of its Eaf1p component and then
analyzed the levels of histone H4 acetylation and TFIID at the
promoters of these genes. Our results reveal that the levels of his-
tone H4 acetylation at the promoters of the ribosomal protein
genes are not dramatically reduced following impaired recruit-
ment of NuA4 in the absence of Eaf1p, since picNuA4 globally
acetylates histone H4 in the background of NuA4. Intriguingly,
the recruitment of TFIID (i.e., the TAF-dependent form of TBP)
to these promoters is decreased in the absence of NuA4 or Eaf1p.
However, the levels of the TAF-independent form of TBP at these
promoters were not impaired in the absence of Eaf1p. Hence,
transcription of these ribosomal protein genes occurred in the
�eaf1 strain. However, TFIID-dependent ribosomal protein genes
become more dependent on the TAF-independent form of TBP
for transcriptional initiation in the absence of NuA4, thus impli-
cating NuA4 in targeting TFIID to the promoters of the ribosomal
protein genes. Further, in the absence of Eaf1p or NuA4, SAGA
(Spt-Ada-Gcn5 acetyltransferase, a large multiprotein complex) is
involved in targeting the TAF-independent form of TBP but not
TFIID to the promoters of the ribosomal protein genes for tran-
scriptional initiation. Thus, NuA4 contributes to TFIID-depen-
dent transcriptional initiation of the ribosomal protein genes.
Such a function of NuA4 is mediated via its targeted KAT activity
at the promoter. In the absence of NuA4, the ribosomal protein
genes lose TFIID dependency and become SAGA dependent for
transcriptional initiation. Collectively, our results shed much light
on the regulation of ribosomal protein gene activation, as pre-
sented below.

MATERIALS AND METHODS
Plasmids. The plasmid pFA6a-13Myc-KanMX6 (48) was used for
genomic tagging of Swc4p, Epl1p, Yng2p, Esa1p, Eaf1p, Eaf5p, and Spt20p
with a Myc epitope. The plasmid pRS403 or pRS406 (49) was used to
delete EAF1 by the PCR-based gene disruption method in different ge-
netic backgrounds. The plasmid pFA6a-TRP1-pGAL1-3HA (48) was used
to replace the endogenous promoter of SPT20 with the GAL1 promoter
with a hemagglutinin (HA) epitope tag.

Yeast strains. The taf1-ts (temperature-sensitive) mutant and its iso-
genic wild-type (WT) equivalent were obtained from the laboratory of
Michael R. Green (University of Massachusetts Medical School) (50, 51).
The esa1-ts mutant (LPY3291) and wild-type (LPY3498) strains were ob-
tained from the laboratory of Lorraine Pillus (University of California,
San Diego) (38). The �spt20 (FY1097) and wild-type (FY67) strains were
obtained from the laboratory of Fred Winston (Harvard Medical School).
Multiple Myc epitope tags were added at the original chromosomal loci of
SWC4, EPL1, YNG2, ESA1, and EAF5 in the wild-type strain (W303a) to
generate the strains BUY41 (Swc4p-Myc), ZDY22 (Epl1p-Myc), BUY31
(Yng2p-Myc), BUY26 (Esa1p-Myc), and RSY70 (Eaf5p-Myc), respec-
tively. The EAF1 gene in the BUY26 strain was deleted to generate BUY27,
using the pRS406 strain. The strain BUY28 was generated by deleting
EAF1 from the ZDY22 strain. The BUY24 strain was generated by deleting
EAF1 in the W303a strain, using the pRS403 plasmid. The YNG2, SWC4,
and EAF5 genes were separately tagged with multiple Myc epitopes in

their chromosomal loci in the BUY24 strain to generate the BUY32,
BUY42, and RSY69 strains, respectively. The SPT20 gene was tagged with
multiple Myc epitopes at its chromosomal locus in the wild-type strain
(W303a) to generate the ASY10 strain. The EAF1 gene in the ASY10 strain
was deleted to generate BUY23, using the pRS403 plasmid. Likewise, EAF1
was deleted in WT Taf1 and temperature-sensitive mutant strains to gen-
erate the BUY47 and BUY48 strains, respectively, using the pRS406
plasmid. The promoter of SPT20 in the BUY24 and W303a strains was
replaced with the GAL1 promoter using the homologous-recombination-
based promoter replacement method (48), and the resultant strains
(BUY49 and RSY75, respectively) expressed HA-tagged Spt20p in the
growth medium containing galactose but not dextrose. Multiple Myc
epitope tags were added at the chromosomal loci of YNG2, EAF1, and
EAF5 in the esa1-ts mutant strain to generate the BUY44, RSY71, and
RSY73 strains, respectively. The strains BUY43, RSY72, and RSY74 were
generated by adding multiple Myc epitope tags at the chromosomal loci of
YNG2, EAF1, and EAF5 in the Esa1p wild-type strain, respectively.

Growth media. For studies of RPS5, RPL2B, RPS11B, ADH1, and
ACT1 in the wild-type and �eaf1 strains, yeast cells were grown in YPD
medium (yeast extract and peptone plus 2% dextrose) to an optical den-
sity at 600 nm (OD600) of 1.0 at 30°C prior to formaldehyde-based in vivo
cross-linking for chromatin immunoprecipitation (ChIP) analysis or har-
vesting for RNA analysis. For experiments in the taf1-ts and esa1-ts strains
and their wild-type equivalents, yeast cells were grown in YPD medium at
23°C to an OD600 of 0.9 and then switched to 37°C for 1 h prior to har-
vesting or cross-linking. The expression of SPT20 under the GAL1 pro-
moter was repressed by initially growing yeast cells in galactose-contain-
ing growth medium (yeast extract and peptone plus 2% galactose [YPG])
to an OD600 of 0.5 and then switching to dextrose-containing growth
medium for 2 or 4 h. For studies of GAL1, yeast cells were grown in YPG
at 30°C to an OD600 of 1.0 prior to formaldehyde-based in vivo cross-
linking.

ChIP assay. The ChIP assay for TBP, TAF1p, TAF12p, and histone H4
acetylation was performed as described previously (17, 52–61). For ChIP
analysis of Myc-tagged Esa1p, Swc4p, Epl1p, Yng2p, Eaf1p, Eaf5p, and
Spt20p, the ChIP protocol was modified as described previously (17, 52,
54, 58, 60). Briefly, a total of 800 �l lysate was prepared from 100 ml of
yeast culture. Following sonication, 400 �l lysate was used for each im-
munoprecipitation (using 10 �l of anti-Myc antibody and 100 �l of pro-
tein A/G plus agarose beads [Santa Cruz Biotechnology, Inc.]), and the
immunoprecipitated DNA sample was dissolved in 10 �l 10 mM Tris-
HCl, pH 8.0, and 1 mM EDTA (TE 8.0), 1 �l of which was used for PCR
analysis (a total of 23 cycles). In parallel, PCR analysis for input DNA was
performed using 1 �l DNA that was prepared by dissolving purified DNA
from 5 �l lysate in 100 �l TE 8.0. The ChIP analysis for histone H3 was
performed as described previously (62–64). Serial dilutions of input and
immunoprecipitated DNA samples were used to assess the linear range of
PCR amplification as described previously (54, 56, 61) (see Fig. S3B in the
supplemental material). The data presented here are within the linear
range of PCR analysis. The primer pairs used for PCR analysis were as
follows (upstream activating sequence [UAS], core promoter [Core], and
a transcriptionally inactive region within chromosome V [Chr.-V]): RPS5
(UAS), 5=-AGAAACAATGAACAGCCTTGAGTTCTC-3= and 5=-GCAG
GGCCATTCTCATCTGA-3=; RPS5 (Core), 5=-GGCCAACTTCTACGCT
CACGTTAG-3= and 5=-CGGTGTCAGACATCTTTGGAATGGTC-3=;
RPL2B (UAS), 5=-TACCGATTACCAAGTTTTCAGACTA-3= and 5=-AA
TTCCTTCTTTTTCTCCCTAGCGG-3=; RPL2B (Core), 5=-TGGTGGAT
TCTGCTCTGGAAACTAT-3= and 5=-CTTTGTGGTTTCTTGGTGAGT
TTAT-3=; RPS11B (UAS), 5=-GATATACACAAGAATTTCTGGAAGA-3=
and 5=-CACTTCCTCATTTCACAAAGACACT-3=; RPS11B (Core), 5=-A
AGTCCAATAGCTTTACGTTTCCCT-3= and 5=-CTTTTTCCCTGGCT
TGATACGTTTC-3=; ADH1 (Core), 5=-GGTATACGGCCTTCCTTCCA
GTTAC-3= and 5=-GAACGAGAACAATGACGAGGAAACAAAAG-3=;
GAL1 (UAS), 5=-CGCTTAACTGCTCATTGCTATATTG-3= and 5=-TTG

Uprety et al.

2948 mcb.asm.org September 2015 Volume 35 Number 17Molecular and Cellular Biology

 on A
pril 18, 2016 by S

O
U

T
H

E
R

N
 ILLIN

O
IS

 U
N

IV
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://mcb.asm.org
http://mcb.asm.org/


TTCGGAGCAGTGCGGCGC-3=; Chr.-V, 5=-GGCTGTCAGAATATGG
GGCCGTAGTA-3= and 5=-CACCCCGAAGCTGCTTTCACAATAC-3=.

Autoradiograms were scanned and quantitated with the National In-
stitutes of Health Image 1.62 program. Immunoprecipitated DNA was
quantitated as the ratio of immunoprecipitate to input and represented as
a ChIP signal. The average ChIP signal of three biologically independent
experiments is reported, with the standard deviation (SD) (Microsoft Ex-
cel). The Student t test of Microsoft Excel (with tail equal to 2 and types
equal to 3) was used to determine the P values for the statistical signifi-
cance of the change in the ChIP signals. The changes were considered to be
statistically significant at a P value of �0.05.

Total-RNA preparation. Total RNA was prepared from yeast cell cul-
ture as described previously (54, 65–67). Briefly, 10 ml yeast culture was
harvested and suspended in 100 �l RNA preparation buffer (500 mM
NaCl, 200 mM Tris-HCl, 100 mM Na2-EDTA, and 1% SDS), along with
100 �l phenol-chloroform–isoamyl alcohol and a 100-�l volume equiva-
lent of glass beads (acid washed; Sigma). Subsequently, the yeast cell sus-
pension was vortexed at maximum speed (10 in a VWR minivortexer;
catalog no. 58816-121) five times (30 s each). After vortexing, 150 �l RNA
preparation buffer and 150 �l phenol-chloroform–isoamyl alcohol were
added to the yeast cell suspension, followed by vortexing for 15 s at max-
imum speed on a VWR minivortexer. The aqueous phase was collected for
isolation of total RNA by precipitation with ethanol.

RT-PCR analysis. Reverse transcription (RT)-PCR analysis was per-
formed as described previously (65, 68, 69). Briefly, RNA was treated with
RNase-free DNase (M610A; Promega) and then reverse transcribed into
cDNA using oligo(dT), as described in the protocol supplied by Promega
(A3800; Promega). PCR was performed using a synthesized first strand as
the template and the primer pairs targeted to the open reading frames
(ORFs) of the RPS5, RPL2B, RPS11B, ACT1, and ADH1 genes. The RT-
PCR products were separated by 2.2% agarose gel electrophoresis and
visualized by ethidium bromide staining. The average signal of three bio-
logically independent RT-PCR experiments is reported with the SD (Mi-
crosoft Excel). The Student t test (with tail equal to 2 and types equal to 3)
was used to determine P values for the statistical significance of the change
in the RT-PCR signals. The changes were considered to be statistically
significant at a P value of �0.05. The primer pairs used in the PCR analysis
of cDNAs were as follows: ADH1, 5=-CGGTAACAGAGCTGACACCAG
AGA-3= and 5=-ACGTATCTACCAACGATTTGACCC-3=; RPS5, 5=-AG
GCTCAATGTCCAATCATTGAAAG-3= and 5=-CAACAACTTGGATTG
GGTTTTGGTC-3=; ACT1, 5=-TCCACCACTGCTGAAAGAGAAATT
G-3= and 5=-AATAGTGATGACTTGACCATCTGGA-3=; RPL2B, 5=-GT
GCTTTCCACAAGTACAGATTGAA-3= and 5=-TTTGACCAGAAACGG
CACCTCTAGA-3=; RPS11B, 5=-GCACCGTACCATTGTCATCAGAAG
A-3= and 5=-GGTCTACATTGACCAACGGTAACAA-3=.

Growth analysis on solid media. The growth of the �eaf1 strain bear-
ing SPT20 under the GAL1 promoter, the �eaf1 and �spt20 strains, and
the wild-type equivalents was analyzed on plates containing solid YPD
and YPG media. Yeast cells were inoculated in liquid YPG medium and
grown to an OD600 of 0.2 at 30°C. Subsequently, the yeast cells were
suspended in fresh YPG medium and grown to an OD600 of 0.4 at 30°C
prior to spotting (3 �l) on solid YPD or YPG medium with 10-fold serial
dilutions. The yeast cells were grown at 30°C and photographed after 2, 3,
or 4 days.

Whole-cell extract preparation and Western blot analysis. For anal-
ysis of global levels of Spt20p and actin in the �eaf1 strain bearing SPT20
under the GAL1 promoter, yeast cells were grown in YPG medium to an
OD600 of 0.5 and then switched to YPD medium for 2 or 4 h. The har-
vested cells were lysed and sonicated to prepare the whole-cell extract with
solubilized chromatin, following the protocol described previously for the
ChIP assay (17, 52–61). The whole-cell extract was run on an SDS-poly-
acrylamide gel and then analyzed by Western blotting. The anti-HA
(Santa Cruz Biotechnology, Inc.) and antiactin (A2066; Sigma) antibodies
against HA-tagged Spt20p and actin, respectively, were used in the West-
ern blot analysis. Likewise, global levels of Myc-tagged Eaf1p, Swc4p,

Eaf5p, Yng2p, Esa1p, Epl1p, TBP, and TAF1p in the �eaf1 and wild-type
strains were analyzed, using anti-Myc (Santa Cruz Biotechnology, Inc.),
anti-TBP (obtained from Michael R. Green, University of Massachusetts
Medical School), and anti-TAF1p (obtained from Michael R. Green) an-
tibodies. Global levels of Myc-tagged Eaf1p, Eaf5p, and Yng2p in the
esa1-ts and wild-type strains were similarly analyzed, using an anti-Myc
antibody.

RESULTS
Eaf1p is required for recruitment of NuA4 to the promoters of
the ribosomal protein genes. As mentioned above, NuA4 is a
multisubunit protein complex and is essential for acetylation of
histones H4, H2A, and H2A.Z (4–7). NuA4 is targeted to the UAS
of the promoter of the target gene by a transcriptional activator
(10, 11, 14, 17, 46, 70). At the ribosomal protein genes, NuA4 is
recruited by the activator Rap1p, and such targeted recruitment is
essential for transcriptional initiation (10, 14, 17, 70). Eaf1p has
been biochemically shown to maintain the overall structural in-
tegrity of NuA4 (13, 45). Thus, the absence of Eaf1p is likely to
impair the recruitment of the NuA4 components to the UASs of
the NuA4-regulated genes. However, there has not been a system-
atic study to analyze the recruitment of different components of
NuA4 to the UASs of the target genes in the absence of Eaf1p.
Therefore, it is not clear whether Eaf1p maintains the structural
integrity of NuA4 at the promoter of the target gene in vivo, con-
sistent with previous biochemical studies (13, 45). To test this, we
analyzed the recruitment of the Epl1p, Yng2p, Swc4p, and Eaf5p
components of NuA4 to the UASs of ribosomal protein genes,
such as RPS5, RPL2B, and RPS11B, in the �eaf1 strain and its
isogenic wild-type equivalent (since previous studies demon-
strated the association of NuA4 with the UASs of the ribosomal
protein genes) (17). For this purpose, we tagged the Epl1p, Yng2p,
Swc4p, and Eaf5p components of NuA4 with Myc epitopes at their
chromosomal loci and then performed the ChIP assay at the UASs
of the ribosomal protein genes RPS5, RPL2B, and RPS11B, using
an anti-Myc antibody against Myc-tagged Epl1p, Yng2p, Swc4p,
and Eaf5p. An anti-HA antibody was used as a nonspecific anti-
body control in the ChIP assay. We found that the recruitment of
Swc4p to the UASs of the RPS5, RPL2B, and RPS11B promoters
was impaired in the �eaf1 strain in comparison to the wild-type
equivalent (Fig. 1A; see Fig. S1A and S2 in the supplemental ma-
terial). Likewise, the recruitment of the Epl1p, Yng2p, and Eaf5p
components of NuA4 to the UASs of these ribosomal protein
genes was impaired in the absence of Eaf1p (Fig. 1B to D; see Fig.
S1B to D and S2 in the supplemental material). An inactive region
within Chr.-V (17) was used in this set of ChIP experiments as a
nonspecific DNA control. Targeted recruitment of the Epl1p,
Yng2p, and Eaf5p components of NuA4 was not observed in this
region (see Fig. S2 in the supplemental material). However,
Swc4p, which is a shared component of the NuA4 and SWR1
complexes, was found to be associated with Chr.-V, indepen-
dently of Eaf1p (see Fig. S2 in the supplemental material). Like-
wise, previous genome-wide studies (71) also found association of
Swc4p with all nucleosomes and suggested that Swc4p may be a
component of a novel complex apart from SWR1 and NuA4.
Taken together, our results demonstrate that Eaf1p is required for
recruitment of the NuA4 components, such as Swc4p, Epl1p,
Yng2p, and Eaf5p, to the UASs of the ribosomal protein genes.
Further, previous studies demonstrated that the Tra1p subunit of
NuA4 is essential for targeted recruitment of NuA4 by an activator
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(14, 46, 70). Thus, impaired recruitment of the NuA4 components
to the UASs of the ribosomal protein genes in the absence of Eaf1p
is not due to the defect in the activator-mediated targeting of
NuA4 but, rather, to the disintegration of NuA4. Consistently,
previous biochemical studies also implicated Eaf1p in maintain-
ing the overall structural integrity of NuA4 (13, 45). Therefore,
our results support the idea that Eaf1p is required for maintaining
the structural integrity of NuA4 at the promoter of the target gene
in vivo, and hence, the recruitment of the NuA4 components to
the promoters of the ribosomal protein genes was impaired in the
absence of Eaf1p (Fig. 1; see Fig. S1 and S2 in the supplemental
material). Such a decrease in the recruitment of NuA4 compo-
nents, Eaf5p, Yng2p, and Swc4p, in the �eaf1 strain are not due to
decreases in their stabilities (see Fig. S3A in the supplemental ma-
terial). However, the level of Epl1p was greatly decreased in the
�eaf1 strain (see Fig. S3A in the supplemental material). Such a
decrease in the stability of Epl1p in the �eaf1 strain could be due to
ubiquitylation and 26S proteasomal degradation of Epl1p follow-
ing disintegration of NuA4 in the absence of Eaf1p (as ubiquity-
lation of Epl1p at K648 has been indicated in the Saccharomyces
genome database), which remains to be further elucidated. The
decrease in the level of Epl1p in the �eaf1 strain may not result in
decreased association of Epl1p with the UASs of the ribosomal
protein genes, since the protein level is not necessarily correlated
with its targeted association with the gene/DNA. Further, consis-
tent with our results, Ginsburg et al. (16) also demonstrated that
the recruitment of Epl1p to the promoters of the NuA4 target
genes, such as ARG1 and ARG4, was also reduced by �2-fold.
Moreover, in addition to Epl1p, other components of NuA4 are
not efficiently recruited to the UASs of the ribosomal protein
genes in the �eaf1 strain, supporting the role of Eaf1p in the re-
cruitment of NuA4 to the promoters of the target genes in vivo,
consistent with previous biochemical studies (13, 45).

We found �2.5-fold reduction in the recruitment of the NuA4
components to the UASs of the ribosomal protein genes in the
absence of Eaf1p (Fig. 1), using radioactive PCR-based gel electro-
phoresis methodology. Such a method may result in PCR analysis
within a nonlinear range, leading to the saturation of PCR signals.
To rule out this possibility, we carried out the PCR within a linear
range, as described in our previous publications (54, 56, 61) (see
Fig. S3B in the supplemental material), and found �2.5-fold re-
duction in the recruitment of the NuA4 components in the �eaf1
strain in comparison to the wild-type equivalent (Fig. 1). Consis-
tent with our results, Ginsburg et al. (16) have also found �2-fold
reduction of the NuA4 components (e.g., Epl1p and Eaf5p) to the
promoters of the NuA4 target genes, such as ARG1 and ARG4, in
the absence of Eaf1p.

Since Eaf1p is required to maintain the structural integrity of
NuA4, targeted histone H4 acetylation at the promoters of the
ribosomal protein genes would likely to be impaired in the �eaf1
strain. To test this, we analyzed the levels of histone H4 acetylation
at the RPS5, RPL2B, and RPS11B promoters in the �eaf1 strain
and its isogenic wild-type equivalent, using the ChIP assay. We
found that the levels of histone H4 acetylation at the promoters of
these genes were not dramatically impaired in the absence of Eaf1p
but, rather, decreased by �2-fold (Fig. 2A to C). However, such a
decrease in histone H4 acetylation could be due to loss of histone
H3-H4 tetramer from the promoters of the ribosomal protein
genes in the absence of Eaf1p. To address this issue, we also ana-
lyzed the levels of histone H3 (as a representative component of
the histone H3-H4 tetramer) at the promoters of the ribosomal
protein genes in the �eaf1 and wild-type strains. We found that
the levels of histone H3-H4 tetramer at the promoters of the ribo-
somal protein genes were not similarly impaired in the absence of
Eaf1p (Fig. 2A to C). Thus, our results support the idea that the
disintegration of NuA4 in the absence of its Eaf1p component
reduces the levels of histone H4 acetylation at the promoters of the
ribosomal protein genes but does not dramatically alter histone
H4 acetylation. As a control, we showed that global and nontar-
geted histone H4 acetylation in the inactive region of Chr.-V is not
altered in the �eaf1 strain in comparison to the wild-type equiv-
alent (Fig. 2D). Thus, impairment of the targeted recruitment of
NuA4 in the absence of Eaf1p decreases histone H4 acetylation at
the promoters of the ribosomal protein genes. Likewise, the re-
moval of the Eaf3p component of NuA4 decreases histone H4
acetylation at the promoters of the ribosomal protein genes (72).
However, unlike Eaf1p, Eaf3p does not regulate the overall struc-
tural integrity of NuA4 (13, 45). Although the loss of Eaf3p de-
creases targeted histone H4 acetylation at the promoter, the over-
all global histone H4 acetylation is not altered in the absence of
Eaf3p (72). Likewise, in the absence of Eaf1p, the targeted histone
H4 acetylation was reduced (Fig. 2), while the overall global level
of histone H4 acetylation was not altered (45).

Although previous studies implicated NuA4 in targeted/local
histone acetylation, we did not observe dramatic impairment of
histone H4 acetylation at the promoters of the ribosomal protein
genes when NuA4 was not recruited or disintegrated in the ab-
sence of Eaf1p (Fig. 1 and 2). It is quite possible that, in the absence
of NuA4, picNuA4 is involved in nontargeted global histone H4
acetylation via its interaction with chromatin. To test this, we
analyzed the recruitment of Esa1p to the promoters of the ribo-
somal protein genes in the �eaf1 strain and its isogenic wild-type
equivalent. For this purpose, we tagged Esa1p with a Myc epitope
at its chromosomal loci in the �eaf1 and wild-type strains and

FIG 1 Eaf1p is required for recruitment of the NuA4 components (Swc4p, Epl1p, Yng2p, and Eaf5p) to the promoters of the ribosomal protein genes. Shown
is ChIP analysis of the association of Swc4p (A), Epl1p (B), Yng2p (C), and Eaf5p (D) with the UASs of the RPS5, RPL2B, and RPS11B genes in the wild-type and
�eaf1 strains. Yeast strains expressing Myc-tagged Swc4p, Epl1p, Yng2p, and Eaf5p were grown in YPD medium at 30°C to an OD600 of 1.0 prior to formalde-
hyde-based in vivo cross-linking. The ChIP assay was performed as described in Materials and Methods. Immunoprecipitation was performed using a mouse
monoclonal antibody against the c-Myc epitope tag (9E10; Santa Cruz Biotechnology, Inc.). An anti-HA antibody was used as a nonspecific antibody. Primer
pairs (see Materials and Methods) located at the UASs of the RPS5, RPS2B, and RPS11B genes and the transcriptionally inactive region within Chr.-V were used
for PCR analysis of the immunoprecipitated DNA samples. The ratio of immunoprecipitate over the input in the autoradiogram was measured and represented
as the ChIP signal. The ChIP signals for Myc-tagged Swc4p, Epl1p, Yng2p, and Eaf5p in the wild-type strain were set to 100. The ChIP signals for Myc-tagged
Swc4p, Epl1p, Yng2p, and Eaf5p in the �eaf1 strain were normalized to 100. The ChIP signals for nonspecific anti-HA antibody were normalized to the ChIP
signals of the Myc-tagged Swc4p, Epl1p, Yng2p, and Eaf5p in the wild-type strain. Likewise, the ChIP signals for Chr.-V were normalized to the ChIP signals of
the Myc-tagged Swc4p, Epl1p, Yng2p, and Eaf5p in the wild-type strain. The normalized ChIP signals (represented as normalized occupancy) are plotted in the
form of a histogram. The error bars indicate SD.
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then performed the ChIP assay at the promoters of the ribosomal
protein genes RPS5, RPL2B, and RPS11B. We found that the re-
cruitment of Esa1p to the promoters of these ribosomal protein
genes was not impaired in the absence of Eaf1p or NuA4 (Fig. 3A,
B, and C). Further, the global level of Esa1p was not altered in the
�eaf1 strain (Fig. 3D). Thus, the absence of Eaf1p does not impair
the recruitment of Esa1p to the promoters of the ribosomal pro-
tein genes, even though it is required for the overall structural
integrity of NuA4 (13, 45). Likewise, Esa1p was found to be asso-
ciated with the promoter of the ribosomal protein gene (e.g.,
RPL2B) in the Tra1p mutant (�17) that impairs the recruitment
of Eaf1p to the promoter (70). Since Esa1p is present in the
picNuA4 module of NuA4 (5, 41–44), it is likely to be recruited to
the promoters of the RPS5, RPS11, and RPL2B genes as a compo-
nent of picNuA4 in the absence of Eaf1p or NuA4. However, the
recruitment of two other components (Epl1p and Yng2p) of
picNuA4 to the promoters of the ribosomal protein genes was
decreased to the background level in the absence of Eaf1p (Fig. 1B
and C). This could be due to the fact that Esa1p in picNuA4 adopts
a different conformation to efficiently interact with nucleosomes
for histone acetylation (and hence, efficient formaldehyde-based
in vivo cross-linking). In agreement with this, we would also ob-
serve prominent recruitment of Esa1p at the inactive region
within Chr.-V. However, we did not find significant association of
Esa1p with Chr.-V (Fig. 3), consistent with previous studies (10,
73). Likewise, we did not observe significant association of the
Yng2 and Epl1p components of picNuA4 with Chr.-V (Fig. 1B and

C; see Fig. S2 in the supplemental material). However, a high level
of Esa1p was found to be associated with the promoters of the
ribosomal protein genes in the absence of Eaf1p (Fig. 3). These
results support the idea that Esa1p is recruited to the promoters of
the ribosomal protein genes independently of Eaf1p. In agreement
with our results, previous studies also revealed significant associ-
ation of Esa1p with the RPL2B promoter when the recruitment of
Eaf1p to the promoter was greatly impaired in the Tra1p mutant
(�17) strain (70). These results suggest that Esa1p may exist out-
side NuA4/picNuA4 and is recruited to the promoters of the ribo-
somal protein genes in a transcription (or transcription factor)-
dependent manner. In support of this possibility, at least two
yet-uncharacterized proteins, apart from Epl1p and Yng2p, have
been found to interact with Esa1p in the absence Eaf1p (13), which
remains to be further elucidated.

Previous biochemical studies (42–44) revealed efficient inter-
action of picNuA4 with the nucleosome for histone H4 acetyla-
tion. Even though picNuA4 is involved in global histone H4 acet-
ylation and has been biochemically shown to interact with the
nucleosome, significant (or greatly increased) association of pic-
NuA4 with chromatin/nucleosomes was not observed in vivo (Fig.
1B and C; see Fig. S2 in the supplemental material) using the ChIP
assay, consistent with previous studies (10, 73). This could be due
to lower abundance of picNuA4, consistent with previous bio-
chemical studies (13, 45). Alternatively, picNuA4 may interact
with chromatin transiently or may not be cross-linked well. None-
theless, picNuA4 is involved in nontargeted global histone H4

FIG 2 ChIP analysis of the levels of histone H4 acetylation and histone H3 at the promoters of the ribosomal protein genes RPS5 (A), RPL2B (B), and RPS11B
(C), as well as Chr.-V (D), in the �eaf1 and wild-type strains. Both the wild-type and mutant strains were grown and cross-linked as for Fig. 1. Immunoprecipi-
tations were performed using antibodies against histone H3 (Ab-1791; Abcam) and acetylated histone H4 (Millipore; catalog no. 06866). Primer pairs located at
the core promoters of the RPS5, RPS2B, and RPS11B genes and the transcriptionally inactive region within Chr.-V (see Materials and Methods) were used for PCR
analysis of the immunoprecipitated DNA samples. The error bars indicate SD.
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acetylation (41, 42). Thus, in the absence of Eaf1p or NuA4,
picNuA4 acetylates histone H4, and hence, the levels of histone H4
acetylation at the promoters of the ribosomal protein genes were
not dramatically altered in the �eaf1 strain. Consistently, previous
biochemical studies demonstrated that global histone H4 acetyla-
tion was not altered in the �eaf1 strain (45).

Since Esa1p is involved in nontargeted global histone H4 acet-
ylation through picNuA4 or targeted local histone H4 acetylation
via NuA4 (5, 41, 42), histone H4 acetylation would be greatly
impaired following temperature-sensitive inactivation of Esa1p.
To test this, we analyzed the levels of histone H4 acetylation at the
promoters of the ribosomal protein genes RPS5, RPL2B, and
RPS11B in the esa1-ts mutant and its isogenic wild-type equivalent
at the nonpermissive temperature. We found that the levels of
histone H4 acetylation at the promoters of these ribosomal pro-
tein genes were severely impaired in the esa1-ts mutant strain in
comparison to the wild-type equivalent (Fig. 4A to C). However,
such decreased levels of histone H4 acetylation at the promoters of
the ribosomal protein genes in the esa1-ts mutant strain could be
due to eviction (or loss) of the histone H3-H4 tetramer. To test
this, we analyzed the levels of histone H3 (as a representative com-
ponent of the histone H3-H4 tetramer) at the promoters of the
ribosomal protein genes in the esa1-ts mutant and its isogenic
wild-type equivalent. Our ChIP analysis revealed that the levels of

histone H3 at the promoters of the ribosomal protein genes were
not impaired in the esa1-ts mutant strain in comparison to the
wild-type equivalent (Fig. 4A to C). Thus, the temperature-sensi-
tive inactivation of Esa1p severely impairs histone H4 acetylation
at the promoters of the ribosomal protein genes, as NuA4 and
picNuA4 are catalytically dead in the esa1-ts mutant strain at the
nonpermissive temperature. Similarly, histone H4 acetylation in
the inactive region within Chr.-V was impaired in the esa1-ts mu-
tant strain (Fig. 4D).

Targeted histone H4 acetylation by NuA4 is involved in re-
cruiting TFIID to the promoters of the ribosomal protein genes
for transcriptional initiation. We have recently demonstrated
that the temperature-sensitive inactivation of Esa1p impairs the
recruitment of TBP and TAFs (i.e., TFIID) to the promoters of
ribosomal protein genes, such as RPS5, RPL2B, and RPS11B (17),
and hence, transcription of these genes is decreased in the esa1-ts
mutant strain (17). However, it is not clearly understood whether
the temperature-sensitive inactivation of Esa1p reduced TFIID
recruitment via disintegration of NuA4 or loss of targeted histone
H4 acetylation at the promoters of the ribosomal protein genes.
To test this, we analyzed whether NuA4 is intact in the esa1-ts
mutant at the nonpermissive temperature. If so, NuA4 would
likely regulate TFIID recruitment via its targeted KAT activity. For
this purpose, we analyzed the recruitment of the Yng2p, Eaf1p,

FIG 3 (A to C) Esa1p is recruited to the promoters of the RPS5 (A), RPL2B (B), and RPS11B (C) genes in the absence of Eaf1p. Both wild-type and mutant strains
expressing Myc-tagged Esa1p were grown, cross-linked, and immunoprecipitated as for Fig. 1. (D) Western blot analysis of Myc-tagged Esa1p in the �eaf1 and
wild-type strains. The error bars indicate SD.
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and Eaf5p components of NuA4 to the UASs of the ribosomal
protein genes RPS5, RPL2B, and RPS11B in the esa1-ts mutant and
wild-type strains. If NuA4 remains intact in the esa1-ts mutant at
the nonpermissive temperature, the recruitment of the Yng2p,
Eaf1p, and Eaf5p components of NuA4 to the promoters of these
ribosomal protein genes would not be altered in the esa1-ts mu-
tant strain in comparison to the wild-type equivalent. Therefore,
we tagged Yng2p, Eaf1p, and Eaf5p with a Myc epitope in their
chromosomal loci in the esa1-ts mutant and its isogenic wild-type
equivalent and then performed the ChIP assay at the UASs of the
ribosomal protein genes. We found that the recruitment of Yng2p,
Eaf1p, and Eaf5p to the UASs of the ribosomal protein genes was
not altered in the esa1-ts mutant strain following temperature-
sensitive inactivation (Fig. 5A to D). Further, global levels of
Yng2p, Eaf1p, and Eaf5p were not dramatically altered in the
esa1-ts mutant strain in comparison to the wild-type equivalent
(Fig. 5E). These results indicate that NuA4 is intact at the promot-
ers of the ribosomal protein genes in the esa1-ts mutant strain
following temperature-sensitive inactivation. As a result, the re-
cruitment of the Yng2p, Eaf1p, and Eaf5p components of NuA4 to
the promoters of the ribosomal protein genes was not significantly
impaired in the esa1-ts mutant (Fig. 5A to D). Thus, an enzymat-
ically/catalytically dead NuA4 appears to be present at the pro-
moters of the ribosomal protein genes in vivo. Such a NuA4 im-
pairs histone H4 acetylation (Fig. 4) and TFIID recruitment to the
promoters of the ribosomal protein genes (17). Consistently, tran-
scription of the ribosomal protein genes was decreased in the
esa1-ts mutant strain (17). Therefore, the targeted KAT activity
per se, but not the structural integrity, of NuA4 is required for
recruitment of TFIID to the promoters of the ribosomal protein
genes. In agreement, previous studies (74–79) have implicated

histone H4 acetylation in recruitment of TFIID via Bdf1p (bro-
modomain factor 1).

TBP, but not TFIID, is recruited to the promoters of the ri-
bosomal protein genes in the absence of Eaf1p. We found that
the presence of enzymatically dead NuA4 at the promoters of the
ribosomal protein genes impairs the recruitment of TFIID, as well
as transcription, via the loss of targeted histone H4 acetylation,
thus implicating the function of targeted histone acetylation in
TFIID recruitment (17). It is still possible that NuA4 complex
integrity has some auxiliary function in stimulating the recruit-
ment of TFIID to the promoters of the ribosomal protein genes, in
addition to its KAT activity. To test this, we analyzed the recruit-
ment of TBP and TAF1p components of TFIID to the promoters
of the ribosomal protein genes RPS5, RPL2B, and RPS11B in the
�eaf1 strain and its isogenic wild-type equivalent. Intriguingly, we
found that the disintegration of NuA4 in the absence of Eaf1p
impairs the recruitment of TAF1p (which is essential for TFIID
assembly/integrity) (50, 80) but not TBP to the promoters of these
ribosomal protein genes (Fig. 6A to C), while the protein level was
not changed in the �eaf1 strain (Fig. 6D). On the other hand, the
recruitment of both TBP and TAF1p is impaired at the promoters
of the ribosomal protein genes in the esa1-ts mutant strain (17)
(see Fig. S4A in the supplemental material). Thus, while NuA4
KAT activity is essential for TFIID recruitment, the recruitment of
TAF1p but not TBP is impaired at the promoters of the ribosomal
protein genes in the absence of Eaf1p or NuA4 (Fig. 6A to C).
Interestingly, when enzymatically inactive NuA4 is present at the
UASs of the ribosomal protein genes in the esa1-ts mutant at the
nonpermissive temperature (Fig. 5), both TBP and TAF1p (i.e.,
TFIID) are not recruited to the promoters of the ribosomal pro-
tein genes (17). Thus, NuA4 facilitates TFIID recruitment via its

FIG 4 ChIP analysis of the levels of histone H4 acetylation and histone H3 at the RPS5 (A), RPL2B (B), and RPS11B (C) promoters, as well as Chr.-V (D), in the
esa1-ts and wild-type strains. Both the wild-type and esa1-ts mutant strains were grown in YPD medium at 23°C to an OD600 of 0.85 and then switched to 37°C
for 1 h prior to formaldehyde-based in vivo cross-linking. Immunoprecipitations were performed as for Fig. 2. The error bars indicate SD.
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FIG 5 (A and B) ChIP analysis of the recruitment of Yng2p to the UASs of RPS5 (A) and RPL2B and RPS11B (B) in the esa1-ts and wild-type strains. Both the
wild-type and mutant yeast strains were grown and cross-linked as for Fig. 4. Immunoprecipitations were carried out as for Fig. 1. (C and D) ChIP analysis of the
recruitment of Eaf1p (C) and Eaf5p (D) to the UASs of RPS5, RPL2B, and RPS11B in the esa1-ts and wild-type strains. (E) Western blot analysis of Myc-tagged
Yng2p, Eaf1p, and Eaf5p in the esa1-ts and wild-type strains. The error bars indicate SD.
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KAT activity. However, in the absence of NuA4 in the �eaf1 strain,
the recruitment of TAF1p (but not TBP) is impaired at the pro-
moters of the ribosomal protein genes (Fig. 6A to C). Likewise, the
recruitment of the TAF12p component of TFIID to the promoters
of the ribosomal protein genes is impaired in the absence of Eaf1p
or NuA4 (Fig. 6E). Thus, in the absence of NuA4 or Eaf1p, the

recruitment of TFIID but not TBP to the promoters of the ribo-
somal protein genes is impaired, similar to the results at the
NuA4-independent ADH1 promoter (Fig. 6F), where the Rap1p
activator promotes the recruitment of the TAF-independent form
of TBP but not TFIID via SAGA (56, 59, 81–83). SAGA is involved
in facilitating the recruitment of the TAF-independent form of

FIG 6 (A to C) ChIP analysis of the recruitment of TBP and TAF1p to the promoters of RPS5, RPL2B, and RPS11B in the �eaf1 and wild-type strains. Yeast cells
were grown and cross-linked as for Fig. 1. Immunoprecipitation was performed using anti-TBP and anti-TAF1p antibodies against TBP and TAF1p (obtained
from the Green laboratory, University of Massachusetts Medical School). The immunoprecipitated DNAs were analyzed by PCR, using primer pairs targeted to
the core promoters of the RPS5, RPL2B, RPS11B, and ADH1 genes. (D) Western blot analysis of TBP and TAF1p in the �eaf1 and wild-type strains. (E) ChIP
analysis of the recruitment of TAF12p to the promoters of RPS5, RPL2B, and RPS11B in the �eaf1 and wild-type strains. (F) ChIP analysis of the recruitment of
TBP and TAF1p to the ADH1 promoter in the �eaf1 and wild-type strains. (G) RT-PCR analysis of RPS5, RPL2B, RPS11B, ADH1, and ACT1 mRNAs in the �eaf1
and wild-type strains. Yeast cells were grown in YPD medium at 30°C to an OD600 of 1.0 prior to harvesting for RNA analysis. The error bars indicate SD.
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TBP at the promoters of ADH1 and other SAGA-regulated genes
(56, 59, 81–83). Such a function of SAGA has been found to be
independent of its KAT activity at a set of SAGA-regulated pro-
moters (56, 82, 84, 85).

TBP nucleates preinitiation complex (PIC) formation at the
promoter for transcriptional initiation (83). Since TBP recruit-
ment to the promoters of the ribosomal protein genes RPS5,
RPL2B, and RPS11B is not impaired in the �eaf1 strain, transcrip-
tion of these genes is likely to occur in the absence of Eaf1p. To test
this, we analyzed the levels of RPS5, RPL2B, and RPS11B mRNAs
in the wild-type and �eaf1 strains, using an RT-PCR assay. We
found that transcription of RPS5, RPL2B, and RPS11B occurred in
the �eaf1 strain (Fig. 6G; see Fig. S4B in the supplemental mate-
rial). Transcription of the NuA4-independent ADH1 and ACT1
genes (10, 17) in the �eaf1 strain is shown as a control (Fig. 6G).

SAGA is involved in targeting recruitment of TBP to the pro-
moters of the ribosomal protein genes in the absence of Eaf1p.
How is TBP recruited to the promoters of the ribosomal protein
genes in the absence of Eaf1p or NuA4? It is likely that in the
absence of NuA4, SAGA is involved in the recruitment of TBP to
the promoters of the ribosomal protein genes, as seen at the ADH1
promoter. Thus, TBP is recruited to the promoters of the ribo-
somal protein genes in the absence of Eaf1p or NuA4 (Fig. 6A to
C). If SAGA is involved in facilitating the recruitment of TBP to
the promoters of the ribosomal protein genes in the absence of
Eaf1p, double disintegration of SAGA and NuA4 would impair
TBP recruitment to the promoters of the ribosomal protein genes
(and hence transcription). Such a situation would lead to impair-
ment of cellular growth, since expression of the ribosomal protein
genes is essential for cellular viability. In support of this possibility,
previous genetic interaction studies (21) have demonstrated syn-
thetic lethality for the �eaf1�spt7 strain (the SAGA component
Spt7p is essential to maintain the global structural integrity of
SAGA) (56, 86, 87). Thus, it is quite likely that SAGA is involved in
the recruitment of TBP to the promoters of the ribosomal protein
genes in the absence of NuA4 or Eaf1p. To test this, we analyzed
the recruitment of TBP to the promoters of the ribosomal protein
genes RPS5, RPL2B, and RPS11B in the absence of Eaf1p and
Spt20p (which maintains the structural and functional integrity of
SAGA) (56, 86, 87). For this purpose, we needed to generate the
�eaf1 �spt20 strain. However, the �eaf1 �spt20 strain may be very
sick (or may not be viable), as previous studies (21) demonstrated
the synthetic lethality of the �eaf1 �spt7 strain. Therefore, we
replaced the endogenous promoter of SPT20 with an inducible
GAL1 promoter in the �eaf1 strain via homologous recombina-
tion (48) and repressed the expression of SPT20 for 2 h in dex-
trose-containing growth medium (as the GAL1 promoter is re-
pressed in dextrose-containing growth medium and activated in
galactose-containing growth medium) to generate genetic condi-
tions equivalent to those of the �eaf1 �spt20 strain. In this gener-
ated strain (�eaf1 spt20, or PGAL1-SPT20), we found that the
expression of Spt20p is significantly decreased in 2 h in dextrose-
containing growth medium after switching from galactose (Fig.
7A). The actin level was monitored as a loading control. The actin
level was significantly increased in 2 or 4 h in dextrose-containing
growth medium, while the Spt20p level was dramatically de-
creased. Since ACT1 transcription is increased after switching the
carbon source in the growth medium from galactose to dextrose
(88), we found a significant increase in the levels of actin in 2 or 4
h in dextrose-containing growth medium (Fig. 7A). Likewise, the

level of Rpb1p (the largest subunit of RNA polymerase II) was
monitored as a loading control (Fig. 7A).

Next, using the above-described (�eaf1 spt20) strain and the
�eaf1 strain, we analyzed the recruitment of TBP to the promoters
of the ribosomal protein genes RPS5, RPL2B, and RPS11B follow-
ing 2 h of transcriptional repression of SPT20 in dextrose-contain-
ing growth medium. Like ACT1, transcription of the ribosomal
protein genes increases upon changing the carbon source from
galactose to dextrose in the growth medium (89). Consistently, we
found an increase in TBP recruitment to the promoters of the
ribosomal protein genes in the absence of Eaf1p following 2 h of
growth in dextrose-containing growth medium upon switching
from galactose-containing growth medium (Fig. 7B to D). How-
ever, we did not observe a similar increase in TBP recruitment to
the promoters of the ribosomal protein genes when the expression
of Spt20p was repressed in the �eaf1 strain following 2 h of growth
in dextrose-containing growth medium (Fig. 7B to D). However,
depletion of Spt20p in the presence of Eaf1p did not alter TBP
recruitment to the RPS5, RPL2B, and RPS11B promoters (Fig.
7E), consistent with the fact that Spt20p or SAGA is not involved
in transcriptional initiation of the ribosomal protein genes (56, 82,
83, 90, 91). Thus, our results support the idea that SAGA is in-
volved in recruitment of TBP to the promoters of the ribosomal
protein genes in the absence of Eaf1p or NuA4. Consistently, when
the expression of Spt20p in the �eaf1 strain was repressed follow-
ing 2 h of growth in dextrose-containing growth medium, tran-
scription of RPS5, RPL2B, and RPS11B was reduced (Fig. 8A).
However, transcription of these genes was not impaired following
depletion of Spt20p in the presence of Eaf1p (Fig. 8B). These re-
sults support the idea that SAGA is required for transcription of
the ribosomal protein genes in the absence of NuA4. In agreement
with these results, double disintegration of NuA4 and SAGA (i.e.,
SPT20 under the GAL1 promoter in the �eaf1 strain in dextrose-
containing growth medium, YPD) impairs cellular growth (Fig.
8C). However, when SPT20 was not repressed in the �eaf1 strain
in galactose-containing growth medium (YPG), yeast cells grew
normally in comparison to the �eaf1 strain (Fig. 8C). The growth
of the �eaf1 strain was not significantly altered in YPG or YPD
medium compared with the wild-type equivalent (Fig. 8C). On
the other hand, the growth of the �spt20 strain was impaired in
YPG medium, as Spt20p is essential for expression of GAL genes
for growth in YPG medium (Fig. 8C). However, the �spt20 strain
grows, but relatively slowly in comparison to its wild-type equiv-
alent, in YPD medium (Fig. 8C). These results support the idea
that disintegration of NuA4 and SAGA (i.e., the �eaf1 spt20 or
�eaf1 PGAL1-SPT20 strain in YPD medium) impairs cellular
growth. Our results further indicate that the overexpression of
Spt20p in the �eaf1 strain in YPG medium does not affect cellular
growth. Collectively, our results support the idea that, in the ab-
sence of Eaf1p or NuA4, SAGA facilitates the recruitment of TBP
to the promoters of the ribosomal protein genes (Fig. 7B to D),
and hence, transcription of RPS5, RPL2B, and RPS11B occurs in
the absence of Eaf1p (Fig. 6G).

Since SAGA is involved in recruiting TBP to the promoters of
the ribosomal protein genes in the absence of Eaf1p or NuA4,
SAGA would be present at the ribosomal protein gene promoter in
the �eaf1 strain. To test this, we analyzed the recruitment of the
Spt20p component of SAGA to the UASs of RPS5, RPL2B, and
RPS11B in the wild-type and �eaf1 strains. We found association
of SAGA with the UASs of the ribosomal protein genes, even in the
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presence of Eaf1p or NuA4 (Fig. 8D). Such association could be
mediated by histone H4 acetylation (as previous studies implied
the interaction of SAGA with acetylated histone H4) (92–94)
and/or another, unknown factor(s)/pathway(s), including Rap1p
(as the same regions of Tra1p of SAGA and NuA4 have been
shown to recruit Tra1p to Rap1p- and Gcn4p-dependent promot-
ers) (70). Consistent with our results, the association of SAGA,
NuA4, and TFIID with the promoters of the ribosomal protein
genes has also been observed previously (73, 95–97). The associa-

tion of SAGA with the promoters of the ribosomal protein genes
in the presence of Eaf1p or NuA4 was found to be nonfunctional
for TBP recruitment for transcription (Fig. 7E) (56, 82). In agree-
ment with this, SAGA has been shown to perform a redundant
function in the presence of NuA4-dependent recruitment of
TFIID (91, 95, 97). In the absence of NuA4, SAGA functions at the
promoters of the ribosomal protein genes to promote TBP re-
cruitment and, hence, transcription (Fig. 7B to D and 8A). How-
ever, we did not observe significant enhancement of SAGA

FIG 7 Analysis of the functionality of SAGA in recruitment of TBP to the promoters of the ribosomal protein genes in the absence of Eaf1p or NuA4. (A) Western
blot analysis after shutting down Spt20p expression in the �eaf1 strain in dextrose-containing growth medium. The promoter of SPT20 was replaced by the GAL1
promoter in the �eaf1 strain to generate conditionally SAGA and NuA4 disintegrated strains in dextrose-containing growth medium. Yeast cells were initially
grown in YPG medium to an OD600 of 0.5 and then switched to YPD medium for 2 and 4 h prior to harvesting for Western blot analysis. Western blot analysis
was performed using anti-HA, antiactin, and 8WG16 antibodies against HA-tagged Spt20p, actin, and Rpb1p (the largest subunit of RNA polymerase II),
respectively. (B to D) ChIP analysis of TBP recruitment to the promoters of RPS5 (B), RPL2B (C), and RPS11B (D) following both NuA4 and SAGA disintegration
(i.e., repression of Spt20p expression in the �eaf1 strain in YPD medium [�eaf1 spt20]) in comparison to NuA4 disintegration alone (i.e., �eaf1). (E) ChIP
analysis of TBP recruitment to the promoters of RPS5, RPL2B, and RPS11B following SAGA disintegration (i.e., repression of Spt20p expression in YPD medium)
in comparison to the wild-type strain (which expresses SPT20 under its own promoter). The error bars indicate SD.
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FIG 8 Analysis of SAGA function in facilitation of transcription of the ribosomal protein genes in the absence of Eaf1p or NuA4. (A) RT-PCR analysis of
transcription of RPS5, RPL2B, and RPS11B following both NuA4 and SAGA disintegration in comparison to NuA4 disintegration alone. Yeast cells were grown
as for Fig. 7B. (B) RT-PCR analysis of transcription of RPS5, RPL2B, and RPS11B following SAGA disintegration (i.e., repression of Spt20p expression in YPD
medium) in comparison to the wild-type strain (which expresses SPT20 under its own promoter). (C) Growth analysis of the strain following both NuA4 and
SAGA disintegration in comparison to NuA4 disintegration alone in solid growth medium. (D) Analysis of recruitment of SAGA (Spt20p-Myc) to the UASs of
RPS5, RPL2B, and RPS11B in the �eaf1 and wild-type strains. Yeast cells were grown, cross-linked, and immunoprecipitated as for Fig. 1. (E) Analysis of
recruitment of SAGA (Spt20p-Myc) to the UAS of GAL1 in the �eaf1 and wild-type strains. Yeast cells were grown in YPG medium at 30°C to an OD600 of 1.0
prior to formaldehyde-based in vivo cross-linking. The error bars indicate SD.
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(Spt20p-Myc) recruitment to the promoters of the ribosomal
genes in the absence of Eaf1p or NuA4 (Fig. 8D). As a control, we
showed that SAGA is recruited to a SAGA-regulated GAL1 pro-
moter independently of Eaf1p (Fig. 8E).

As mentioned above, we found that the recruitment of TAF1p
or TAF12p but not TBP to the promoters of the ribosomal protein
genes was impaired in the absence of Eaf1p or NuA4 (Fig. 6A to C
and E). TAF1 is a specific component of TFIID, while TAF12p is a
shared component between SAGA and TFIID (83). Based on our
results, it is likely that ribosomal protein genes would become
TAF1p independent in the absence of Eaf1p. To test this, we de-
leted EAF1 from the wild-type and taf1-ts mutant strains and then
analyzed the role of TAF1p in the transcription of the ribosomal
protein genes in the presence and absence of Eaf1p. We found that
transcription of the ribosomal protein genes is dependent on
TAF1p in the presence of Eaf1p (Fig. 9A to C), consistent with
previous studies (50, 51, 83, 98) that demonstrated the role of
TAF1p in transcriptional stimulation of the ribosomal protein
genes. As a control, we showed that transcription of a TAF1p-
independent gene, ADH1, is not altered in the taf1-ts mutant
strain at the nonpermissive temperature (Fig. 9D). However, tran-
scription of the ribosomal protein genes occurs in the taf1-ts mu-
tant in the absence of Eaf1p (Fig. 9A to C). As a control, we showed
that transcription of the TAF1p- and NuA4-independent gene
ADH1 is not altered in the �eaf1 taf1-ts mutant strain at the non-

permissive temperature (Fig. 9D). Thus, the ribosomal protein
genes are TAF1p dependent in the presence of NuA4. However, in
the absence of Eaf1p or NuA4, ribosomal protein genes lose
TAF1p dependency, consistent with our ChIP results (Fig. 6A to
C), and become SAGA dependent (Fig. 7B to D and 8A and B).
Therefore, our results support the idea that NuA4 plays an impor-
tant role in the TFIID dependency of the ribosomal protein genes
for transcriptional initiation.

DISCUSSION

Ribosomal protein genes are involved in ribosome biogenesis as-
sociated with translation. Thus, altered expression of the ribo-
somal protein genes would affect translation and, hence, cellular
growth, development, and differentiation. In yeast, about 50% of
the RNA polymerase II transcription machinery is engaged in
transcription of the ribosomal protein genes (99, 100). The ribo-
somal protein genes are regulated by NuA4 (10, 11, 14, 17). NuA4
is targeted to the promoters of the ribosomal protein genes by a
transcriptional activator, Rap1p (10, 14, 17, 70). Such recruitment
of NuA4 enhances transcriptional initiation of the TFIID (or
TAF)-dependent ribosomal protein genes (10, 17). However, it is
not clearly understood how NuA4 promotes transcriptional initi-
ation of the ribosomal protein genes. Here, we have provided in-
sights into NuA4 regulation of ribosomal protein gene expression.

Previous biochemical studies (13, 45) implicated Eaf1p in
maintaining the structural integrity of NuA4. However, it was not
clear whether Eaf1p maintains the structural integrity of NuA4 at
the promoter of the target gene in vivo. Here, we demonstrate that
the recruitment of the NuA4 components (e.g., Swc4p, Epl1p,
Eaf5p, and Yng2p) to the promoters of the ribosomal protein
genes is impaired in the absence of its Eaf1p component (Fig. 1).
These results support the function of Eaf1p in maintaining the
structural integrity of NuA4 at the promoter of the target gene in
vivo, consistent with previous biochemical studies (13, 45). Im-
paired recruitment of NuA4 to the promoters of the ribosomal
protein genes in the absence of Eaf1p decreases targeted histone
H4 acetylation (Fig. 2). However, a dramatic decrease of targeted
histone H4 acetylation was not observed at the promoters of the
ribosomal protein genes in the absence of Eaf1p or NuA4. This is
due to nontargeted global histone H4 acetylation by picNuA4 in
the background of targeted histone H4 acetylation.

Previous studies showed that NuA4 is targeted to the promoter
by the activator for histone H4 acetylation, and such targeting is
mediated via its Tra1p component (10, 11, 14, 17, 46, 70). Thus,
NuA4 is involved in targeted histone H4 acetylation (5, 10, 14, 17).
However, picNuA4 is globally associated with the chromosome
for genome-wide histone H4 acetylation (5, 41–44). Since pic-
NuA4 is involved in genome-wide histone H4 acetylation, the
global level of histone H4 acetylation would not likely be altered in
the absence Eaf1p or NuA4. Indeed, previous biochemical studies
(45) demonstrated that global histone H4 acetylation was not al-
tered in the �eaf1 strain. However, we found that the levels of
targeted histone H4 acetylation at the promoters of the ribosomal
protein genes were decreased in the absence of Eaf1p or NuA4
(Fig. 2A to C). Although previous biochemical studies (45) dem-
onstrated that global histone H4 acetylation was not altered in the
�eaf1 strain, it was not known what happens at the promoters
when targeted recruitment of NuA4 is impaired in the absence of
Eaf1p. Our results here demonstrate that histone H4 acetylation at
the promoters of the ribosomal protein genes was decreased in the

FIG 9 RT-PCR analysis of RPS5 (A), RPL2B (B), RPS11B (C), and ADH1
(D) mRNAs in the taf1-ts mutant and its wild-type equivalent in the pres-
ence or absence of Eaf1p. Yeast cells were grown as for Fig. 4. The error bars
indicate SD.
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�eaf1 strain (Fig. 2A to C). However, we did not observe dramatic
impairment of histone H4 acetylation in the �eaf1 strain, due to
nontargeted global histone H4 acetylation by picNuA4 (42–44).
On the other hand, histone H4 acetylation was severely impaired
following temperature-sensitive inactivation of Esa1p (Fig. 4A to
C). Esa1p is responsible for the KAT activities of both NuA4 and
picNuA4. Thus, the temperature-sensitive inactivation of Esa1p
impairs the KAT activity of both picNuA4 and NuA4. Hence, we
observed dramatic impairment of histone H4 acetylation at the
promoters of the ribosomal protein genes in the esa1-ts mutant
strain in comparison to the wild-type equivalent (Fig. 4A to C).

As mentioned above, picNuA4 is involved in global nontar-
geted histone H4 acetylation. Thus, many genes/promoters are
acetylated by picNuA4 (10). However, such nontargeted histone
H4 acetylation does not regulate transcription (10). For example,
ADH1, ACT1, and GAL1 are globally acetylated at histone H4 but
are not regulated by histone H4 acetylation for their transcription
(10). On the other hand, targeted histone H4 acetylation by NuA4
controls transcription (10, 17). For example, the promoters of the
ribosomal protein genes are acetylated at histone H4 by targeted
recruitment of NuA4 (10, 11, 17). Such targeted histone H4 acet-
ylation promotes transcriptional initiation of the ribosomal pro-
tein genes (17). Thus, targeted histone H4 acetylation by NuA4
has transcriptional-regulatory functions. On the other hand,
global histone H4 acetylation by picNuA4 does not appear to reg-
ulate transcription (10).

We found that the temperature-sensitive inactivation of Esa1p
impairs the recruitment of TBP, TAF1p, and TAF12p (or TFIID)
to the promoters of the ribosomal protein genes, thus indicating
the role of histone H4 acetylation in recruitment of TFIID (17).
Consistently, previous studies demonstrated the role of histone
H4 acetylation in recruitment of TFIID via Bdf1p at the core pro-
moters of the ribosomal protein genes (74–79). When we im-
paired the recruitment of NuA4 to the promoters of the ribosomal
protein genes in the absence of Eaf1p (Fig. 1), targeted histone H4
acetylation was reduced by �2-fold (Fig. 2). Consistently, we ob-
served �2-fold reduction in the recruitment of the TAF1p and
TAF12p components of TFIID to the core promoters of the ribo-
somal protein genes (Fig. 6A to C and E), indicating �2-fold re-
duction in TFIID recruitment. Intriguingly, TBP recruitment to
the promoters of the ribosomal protein genes is not altered in the
absence of Eaf1p or NuA4 (Fig. 6A to C). We found that SAGA is
involved in recruitment of TBP to the promoters of the ribosomal
protein genes in the absence of Eaf1p or NuA4. SAGA has been
previously shown to target the TAF-independent form of TBP but
not TFIID to the core promoter of the SAGA-dependent, but
TFIID-independent, gene (56, 59, 81–83). Since SAGA is involved
in targeting the TAF-independent form of TBP (which nucleates
PIC formation at the promoter for transcriptional initiation [83])
to the promoters of the ribosomal protein genes in the absence of
Eaf1p or NuA4, transcription of the ribosomal protein genes oc-
curred in the �eaf1 strain (Fig. 6G).

Intriguingly, both TBP and TFIID (or TAFs) are not recruited
to the promoters of the ribosomal protein genes when Esa1p is
inactivated in the esa1-ts mutant at the nonpermissive tempera-
ture (17). We found that NuA4 is intact in the esa1-ts mutant at
the nonpermissive temperature (Fig. 5). The presence of such an
enzymatically dead NuA4 at the promoters of the ribosomal pro-
tein genes might interfere with SAGA, and hence, TBP is not re-
cruited to the promoters of the ribosomal protein genes via SAGA.

However, we observed the function of SAGA in regulating the
recruitment of TBP to the promoters of the ribosomal protein
genes in the absence of Eaf1p or NuA4 (Fig. 7B to D). Further, in
the absence of SAGA, NuA4-mediated recruitment of TFIID oc-
curs at the promoter of the ribosomal protein genes (Fig. 7E).
Hence, in the absence of either SAGA or NuA4, transcription of
the ribosomal protein genes occurs (Fig. 6G and 8B) (56, 82).
However, the mechanisms of transcriptional initiation differ (i.e.,
transcriptional initiation by TAF-dependent versus TAF-inde-
pendent forms of TBP).

SAGA and NuA4 have a common Tra1p subunit that has been
shown to interact with the transcriptional activator (10, 11, 14, 17,
46, 59, 70). The same regions of Tra1p have been shown to target
Tra1p to the SAGA- and NuA4-regulated promoters (70). Fur-
ther, Rap1p has been shown to interact genetically with the com-
ponents (e.g., Spt3p and Spt8p) of SAGA (101). In agreement with
this, we found that SAGA is recruited to the promoters of the
ribosomal protein genes (Fig. 8D), consistent with previous stud-
ies (73, 95–97). Such targeting of SAGA to the promoters of the
ribosomal protein genes could be further stabilized by its interac-
tion with acetylated histone H4, since previous studies (92–94)
showed the interaction of SAGA with acetylated histone H4. En-
hanced recruitment of SAGA to the promoters of the ribosomal
protein genes was not observed in the absence of Eaf1p or NuA4
(Fig. 8D). However, it promotes TBP recruitment to the promot-
ers of the ribosomal protein genes for transcriptional initiation in
the absence of Eaf1p or NuA4.

In summary, NuA4 is targeted by an activator to the promoters
of the ribosomal protein genes for recruitment of TFIID via its
KAT activity for transcriptional initiation. When NuA4 is disinte-
grated in the absence of Eaf1p, SAGA is involved in facilitating the
recruitment of the TAF-independent form of TBP to promote
transcriptional initiation of the ribosomal protein genes. When an
enzymatically dead NuA4 in the esa1-ts mutant at the nonpermis-
sive temperature remains associated with the promoters of the
ribosomal protein genes, it interferes with SAGA in targeting TBP
to the promoter for transcriptional initiation. Thus, NuA4 con-
tributes to the TFIID-dependent transcriptional initiation of the
ribosomal protein genes via its targeted KAT activity. Together,
our results shed much light on the regulation of ribosomal protein
gene activation by NuA4, SAGA, TBP, and TAFs. Since these fac-
tors are conserved among eukaryotes, similar regulatory mecha-
nisms of ribosomal protein gene activation are likely to exist in
higher eukaryotes. As ribosomal protein genes are involved in
ribosome biogenesis and translation (and hence cellular growth,
development, and differentiation), transcriptional alteration of
the ribosomal protein genes would be associated with various cel-
lular pathologies, including cancer, cardiac disorders, and neuro-
degenerative diseases. Thus, our results for the transcriptional-
regulatory mechanisms of the ribosomal protein genes would be
useful in disease pathogenesis at the level of ribosome biogenesis
and functions.
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