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Abstract 
 

The Repeated Prisoner’s Dilemma (RPD) is a metaphor for the difficulties of achieving 
cooperation in social life. We present results from an agent-based model (ABM) of the RPD in 
which agents interact in a “market,” equivalent to the non-organizational interactions within the 
standard RPD, or have the option of interacting within networks, which allow agents to acquire 
information from other agents with whom they have been paired or to select agents with whom 
to interact, or hierarchies, in which cooperation is enforced by the threat of third party 
punishment. The ABM sheds new light on when and how organizations affect cooperation. In 
relatively nice worlds, agents join networks and thereby insulate themselves against the initial 
and often devastating defections of nasty players. In relatively nasty worlds, agents enter 
hierarchies and cooperate sufficiently often to also preserve their share of the population. In 
moderate worlds, on the other hand, contingent strategies are vulnerable and typically decline as 
a share of the population. The information advantages are not large enough to justify joining 
networks and the population of nasty agents is not threatening enough to drive TFTs into the 
hierarchy. As a consequence, contingent players are defenseless and easily exploited. These 
middling worlds are, surprisingly, the most dangerous for TFTs. Organizations also improve the 
welfare of all agents – both nasty and nice – but only in relatively nice worlds. We find the 
benefits of civil society are contingent on the characteristics of the population in which it 
emerges.  
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Organizations and the Evolution of Cooperation1 
 

 The Prisoner’s Dilemma (PD) is a metaphor for the difficulties of achieving cooperation 

in social life. Despite the mutual gains from cooperation, each actor in the one-shot game has a 

dominant strategy of defecting, leading both players into a Pareto suboptimal outcome. Even if 

they recognize the gains from mutual cooperation, their best strategy is to seek to exploit others 

or to defend themselves against exploitation by their opponent. In this world, as political 

philosopher Thomas Hobbes (1651/1962) originally envisioned it, life is “solitary, poor, nasty, 

brutish, and short.”  

 This bleak view of the prospects for cooperation was transformed in the 1980s by new 

understandings of the PD.2 Most important, Axelrod and colleagues demonstrated that within a 

repeated PD (RPD) tit-for-tat (TFT) not only produced cooperation but performed better than 

other strategies, was stable in that it could not be “invaded” or displaced by competing strategies, 

and that if permitted to evolve optimal strategies would emerge that were quite similar to TFT 

(Axelrod 1984; 1997). Cooperation was not only possible, many inferred, but likely. Most 

important, TFT was a “nice” strategy that began by cooperating with others, implying that nice 

guys finish first. Emergent cooperation, in turn, was discovered between opposing armies on the 

World War I battlefield (Axelrod 1984, Chapter 4) and even between cells in the growth of 

cancer (Axelrod et al. 2006). The theoretical discovery of the possibility of “spontaneous order” 

affirmed long held liberal or progressive beliefs on the potential for human progress (Taylor 

1976; Sugden 1989; Hardin 1999). 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Jung and Lake shared equally in developing the architecture of the model and writing this paper. Jung is 
responsible for implementing the model and the simulations.  
2 In addition to the work of Axelrod discussed here, the “folk theorem” demonstrated that in repeated PD any 
outcome could be an equilibrium and that, given a sufficiently small discount factor, sustained cooperation was 
possible. Flood (1958, 16) reports a personal communication from John Nash explaining that two trigger strategies 
are in equilibrium in the infinite version of the repeated PD game. The general result is known as the folk theorem. 
See Fudenberg and Maskin (1986). 
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 In both its PD and RPD variants, the game is fixed and exogenous, limited to the two 

moves of cooperation or defection. Social actors, however, also build organizations to transform 

the game and, thus, the possible strategies and outcomes.3 Even without changing the underlying 

incentives embodied in the PD payoffs, actors by intention or even through “dumb” selection in 

an evolutionary environment can create organizations that facilitate cooperation. Two ideal type 

organizations are common in the literature: 1) networks that provide information to actors and 

permit them to select their own partners and 2) hierarchies that enforce cooperation through 

third-party punishments. These two ideal types, and their many variants, are ubiquitous in social 

life, found everywhere from the animal kingdom (Boehm 1999) to the economic marketplace 

(Williamson 1975; 1985; Rauch and Hamilton 2001), to global politics among nation-states 

(Kahler 2009; Lake 2009). As Hobbes himself argued, organizations – in his case, the third party 

enforcer of a Leviathan – can create a civil society that is superior to the state-of-nature. 

 In this paper, we present results from an agent-based model (ABM) of the RPD in which 

agents interact in a “market,” equivalent to the non-organizational interactions within the 

standard RPD, or have the option of interacting within networks or hierarchies. Agents may, for 

some variable cost, join a network of varying characteristics that provides information about 

other agents and allows them to select for repeat play from among those agents they have played 

in the past. Agents may also, for a variable tax, join a hierarchy in which defection is punished 

by an exogenous third-party. We focus at present on the evolution of strategy types within a 

population of agents and endogenous organizations.4 This is, to our knowledge, the first attempt 

to study systematically the effects of alternative organizations within a RPD framework.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 On the more general category of institutional solutions to the PD, see Axelrod and Keohane (1986).  
4 Future work will include research on the evolution of organizations within the RPD and introduce mutation at the 
level of individual agents as a form of uncertainty.  



 4	  

 We find that organizations affect the evolution of cooperation in significant ways. Given 

that organizations are a staple of social and political theories, this is perhaps not a surprise. More 

important is when and how organizations affect cooperation, conditions on which our ABM 

sheds new light. In relatively nice worlds, defined by a large initial share of the population 

comprised of TFT and always cooperative (ALLC) agents, TFTs join networks and thereby 

insulate themselves against the initial and often devastating defections of nasty players (agents 

that begin by defecting, here ALLD). This allows TFTs to survive in greater numbers in initial 

rounds of the game and, in turn, to sustain their share of the total population over multiple rounds 

of play. In relatively nasty worlds, TFTs enter hierarchies and cooperate sufficiently often to also 

preserve their share of the population. In moderate worlds, on the other hand, TFTs are 

extremely vulnerable and typically decline as a share of the population. The information 

advantages are not large enough to justify joining networks and the population of nasty agents is 

not threatening enough to drive TFTs into the hierarchy. As a consequence, TFTs are defenseless 

and easily exploited. These middling worlds are, surprisingly, the most dangerous for TFTs. 

Organizations also improve the welfare of all agents – both nasty and nice – but only in 

relatively nice worlds. The benefits of civil society are contingent on the characteristics of the 

population in which it emerges.  

 This paper begins with a brief review of the literature on computational models of 

cooperation. We then lay out our theory of organizations and how they are modeled within the 

ABM (section II) and describe the ABM in detail (section III). In section IV, we then present the 

results of our model both for non-organizational and organizational worlds and compare the 

results.  
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I. Evolution of Cooperation 

 Axelrod’s The Evolution of Cooperation (1984), reproducing material in two earlier 

articles (Axelrod 1980a; 1980b), stimulated a new research program using agent-based 

modeling, which we build on here, to investigate the success of different strategies in the RPD, 

to which we seek to add. Using a round-robin computer tournament of 64 strategies submitted by 

others, Axelrod found that TFT scored better than its opponents and was a best-reply to itself, 

such that, once established, it could not be invaded or displaced by other strategies. This proved 

theoretically the possibility of cooperation within the RPD in the absence of central enforcement. 

Using a replicator dynamic (see below), Axelrod also found that TFT and other reciprocal 

cooperating strategies were evolutionarily superior and would, over time, grow as a proportion of 

the total population of strategies. This is because TFT does well against itself and other 

cooperative strategies, whereas defecting strategies lag as they spread and their victims die out. 

Axelrod later used a genetic algorithm, developed in evolutionary biology, to simulate agent 

learning and/or selective fitness (Axelrod 1987). The algorithm employs mutation and cross-over 

(similar to sexual reproduction) to evolve increasingly efficient strategies, as defined by higher 

payoffs. In most simulations, the algorithm generated strategies that resemble TFT.  

 This research has generated a large literature and many criticisms, most of which were 

anticipated by Axelrod in his original presentation (see Binmore 1994; 1998; Hoffmann 2000). 

We do not attempt to summarize this voluminous literature here. Most generally, however, the 

evolutionary superiority of TFT is now understood to rest on a number of consequential 

modeling assumptions made by Axelrod. Three such assumptions are particularly important for 

our ABM and discussion below. 
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 First, the composition of the initial population strongly conditions the prospects for 

cooperation. Axelrod used a round-robin tournament in which each strategy was pitted once each 

round against all other strategies, its twin, and a strategy that randomly cooperated or defected. 

The population of agents, in turn, was a product of the strategies submitted for the competition. 

Subsequent work, most importantly by Hirshleifer and Coll (1988), finds that a sufficient 

proportion of “nice” strategies in the population relative to “nasty” strategies is necessary for 

cooperation to spread. Since TFT can never “win” an interaction by successfully suckering an 

opponent (T,S), can at best “tie” by getting mutual cooperation (R,R), and can after the first 

interaction with any agent do no worse that mutual defection (P,P), it will never outperform the 

pure all defect strategy (ALLD) except in a population with sufficiently many other conditional 

cooperators and sufficiently few all cooperate (ALLC) agents. All of our results are presented 

with varying initial populations. 

 Second, results are sensitive to the way agents are matched for interaction. As just noted, 

Axelrod employed a round-robin where each strategy played all others each round. Other models 

have matched agents on identity, giving each agent an option of not interacting with a given 

opponent (Vanberg and Congleton 1992; Stanley et al. 1994), or on spatial location wherein 

agents interact more intensively with their neighbors, permitting clusters of cooperation to 

emerge in otherwise hostile environments (Nowak and May 1993). As explained below, our 

model randomly matches agents each round (with the exception of selective affinity). This is 

generally expected to promote cooperation (Hoffmann 2000, 3.14). At the same time, this 

random matching of agents each round means that it takes much longer for TFTs to “learn” the 

strategy types of their opponents, leaving them vulnerable to elimination. This greatly weakens 
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the evolutionary fitness of TFT and, as we shall see, forms an important incentive for such agents 

to join networks early in the game. 

 Third, the selection mechanism also matters. In his round-robin model, Axelrod (1984, 

217, fn 217) used a selection model based on “the weighted average of the (cardinal) scores of a 

given rule with all other rules, where the weights are the number of the other rules which exist in 

the current generation.” In other words, the proportion of each strategy type in the next 

generation is the product of that strategy’s average score and its proportion in the current 

generation. Alternatively, Hirshleifer and Coll (1988) use an elimination contest in which 

defeated players are removed from the population (and the population shrinks round-by-round). 

Because ALLDs can successfully sucker TFTs in their first matchups, and TFTs can never do 

better than ALLDs in repeated play, elimination contests are biased against TFT except in 

relatively nice populations. As will be explained in more detail below, we model selection here 

as an elimination contest with replacement in which the lowest performing agents are deleted 

from the population and replaced by “offspring” of the highest performing agents. These 

offspring are identical to their parents in all ways except their accumulated memories, rendering 

them naïve and vulnerable when they first enter the competition. This provides an important 

incentive for such new agents to join networks or hierarchies throughout the simulation.  

 

II. Markets, Hierarchies, and Networks as Organizations 

Following the extant literature, the problem of cooperation is characterized here as a two-

player RPD game (see Figure 1). In organizational terms, the RPD can be thought of as a 
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market.5 Although a common term, the concept of market lacks a fixed analytical definition. 

Once referring only to a site for trading, since the early 20th century economists have tended to 

use market as a synonym for exchange, and to focus on variations in market structure, including 

the numbers of buyers and sellers, the information available to each, and so on. Sociologists 

focus more on production markets (of firms or factors of production), conceived as networks of 

linked agents.6 As an organization, according to Powell (1990, 302, italics added), markets are 

“the paradigm of individually self-interested, noncooperative, unconstrained social interaction” 

that engage strictly anomic agents who can form only self-enforcing agreements and know only 

their own past interactions with each other. This view of markets as an organization strips the 

concept of its focus on the exchange of goods but generalizes it to a greater range of interactions 

and is fully captured in a RPD game. Without attaching any significant meaning to the term, we 

will, for convenience, refer to the default RPD as a market. In a static, non-evolutionary model 

with sufficiently nice populations – composed of agents that at least begin by cooperating with 

other agents -- all agents tend to interact within the market. TFTs and ALLCs (agents that 

cooperate in every round regardless of the opponent’s strategy) do not need the network or 

hierarchy for protection, while the relatively small number of ALLDs (agents that defect in every 

round regardless of the opponent’s strategy) prefer to remain in the market in expectation of 

suckering nice strategy types (See Jung and Lake forthcoming). 

Figure 1 About Here 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Markets might also be described as anarchy, in contradistinction to hierarchy. We defer to the larger literature, 
however, in the use of the term “market” in this way. We have some sympathy for critics of this thin conception of 
markets but follow common practice. Moreover, although modern economic exchange is often embedded in larger 
social organizations, such as the state, this simply implies that those “markets” are actually a hybrid form of social 
organization. Economic exchange does occur within markets that approximate our ideal type, commonly when price 
accurately reflects all known information (i.e., in “competitive” markets), the costs of third party adjudication are 
high relative to the value of the good, contracts are incomplete, or the goods are illicit.  
6 On economic and sociological views of markets, see Swedberg 2003, Chapter 5. 
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In the canonical definition, networks as organizations are characterized by “voluntary, 

reciprocal, and horizontal patterns of communication and exchange” (Keck and Sikkink 1998, 8; 

Podolny and Page 1998, 59).7 Accordingly, we model two characteristics of networks. First, 

networks are mechanisms for acquiring information on agents from other agents with whom an 

agent has cooperated in the past. Intuitively, networks allow one agent, say i, to ask a defined 

number of agents with whom i has previously cooperated if they have played agent j, and if so 

what j did (cooperate or defect). With this information, agent i can then decide whether to 

cooperate or defect with j. Thus, networks provide information that supplements the information 

i may have acquired through its own past interactions with j. The primary effect of information 

from the network is to prevent agents from being suckered in the first round of play with any 

new agent. Information sharing can be understood as a form of indirect reciprocity (see Nowak 

and Sigmund 2005). Often treated as a defining attribute of networks, this first form of 

reciprocity is an emergent property of the agents who tend to select themselves into networks 

(Powell 1990, 303; Podolny and Page 1998, 59). Only agents that possess a contingent strategy 

such as TFT will ever choose to join a network to gain information about others, and having 

joined they will play reciprocally. As the population becomes increasingly nasty – composed of 

agents that begin by defecting – and the value of knowing the strategy type of one’s possible 

partner increases, TFTs will increasingly join the network in a non-evolutionary model. As the 

population becomes too nasty, however, TFTs leave the network and simply assume that their 

partners are likely to be defectors. In addition, this informational advantage of networks is a 

short-lived attraction. As agents play other agents and accumulate their own histories of 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Defined as a set of nodes (agents) and edges (interactions), almost any set of actors can be described as a network. 
Social network theory, in turn, has developed a host of tools and concepts for measuring and describing the structure 
of such networks (see Jackson 2008). We treat networks more as governance structures, but focus on the information 
flows and reciprocity between agents common to both approaches. On the different conceptions and uses of 
networks in political science, see Kahler (2009). 
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interaction the benefits of acquiring information from others diminishes. This effect is stronger 

the smaller the population and weaker the larger the population (see Jung and Lake 

forthcoming).  

Second, in some conceptions, networks permit agents to engage in a more direct form of 

reciprocity by intentionally selecting specific agents with whom to interact, often on a repeated 

basis. As already noted, in the core model agents are randomly paired in any given round of the 

game. Yet, in the real world, agents do not necessarily interact with a uniform probability. We 

implement this second type of reciprocity by a variable rate of selective affinity (η) in which 

nature permits an agent to select for play another agent it has interacted with in the past. With 

selective affinity, agents of all strategy types may choose to join the network. In a non-

evolutionary model with a sufficiently nasty population, TFTs and ALLCs value being able to 

select an agent they have cooperated with successfully in the past. ALLDs, in turn, value being 

able to select an agent they have suckered successfully in the past – an effect similar to that of a 

schoolyard bully who picks on the same victim day after day. Thus, selective affinity both 

supports greater cooperation among nice strategy types and, somewhat counter-intuitively, 

facilitates the exploitation of nice types by nasty types. The ability to engage in this more direct 

form of reciprocity is not necessarily supportive of greater cooperation (Jung and Lake 

forthcoming).  

Participating in a network is always costly, however, represented in the model as a 

variable fee (φ) subtracted from the agent’s payoffs no matter the outcome of the interaction. 

This fee is intended to capture the transaction costs of networking, variously interpreted as the 

opportunity costs of providing information, engaging in activities intended to develop social 

capital, and sending costly signals of commitment to the group necessary to establish trust or 
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reputation. In a straightforward way, the greater the network fee the less likely agents of all types 

are to join the network. An agent may join a network and gain information about or select its 

partner even if that other agent chooses a market or hierarchy during its turn of the game. In such 

a case, the networked agent plays with the information acquired from past cooperators, but the 

other agent plays using only its private knowledge.  

Third party enforcement stands at the core of all definitions of hierarchy. In our model, 

agents within the hierarchy cooperate with one another subject to punishments for (random) 

defection.8 If an agent defects, it receives the temptation (T) payoff minus the punishment, while 

the other receives the sucker’s payoff (S).9 We treat both the probability of cooperation within 

the hierarchy (q) and the magnitude of the punishment (v) as exogenous, but variable within the 

model. Our intuitive analogy is to agents working in a corporation and tasked to cooperate with 

their fellow employees, but cooperation within the firm is contingent on factors beyond the 

agent’s control – including the state of the macroeconomy, fickle consumer tastes, a capricious 

boss, and so on. Some portion of the time, the agent’s best efforts to cooperate may nonetheless 

appear to be a defection for which it is punished. This intuition extends to families, clans, 

religious orders, and more hierarchies in which individuals are mandated to cooperate (uphold 

contracts) with one another and are punished by a central enforcer if they defect. It also extends 

to states --both democratic and autocratic, local and national -- in which law regulates the 

behavior of individuals in relations with one another (cooperate, observe contracts, follow 

established conventions, etc.) under threat of (imperfect) monitoring and sanctioning. Although 

random defection at an exogenously defined probability is somewhat crude, some such 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 That is, agents who join a hierarchy, regardless of their strategy type (see below), play a mixed strategy in which 
they cooperate with other agents in the hierarchy with some exogenous but commonly known probability (q).  
9 When both agents in a hierarchy defect simultaneously they each receive the DD payoff minus the punishment. 
With our default settings in the ABM, mutual defection is typically rare but remains a possibility. 
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mechanism is necessary to prevent hierarchy from dominating all other organizational forms.10 

This representation allows us to investigate how the probability of defection and levels of 

punishment affect the expected utility of cooperation under hierarchy.  

Again, in a relatively straightforward way, the higher the probability of cooperation 

within the hierarchy and the smaller the punishment, the more likely all agents are to join the 

hierarchy. More importantly, in a non-evolutionary model, the nastier the population the more 

likely agents of all strategy types are to join the hierarchy. Somewhat counter-intuitively, 

however, nicer agents (ALLCs) will join first, followed by contingent but nice strategy types 

(TFTs), and then nasty strategy types (ALLDs). Nicer agents flee to the hierarchy in the hopes of 

avoiding exploitation by nasty types in the market or network. Although it might seem that nasty 

agents would benefit most from being able to avoid the sub-optimal outcome of mutual 

defection, they actually benefit from being able to sucker nice types in the market or network 

and, thus, remain outside the hierarchy longer than other types of agents (Jung and Lake 

forthcoming).   

We include a variable tax on members joining a hierarchy (τ), subtracted from the 

expected utility of joining the hierarchy. As with network fees, the greater this tax the less likely 

agents will be to join the hierarchy. Agents in the hierarchy who interact with agents outside the 

same hierarchy play as in the market. In a firm, for instance, some portion of any individual’s 

daily interactions are with other employees of the same organization (e.g., as part of a team 

producing a new widget), but many others are with other actors outside the corporation (e.g., 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 Ideally, one might want to endogenize defection by strategy type and levels of punishment necessary to sustain 
cooperation. But if so, the punishment could always be set at a level to induce cooperation by the least cooperative 
agent, and mutual cooperation would always occur. If agents always cooperate in hierarchy, this form will always 
dominate other organizational forms, which is neither true in the real world nor theoretically interesting. One might 
also prefer that exogenous shocks be allowed to occur in markets and networks as well. This is reasonable. In this 
case, we can easily interpret the exogenous probability of defection as the difference between exogenous shocks in 
markets or networks versus hierarchies.  
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other firms – the local grocer, friends and families). Similarly, individuals governed by one 

authority, such as a state with a distinct set of laws, may interact both with one another and more 

or less frequently with foreigners in a second state with different laws. Cooperation is mandated 

and subject to centralized enforcement only with other members of one’s own hierarchy or, in 

this case, state. In other words, centralized punishment for defection does not apply 

extraterritorially or beyond the members of the same hierarchy.  

In our model, agents choose freely each round to join the organization that promises the 

highest expected payoffs to the game, given updated beliefs. For most social organizations this is 

a reasonable approximation. Individuals choose whether to ask associates about the reliability 

and political views of potential partners and to work for one corporation or participate in one 

civic association rather than another. Participation in other social organizations, especially some 

hierarchies like the state, is less purely voluntaristic. Individuals are “born” into a state, though 

they may choose to immigrate at more or less cost. Young boys may be forced to join militias, 

and can escape only at greater or lesser personal risk. Such presumed or forced memberships are 

admittedly not captured well in our model. One must be careful in generalizing our results to 

non-voluntary organizations. Even here, however, the model helps identify conditions under 

which individuals and, in turn, the population (or significant portions of a population) would 

choose to subordinate themselves to a hierarchy and, in so doing, collectively empower the 

hierarch to enforce cooperation on reluctant others.11 Conversely, the exit of all agents from a 

hierarchy approximates the loss of popular support for a political regime. Finally, as endogenous 

products of the choices of many independent agents, organizations are created anew each round 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 On the collective nature of authority and hierarchy, see Lake (2009a, Chapter 1). 



 14	  

of play. Which agents constitute a hierarchy or network is established by their choices, which 

may differ by round.  

Our ideal types and the model in general cannot capture all aspects of all interactions in 

all real world social organizations. We emphasize generality, but this inevitably carries some 

cost in understanding specific organizations and individual choices. Nonetheless, given the basic 

character of markets, hierarchies, and networks, their ubiquitous presence in the real world, and 

their similar treatment across very different academic literatures, we believe the model – even or 

perhaps especially in its highly simplified form -- has broad applicability. 

 

III. Modeling Organizational Ecologies in an Agent-Based Framework 

 We describe the ABM here in its four stages: initialization, learning, organizational 

choice and, selection and evolution. A non-evolutionary version of the model that is identical in 

all particulars except for the selection mechanism described below, along with the expected 

utility equations for each organization and full parameter scans for each variable, are detailed in 

Jung and Lake (forthcoming) and its online appendix.12 

Initialization 

 The model begins with the specification of 25 user-defined parameters. These parameters 

and their default values, used in all the simulations presented below unless otherwise specified, 

are listed in Table 1. The default values for the parameters are admittedly arbitrary but are 

calibrated to make all organizational forms somewhat likely in any given simulation. By setting 

certain parameters higher or lower than our defaults, it would be trivial to simulate worlds in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 One significant difference between that paper and this is that we turn the weight on preferences to zero in all 
simulations here, thus deleting the effects of political preferences. This makes the results in this paper more directly 
comparable to the rest of the literature on cooperation within the RPD. 
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which either markets, hierarchies or networks always predominate or never arise. Instead, our 

defaults are set relative to one another at levels such that reasonable changes in any single 

parameter are likely to lead at least some agents to alter their organizational choices. 

Table 1 About Here 

Payoffs for the various outcomes are set: T, R, P, and S. We set the default cardinal 

payoffs in the RPD game as in Axelrod (1984) for purposes of comparability. All other default 

parameters are then set relative to these default payoffs. The user defines the population of 

actors, specifically the distribution of strategy types. As implied above, and following Hirshleifer 

and Coll (1988), we focus on three basic strategies: ALLC, ALLD, and TFT. As also implied 

above, we refer to nice and nasty populations as defined by the relative proportions of ALLC and 

TFT agents, on the one hand, and ALLD, on the other.  

The organizational parameters are also set at this stage. Networks are defined by their 

width (α), the number of other agents each agent can directly ask about the agent it has been 

randomly paired with, and their depth (l), the number of levels of agents that are polled. 

Although each agent has a potentially infinite memory of its own interactions with each other 

agent in the population, the network is limited to a fixed memory (mn) defined by the number of 

previous rounds over which it can poll. That is, if memory is set at five, any agent can poll only 

those agents with whom it has cooperated in the last five rounds whether they have interacted 

with the other agent with whom it has been randomly paired in the current round. The longer the 

memory (the larger is mn) for the network, the more useful information it returns to the agent.13 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 In allowing an agent’s own memory of past play and the network’s “memory” to differ, we are essentially 
assuming that an individual’s memory of others lasts longer than that individual’s social interactions. This seems 
reasonable. Those of us who hold grudges and have only fleeting friendships typically remember others who have 
treated us badly in the past longer than we engage in sets of social relationships. This assumption is consequential 
only for the transient nature of networks discussed below. If agent memory were limited to the same as the network 
memory, networks would remain more robust over more rounds of the game. Conversely, without this restriction on 
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Selective affinity is defined by the probability an agent gets to select an agent (η) from its 

memory (of length ma) with whom to interact, with one minus this probability being the rate at 

which that agent will be randomly paired with another agent as in the base model (1-η). The fee 

for joining the network (φ) is also set. 

A hierarchy is defined by the probability that any agent will cooperate with other agents 

in the hierarchy (q), the penalty that is imposed on agents for defecting on other agents in the 

hierarchy (v), and the tax assessed on members (τ). These parameters are common knowledge. 

Since the expected utility for joining the hierarchy is contingent on the number of other agents in 

the hierarchy (θ), in the first round of organizational play the user sets an “advertised” number of 

agents in the hierarchy, which need not be the same as the actual number of agents who join. In 

subsequent rounds, agents know the actual number of agents who joined the hierarchy in the 

previous round. 

Evolution parameters are also defined by the user at this stage. The number of agents 

selected for replacement is set. As mentioned above, these low performing agents are replaced by 

the highest performing agents in the population. The agents selected out become offspring of the 

higher performing “parents.” The method of establishing the selection is also set, either using 

cumulative average payoffs (the method used in this paper), or by selecting on the most recent z 

rounds. The characteristics passed from parent to offspring are also set. In all situations, 

offspring will enter the simulation with no memory of any past interactions. They also inherit 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

network memory, the network would return “too much” information in early rounds and become obsolete almost 
immediately.  
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their parent’s strategy type (subject to some defined boundary of mutation) and their parent’s 

belief about the nastiness of the population.14 

Learning  

 Agents begin the simulation without any knowledge of the distribution of the other 

agents’ strategies. In both the learning and organizational phases, agents are randomly paired 

with other agents with whom they then play a round of the game according to their strategy type 

with payoffs as specified (except in selective affinity, see below). Each agent is always an “A” 

agent that is then randomly paired with a “B” agent. In any particular round, an agent may not be 

selected as a B player or may be selected multiple times by different agents, but will on average 

serve as B once each round. For purposes of selection, payoffs are averaged over all interactions 

each round.15 

 Agents learn about the distribution of other strategy types from their interactions with 

other agents. Observing their own payoffs, they then back out whether the other agent cooperated 

or defected, store this action in memory by agent, and update a running estimate of the 

proportion of cooperators and defectors in the population (βi). From this, agents learn whether 

the environment is relatively nice or nasty. Importantly, agents observe only the other’s actions, 

limited to cooperation or defection, and not their underlying types. This is equivalent to not 

being able to observe an individual’s intent or character, only what he or she actually does. Thus, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 For this paper, mutation on both characteristics is set to zero, meaning strategy type and belief about the nastiness 
of the population are passed directly from parent to child in the current form. In later iterations of this project we 
anticipate introducing uncertainty into the population using these characteristics. 
15 In the real world, individuals may participate in many different social organizations nearly simultaneously, 
sometimes with the same partners. One might, for example, gain information from a neighbor about a new job 
opening, a form of networking, and serve on a community organization’s board with that same person. Our model 
does not fully capture such complex relationships, although because of the pairing of each A actor with a random B 
actor agents may actually interact multiple times in the same round of the game. Similarly, agents way interact by 
sharing information multiple times in multiple networks.	  
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each agent assigns and then subsequently updates for each agent it plays a single running 

probability of cooperation. In this phase of the simulation, agents are restricted to the knowledge 

they accumulate about other agents through direct play. Each agent develops unique beliefs over 

the course of play, meaning that even agents with the same strategy type will make different 

organizational choices in the next stage. This introduces heterogeneity of agents even within a 

fixed set of strategy types. Agents who believe the population is nastier than it really is are 

pessimists and agents who believe the population is nicer than in actuality are optimists.  

Organizational Choice and Play 

 Once the learning period is concluded, the main simulation of interest begins and 

continues for a fixed number of rounds. In this phase, a round is defined by two actions: the 

organizational choice of each agent for that round and the actual play in that round. Agents begin 

each round by calculating their expected utility for joining each type of organization and select 

the one they calculate will yield the highest return. Agents continue to update their beliefs about 

the distribution of strategy types throughout play (except in hierarchy, see below). As these 

beliefs change, the same agents will make different organizational choices. Over many rounds, 

the beliefs of agents will tend to converge to one another, reducing heterogeneity in the 

population, and to the “true” population parameters. 

 The expected utility for market interactions is the same as an agent would get in play 

during the learning phase described above. Agents can choose to pay the cost to join the network 

(φ) of a known selective affinity (η), affinity memory (ma), width (α) and depth (l) of agents with 

whom she has a history of cooperation in the last number of rounds as defined by memory (mn). 

The expected utility from the network is essentially the likelihood that the player receives 

information about its current partner that changes its behavior plus the likelihood it does not and 
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the likelihood that the agent gets to select its partner from memory, less the fee imposed to join 

the network (φ). The utility for entering a hierarchy will depend on the proportion of the 

population in the hierarchy the player will join (θ), weighed against the likelihood of cooperation 

within the hierarchy (q), the punishment for defection (v), and the tax (τ).  

 After agents choose the organization they will join for that round, the next stage is actual 

play within each organization. If a player selects the market it plays its fixed strategy. For non-

contingent strategy types (ALLC and ALLD), information from the network is irrelevant, since 

they play the same move regardless of the type of other agent. Without selective affinity, such 

agents never choose to join the network even at zero cost. Since only contingent strategy types 

(TFT) can potentially benefit from information on other agents, only these agents will consider 

joining the network in the absence of selective affinity. If an agent selects the network, it will 

query the specified past cooperators about the agent with whom it has been randomly paired and 

be given a number [0,1] representing the probability of cooperation to expect from that partner. 

If that agent believes the other agent is likely to cooperate (the probability is ≥ 0.5), it will 

cooperate, otherwise the agent defects. The information returned from the network is treated as 

equivalent to the agent’s own beliefs about the randomly paired agent acquired through direct 

play. That is, if agent i has no past play with agent j, and it receives a signal from the network 

that j cooperates with a probability of 0.7, it will update its belief about j’s type to 0.7. Similarly, 

if i believes on the basis of a single past interaction that j cooperates 1.0 and it receives a signal 

from the network that j has cooperated with five networked agents at a rate of 0.7, it revises its 

belief about j to 0.75—weighting its own experience equally with those received from the 

network. In this way, we assume that all agents are sincere in their reporting and are known to be 
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so by all other agents.16 If an agent joins the network and is given by nature the opportunity to 

select its own partner (η), it chooses the agent within memory (ma) with whom it earned its 

highest payoff in previous rounds. If the agent chooses to join the hierarchy, its play depends on 

whether or not it is matched with another player in the hierarchy. If the two players belong to the 

same hierarchy, the agent will cooperate at the rate that the hierarchy enforces (q). If the agent 

defects (1-q), it will be punished at the defined level (v). Within the hierarchy, players do not 

update their beliefs about the other agent’s strategy type. As cooperation within the hierarchy is 

induced, agents cannot tell if their partners cooperated because of their strategy type or from fear 

of punishment. As a result, agents cannot learn anything from the behavior of the other agent. In 

a world in which all agents join the hierarchy, this decision becomes irrevocable as the beliefs 

that led an agent to join the hierarchy in one period carry over into subsequent periods. If a 

player is matched with a player outside of its hierarchy, it will play as if it were interacting in the 

market and update its beliefs accordingly. Since nasty agents tend to remain in the market even 

when nice agents enter the hierarchy, nice agents will tend to form more pessimistic beliefs over 

time in incompletely hierarchical worlds. 

 Following play, real payoffs are calculated as a function of the outcome of play, 

punishments, and fees prescribed by their organizations. Actual payoffs can differ from expected 

payoffs, but are on average the same. 

Selection and Evolution 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 This is an important assumption. If agents lie or even communicate poorly (e.g., perform the kinds of minor 
distortions familiar to children from the “telephone game”), networks may actually harm rather than increase utility 
by causing contingent players to engage in bouts of mutual punishment. This is equivalent to the problem of noise 
within the RPD. See Hoffman (2000). In this version of the model, we do not discard or discount redundant 
responses from the network. Intuitively, in real interactions we often do not know exactly where a friend of a friend 
received their information about some other actor. Given that the strategy types we examine here are pure, this 
assumption has no consequence for any of our results. 
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 As previewed in the literature review, our selection mechanism is an elimination contest 

with replacement in which the lowest performing agents are deleted from the population and 

replaced by offspring of highest performing agents. Once actual payoffs have been assigned, the 

lowest achieving agents are selected out of the population and the highest achieving agents beget 

new agents who inherit their strategy type and beliefs, but not their memories. The selection rate 

can vary, but is set by default at 10 percent, meaning that in a population of 100 agents, the 10 

agents with the lowest actual payoffs are eliminated at the end of each round and replaced by the 

same number of agents that are identical in all ways except their histories of play to the 10 agents 

with the highest actual payoffs. The greater the selection rate, the greater the evolutionary 

pressure on the population and the faster the population will evolve.  

 

IV. Results and Discussion 

 We are primarily interested here in the evolutionary success of particular strategies and 

organizations. Our strategy is to simulate organization choice and payoffs under varying 

populations of agents in which we create relatively nice worlds of many TFT and ALLC agents 

and relatively nasty worlds of more ALLD agents. Because several parameters are randomly 

assigned according to specified distributions in the initialization phase, and agents are randomly 

paired at each round of play in both the learning and organizational phases (unless in selective 

affinity), no two simulations will be identical. For the results below, we replicate the simulation 

10 times and report the average of the results. With high rates of random variation across rounds 

of the game, we also smooth the results depicted in our payoff graphs.  

The Evolution of Cooperation without Organizations 
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 We begin by simulating our model without organizations. This is important because of 

the several differences in the basic setup of the ABM. Figure 2 demonstrates that population 

dynamics are, indeed, sensitive to the initial population. The primary result here is that in our 

elimination contest with replacement, TFT is not an evolutionarily stable strategy in relatively 

nice worlds. In Figure 2, we have drawn positive and negatively sloped 45 degree lines. Any 

portion of the ALLD curve above the positively sloped line indicates that ALLDs formed a 

greater share of the population in round 1000 than in the first, and any portion of the curve below 

the 45 degree line indicates that they were a smaller share of the population. As seen in Figure 2, 

ALLD expands beyond its initial share of the population rapidly in comparatively nice 

populations, and then returns to its initial share in comparatively nastier populations. Similarly, 

any portion of the TFT curve above the negatively sloped line indicates that TFT grew as a share 

of the population, and any portion of the curve below the line means that it shrank as a share of 

the population. As can be seen, TFT fares poorly in relatively nice populations and retains its 

initial size in very nasty populations. 

Figure 2 About Here 

  The dynamics of selection can be seen more clearly in representative worlds in which we 

depict the composition of the population and average payoffs by strategy type. In a relatively 

nice world of 10 percent ALLD agents, displayed in Figure 3, ALLC agents are quickly 

eliminated by ALLDs, who successfully sucker their opponents and then grow as a proportion of 

the population. In early rounds, TFTs have not yet played many ALLD agents and are also 

suckered on their first interactions, reflected in their plummeting numbers and extremely low 

payoffs. Once they have gained experience with the ALLD players, however, TFTs stabilize 

themselves as a proportion of the population and match payoffs, on average, with ALLDs. TFTs 
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either cooperate with one another, earning a payoff of three, defect with known ALLDs, 

receiving a payoff of one, or cooperate on the first interaction and get suckered by ALLDs, 

thereby getting a payoff of zero. The naïve TFTs who get suckered are eliminated from the 

population via selection and are typically replaced by offspring of the TFTs who successfully 

cooperated with one another. These new TFTs, with no experience of play, then get suckered and 

eliminated again by ALLDs, creating a revolving “death door” at the bottom of the payoff 

rankings. With a relatively low selection rate of ten percent in these simulations, naïve TFTs who 

have not yet played against many of the ALLDs in the population accumulate more rapidly than 

they are eliminated and replaced. As experience builds among the remaining TFTs, who face a 

nearly constant population of ALLDs, the population eventually stabilizes. Overall, average 

payoffs for both ALLDs and TFTs converge at a relatively low level of one, the payoff for 

mutual defection.  

Figure 3 About Here 

 Interestingly, virtually the same dynamic and stable population emerges in a  

relatively nasty world of 75 percent ALLD agents (Figure 4). ALLCs are, again, eliminated 

almost immediately and replaced by new ALLDs. Without as many ALLC and TFTs to sucker, 

ALLDs do not enjoy the initially high payoffs they earned in the nicer world. Heavily suckered 

by ALLDs, TFTs begin with low average payoffs that eventually converge to one as they learn to 

defend themselves. With a still significant number of other TFTs in the population with whom to 

cooperate, and a relatively low selection rate, successfully cooperating TFTs (on average, about 

20 percent of the interactions) beget enough new TFTs to maintain a relatively constant 

population and even grow slightly as a proportion of the total population. Once again, the naïve 

offspring are then suckered by the ALLDs they are likely to encounter.  
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Figure 4 About Here 

  These results confirm that TFT does well against itself and holds its own over sufficient 

rounds against nasty strategies. Once TFT has learned about its partners, it does no worse than 

ALLD and, thus, sustains itself as a share of the population. Only after it has gained experience, 

however, is TFT evolutionarily stable. As indicated by Figure 2, however, TFTs do not generally 

expand their share of the population in any population.  

 As noted in the literature review, our random matching design means that it takes much 

longer for agents to acquire information on other agents than does a round-robin tournament in 

which the “niceness” or “nastiness” of all strategy types are known by all agents after the first 

round. This design makes TFT highly vulnerable to exploitation in early rounds of the game 

when the agents are still learning the strategy types of their opponents. This feature interacts with 

the initial population and, although not shown here, the size of the population to determine the 

evolutionary course of the simulation (the larger the population, the longer it takes to learn about 

all other agents). Although we do not demonstrate this point here, the evolutionary course will 

also be greatly exacerbated by the severity of the selection mechanism. With the relatively low 

rate of selection used here, TFTs can maintain their proportion of the population by cooperating 

enough with one another to beget replacements for all the naïve TFTs that are eliminated each 

round. A lower rate of selection allows TFTs to survive at a greater proportion of the population 

in nicer worlds, but does not fundamentally alter the dynamics just discussed. A high enough rate 

of selection, on the other hand, eliminates TFTs in early rounds before they have had an 

opportunity to learn the strategy types of other agents and leads to a population collapse for the 

strategy type. With fewer others of their type to cooperate with, TFTs are no longer among the 
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highest performing agents and cannot produce offspring fast enough to replace themselves. The 

population of TFTs, thus, quickly erodes.  

 

The Evolution of Cooperation with Organizations 

 Introducing organizations substantially alters the results described above. Most 

dramatically, as summarized in Figure 5a, the ability of agents to join a network or hierarchy 

permits TFTs to retain their proportion of the population more often, including in relatively nice 

worlds in which they were severely disadvantaged without organizations. With organizations, the 

curve for TFTs as a share of the population line is often above the negatively-sloped 45 degree 

line in very nice populations and on the line in very nasty populations (compare with Figure 2). 

This is especially true in early rounds. Figure 5b depicts population shares in round 10 of the 

game. Here, TFTs are able to retain their initial share even where without organizations they 

were already under assault by ALLDs (see Figure 3). This trend is sustained through round 50 of 

the game, illustrated in Figure 5c. As Figure 5a shows, however, there is a lot of variability in 

relatively nice worlds as ALLDs and TFTs battle for survival over longer runs. Perhaps most 

surprisingly, ALLCs enter the hierarchy and not only survive in relatively nice worlds but 

actually expand slightly as a proportion of the population in moderate worlds (up through an 

initial population of about 40 percent ALLDs). Organizations transform the results of the game 

quite dramatically to the benefit of nice strategies. 

Figure 5 About Here 

 As shall be explained in more detail below, in relatively nice worlds, TFTs enter the 

network and use its informational mechanism to protect themselves against being suckered in the 

early rounds of the game. Correspondingly, without the ability to sucker TFTs early on, ALLDs 
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do not expand as a proportion of the population (see Figure 6, which is comparable to Figure 3 

without organizations). In moderate worlds, on the other hand, TFTs begin in the network, as in 

nicer worlds, but are not able to sustain their numbers against the progressively growing 

population of ALLDs in the market; as the population of TFTs declines, they move somewhat 

into the hierarchy but still cannot maintain ground when paired with the ALLDs in interactions 

that occur outside the hierarchy (see Figure 7). Once on a “losing” track despite using the 

network, modest numbers in the hierarchy do not allow the TFTs to recover. Most dramatically, 

in comparatively nasty worlds, TFTs move immediately into the hierarchy and are able to 

successfully defend themselves against the large number of ALLDs they face (see Figure 8). By 

joining the hierarchy, even in worlds of more than 70 percent ALLD agents, TFTs are able to 

maintain their initial shares of the population (see Figure 5).  

Figures 6-8 About Here 

 Organizational choice varies by strategy type and initial population. In relatively nice 

worlds, ALLCs use the network in early rounds for the benefits of selective affinity (see Figure 

9a). As they become more confident of finding other cooperating agents, they avoid the fees and 

taxes imposed by networks and hierarchies and mostly move into the market. More pessimistic 

ALLCs, who believe the world is nastier than it really is, go into the hierarchy for the protection 

it affords even in comparatively nice worlds. As the population becomes progressively nastier, 

ALLCs still begin in the network but move increasingly into the hierarchy (Figure 9b) until, in 

very nasty worlds, they are completely in the hierarchy (Figure 9c). Hierarchy allows some 

ALLCs to survive and grow as a proportion of the population in moderate worlds (see Figure 

5a). In the very nastiest of worlds though, ALLCs are quickly eliminated. In worlds without 

organizations, ALLCs are always eliminated immediately by predatory ALLDs. In worlds with 



 27	  

organizations, ALLCs are able to successfully cooperate under the shadow of third party 

enforcement with each other and other strategy types to survive at a significant rate up to some 

initial population limit. Hirshleifer and Coll (1988, 395) find that ALLCs are parasitic on TFTs, 

surviving only because they can cooperate sufficiently with the latter. In our simulations, ALLCs 

cannot survive without organizations. By entering the hierarchy, however, ALLCs not only 

survive but aid TFTs in their non-hierarchical interactions.  

Figure 9 About Here 

  In nice worlds, ALLDs begin in disproportionately in the network to take advantage of 

selective affinity and its opportunity to exploit nice strategy types (Figure 10a). As TFTs acquire 

information and become harder to bully, ALLDs then move mostly into the market, where they 

can continue to exploit ALLCs and naïve TFTs, and into the hierarchy. As the world becomes 

nastier, ALLDs go into the hierarchy at high rates and remain there in higher proportions 

(Figures 10b and 10c). However, even in very nasty worlds a majority continue to remain in the 

market in order to exploit others. 

Figure 10 About Here 

 In relatively nice and moderate worlds, TFTs begin in the network both for the benefits of 

selective affinity, which permits cooperation with known others, but more importantly for the 

information it provides about other agents they have not yet played (Figures 10a and b). This 

information benefit, however, eventually wanes as TFTs themselves come to play directly an 

ever larger fraction of the population. This effect is greater the nastier the population. TFTs then 

move into the market or hierarchy, with optimists joining the former and pessimists joining the 

latter. As the world becomes nastier, TFT move increasingly into the hierarchy (Figures 10b and 

c). Where networks provide valuable information to TFTs in early rounds of any game, and 
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allow them to avoid being suckered as often by ALLDs, they move disproportionately into the 

hierarchy as the game evolves in all but the nicest worlds. By joining organizations, TFTs avoid 

being decimated by ALLDs in early-to-middle rounds and survive in comparatively greater 

numbers in relatively nice and nasty worlds. 

Figure 11 About Here 

 Counterintuitively, moderate populations are the most dangerous for TFTs in worlds with 

organizations. TFTs exhibit significantly greater evolutionary fitness in nice worlds, where they 

can use the network for information to protect themselves against initial suckerings, and in nasty 

worlds, where they use the hierarchy to sustain cooperation despite the large number of ALLDs 

they confront. TFTs are extremely vulnerable in moderate worlds a) in which information is not 

enough to boost the payoffs of surviving agents or protect naïve TFTs from exploitation and b) 

which are not sufficiently threatening to drive them into the hierarchy. Relatively defenseless, 

TFTs are eliminated in disproportionate numbers in these middling worlds. As indicated by the 

stability of the negative population trend for TFTs (and the inverse for ALLDs) in the middle of 

Figure 5a, this is a robust pattern. 

 The welfare implications of organizations may be equally important and interesting. In 

worlds without organizations (see prior section), average payoffs for all actors tend to converge 

to one regardless of the initial population (Figures 3b and 4b). Even in nice worlds, TFTs are 

sufficiently exploited by ALLDs that, on average, all strategy types are receiving the payoffs for 

mutual defection (P). This is the Hobbesian state of nature. In worlds with organizations, this 

same result occurs in comparatively nasty initial populations (compare Figures 4b and 8b). In 

nice worlds with organizations, however, all agents on average do significantly better than 

without organizations. With TFTs surviving initial defections by ALLDs and sustaining 
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themselves as a large share of the population, TFTs cooperate sufficiently with one another that 

net payoffs (after network fees and hierarchy taxes) are close to 2.5, more than twice as high as 

without organizations (compare Figures 3b and 6b). Paradoxically, even ALLDs do better with 

organizations, achieving net payoffs of approximately 1.5, fifty percent higher than without 

organizations. In moderate worlds, TFTs do even less well than in non-organizational worlds, 

averaging below one, while ALLDs benefit from the opportunity to exploit the TFTs and earn 

average payoffs of nearly 1.5. If a world of organizations is a Hobbesian civil society, the 

benefits of that society are achieved only under some initial conditions – a relatively nice 

population – and are not equally shared by all. Civil society does not produce higher welfare all 

by itself but only in conjunction with relatively nice populations.     

 

Conclusions 

 The rise of spontaneous order is fascinating. That cooperative actors can emerge and 

prove resilient against competition from uncooperative others is heartening. Axelrod and ABMs 

of the RPD have helped scholars understand this process. But spontaneous order is also limited. 

That even small changes in our ABM – different matching and tournament structures – can affect 

the prospects for cooperation so drastically suggests just how fragile spontaneous cooperation 

can be.  

 To compensate for that fragility, humans -- and perhaps other organisms as well -- have 

developed organizations to support cooperation and improve welfare. This is virtually a truism, if 

still an important one. Our ABM begins to explore the conditions under which organizations will 

be formed. Equally, if not more important, it allows us to identify which agents will prefer which 

type of organization under what conditions and, finally, with what affects on welfare. Our results 
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suggest few universal rules. Rather, our simulations show that similar agents in different 

populations will often make different organizational choices, and that the same organizations in 

different populations will have different effects on cooperation. Population, choices, and 

organizations interact in complex and contingent ways.  

 Nonetheless, our model does imply some general propositions. Nice agents in relatively 

nice worlds benefit from acquiring information from social networks in order to identify who 

they can trust to cooperate and who is likely to defect. This ability to identify cooperative and 

uncooperative partners prevents contingent but nice strategy types, like TFTs, from being 

exploited in first interactions and, as a result, helps to sustain their shares of the total population 

over time. The ability to survive in initial interactions has long term ecological consequences.  

 In turn, nice agents in nasty worlds enter the hierarchy to protect themselves under third 

party enforcement. Hierarchy does not necessarily constrain the “bad guys,” as is often supposed. 

In our simulations, nasty strategy types play mostly in the market in all conditions in hopes of 

suckering nice strategy types. Rather, hierarchy is preferred by nice types as a way of ensuring 

sufficient cooperation with other cooperative partners. As worlds become increasingly nasty, it is 

the most cooperative types that join the hierarchy first (ALLCs), following by nice contingent 

types (TFTs). By entering the hierarchy and exposing themselves to the possibility of 

punishment, they raise their own welfare and ensure their reproduction. Although hierarchy does 

not allow nice strategy types to take over the world in our simulations, it does allow them to 

continue to thrive even in hostile populations.  
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Table 1. User defined parameters and default values. 

 

Parameter Symbol  Description Default Value 

General    

Increments  Number of times the simulation is run 
incrementing a parameter 

20 

Repetitions  Number of times the identical simulation 
is repeated with different random seeds 

10 

Rounds  Number of rounds of play 1000 

Learning rounds  Set as either number of rounds or 
population convergence to within a 
proportion of the true population mean 

10 rounds 

Agents (Total)   100 

All Cooperate  Number of actors of type always 
cooperate 

 

All Defect  Number of actors of type always defect  

TFT  Number of actors playing tit-for tat 
strategy 

 

Payoffs    

R R Payoff for CC outcome 3 

S S Payoff for CD outcome 0 

T T Payoff for DC outcome 5 

P P Payoff for DD outcome 1 

Hierarchy    

Initial size θ Proportion of the population in hierarchy. 
In first round of play, this variable is set 
exogenously; after the first round, this 
variable is endogenous and defined as the 
number of players in the previous round. 

10 

Penalty V Penalty for defection within the hierarchy 0.5 

Probability of 
Cooperation 

Q Rate at which the agents cooperate with 
other agents in the hierarchy 

0.95 

Tax τ Tax assessed on members of the hierarchy 0.3 

Network    
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Cost φ Fee for joining the network 0.3 

Width α Number of past cooperative partners each 
agent i can ask for information about 
agent j 

3 

Depth L Number of levels agent i can survey  3 

Memory mn How many past moves each agent 
remembers within the network 

5 

Network Affinity η Probability of network players being able 
to pick their partner 

0.1 

Affinity Memory ma How far back affinity players can look 
into their memory 

5 

Evolution    

Number of Agents 
replaced 

 Number of lowest performing agents 
replaced by the same number of highest 
performing agents 

10 

Ranking Mechanism  Agents are ranked either on cumulative 
average payoffs or on their average 
payoffs for the last z rounds (also 
specified by user) 

Cumulative 

Mutation on Strategy  The range around the parent agent’s 
strategy type from which the child’s 
strategy type is drawn 

0.0 

Mutation on PC 
belief (βi) 

 The range around the parent agent’s belief 
about the proportion of cooperators and 
defectors in the population (βi)  

0.0 
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Figure 1. The prisoner’s dilemma game 
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 Figure 2. Proportion of Each Strategy Type Surviving Until Round 1000, Given Initial 
Populations, Without Organizations  

 

 

 

 

 

 

 

 

Initial population becomes “nastier” along the horizontal axis. Surviving members of each 
strategy type, given initial proportions, are depicted on the vertical axis. The 45 degree lines 
indicate constant initial and ending proportions of ALLD and TFT agents. TFT performs 
relatively poorly in nicer populations, falling far below the negatively-sloped 45 degree line, and 
ALLD performs relatively well in nicer populations, rising above the positively-sloped 45 degree 
line. The small number of ALLCs are eliminated even in relatively nice worlds. [Seed 436834; 
Population begins with 5 ALLCs and 95 TFTs, 5 TFTs are subtracted and 5 ALLDs are added 
with each of 20 iterations.] 
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Figure 3. A Relatively Nice World without Organizations 

 

Panel a. Number of agents by strategy type surviving by round (100 total, initial population of 85 
TFT, 5 ALLC, 10 ALLD). [Seed 436834] 

 

Panel b. Smoothed payoffs by strategy type by round. 
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 Figure 4. A Nasty World without Organizations  

 

Panel a. Number of agents by strategy type surviving by round (100 total, initial population of 20 
TFT, 5 ALLC, 75 ALLD). [Seed 436834] 

 

Panel b. Smoothed payoffs by strategy type by round. 
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Figure 5. Proportion of Each Strategy Surviving Until Round N, Given Initial Population, 
with Organizations  

 

Panel a. 1000 Rounds. This figure is comparable to Figure 2, but includes the effects of 
organizations. TFTs do comparatively well in relatively nice and nasty populations, although 
there is considerable instability in nicer worlds. TFTs fare poorly in moderate worlds. The small 
number of ALLCs survive and even grow as a share of the population in nice and moderate 
worlds. [Seed 545554; Initial population begins with 5 ALLCs and 95 TFTs; 5 TFTs are 
subtracted and 5 ALLDs added with each of the 20 iterations.] 

 

Panel b. Ten Rounds. In very early rounds, agents of all types are able to resist invasion and 
maintain their initial proportions. 
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Panel c. 50 Rounds. In slightly later rounds, nice types are able to grow as a proportion of the 
population in nice to moderate populations. In moderate to nasty populations, TFTs are able to 
maintain their proportion of the population.  
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Figure 6. A Relatively Nice World with Organizations  

 

Panel a. This simulation begins with the same initial population as Figure 3. TFTs survive at 
higher rates early in the game and maintain this success throughout. [Seed 545554] 

 

Panel b. Smoothed payoffs by strategy type 
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Figure 7. A Moderate World with Organizations 

 

Panel a. With an initial population of 60 TFTs, 5 ALLCs and 35 ALLDs, TFTs decline and 
ALLDs increase in early rounds, stabilizing after approximately round 200. [Seed 545554] 

 

Panel b. Smoothed payoffs by strategy type 
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Figure 8. A Relatively Nasty World with Organizations 

 

Panel A. This simulation begins with the same initial population as Figure 4 (75 ALLDs, 20 
TFTs and 5 ALLCs). ALLDs increase slightly at the expense of ALLCs. TFTs retain their initial 
population share. [Seed 545554] 

 

Panel b. Smoothed payoffs by strategy type.  
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Figure 9. ALLC with Organizations  

  

 

Panel a. In a nice world (5ALLCs, 90 TFTs, 
5ALLDs) ALLCs start in the network and 
move into the market and hierarchy. 

 

 

Panel b. In a moderate world (35 ALLDs, 5 
ALLCs and 60 TFTs) ALLCs start in the 
network and and hierarchy and move to the 
market and hierarchy.  

 

 

Panel c. In a nasty world (80 ALLDs, 5 
ALLCs and 15 TFTs) ALLCS start almost 
entirely in the hierarchy but quickly are 
eliminated. 
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Figure 10. ALLD with Organizations  

 

Panel a. In a Nice world (5 ALLDs, 5 
ALLCs, and 90 TFTs) the ALLDs start in 
the network and hierarchy and move out of 
the network into the market and hierarchy. 

 

 

Panel b. In a moderate world (35 ALLDs, 5 
ALLCs and 60 TFTs) ALLDS begin in the 
hierarchy and network and move into the 
market.  

 

 

Panel c. In a nasty world (80 ALLDs, 5 
ALLCs, and 15 TFTs) the ALLDs begin in 
the hierarchy and network and move into 
the market and hierarchy 
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Figure 11. TFT with Organizations  

 

Panel a. In a nice world (5 ALLCs, 5 ALLDs 
and 90 TFTS) the TFTS move from the 
network to the market, network and hierarchy.  

 

 

Panel b. In a moderate world (5 ALLCs, 35 
ALLDs, and 60 TFTs) TFTs move from the 
network to the market and hierarchy. 

 

 

Panel c. In a nasty world (80 ALLDs, 5 
ALLCs and 15 TFTs) the TFTs are 
universally in the hierarchy. 
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