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Amyloid Beta-Related Alterations to
Glutamate Signaling Dynamics During
Alzheimer’s Disease Progression

Caleigh A. Findley1,2, Andrzej Bartke3, Kevin N. Hascup1,2,4 and
Erin R. Hascup1,2

Abstract

Alzheimer’s disease (AD) ranks sixth on the Centers for Disease Control and Prevention Top 10 Leading Causes of Death list

for 2016, and the Alzheimer’s Association attributes 60% to 80% of dementia cases as AD related. AD pathology hallmarks

include accumulation of senile plaques and neurofibrillary tangles; however, evidence supports that soluble amyloid beta

(Ab), rather than insoluble plaques, may instigate synaptic failure. Soluble Ab accumulation results in depression of long-term

potentiation leading to cognitive deficits commonly characterized in AD. The mechanisms through which Ab incites cognitive

decline have been extensively explored, with a growing body of evidence pointing to modulation of the glutamatergic system.

The period of glutamatergic hypoactivation observed alongside long-term potentiation depression and cognitive deficits in

later disease stages may be the consequence of a preceding period of increased glutamatergic activity. This review will

explore the Ab-related changes to the tripartite glutamate synapse resulting in altered cell signaling throughout disease

progression, ultimately culminating in oxidative stress, synaptic dysfunction, and neuronal loss.
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Introduction

The glutamatergic synapse, referred to as the tripartite

synapse, involves three elements: presynaptic neurons,

postsynaptic neurons, and astrocytes. There are several

different synaptic components expressed on both neurons

and astrocytes in the glutamate synapse, as summarized

in Table 1. These components include two types of glu-

tamate receptors that exist on these synaptic elements:

metabotropic and ionotropic. Metabotropic glutamate

receptors (mGluRs) are present on both presynaptic

and postsynaptic neurons (Revett et al., 2013) and

involve three different groups of receptors: Group I

(mGluR1 and mGluR5), Group II (mGluR 2 and 3),

and Group III (mGluR4, mGluR6, mGluR7, and

mGluR8; Petralia et al., 1996; Rudy et al., 2015).

Group I mGluRs are Gq-coupled and are expressed post-

synaptically, depolarizing the postsynaptic neuron upon

stimulation (Petralia et al., 1996; Ferraguti and

Shigemoto, 2006; Revett et al., 2013). Groups II and

III mGluRs are Gi/o-coupled inhibitory autoreceptors

and are expressed both pre- and postsynaptically

(Petralia et al., 1996; Rudy et al., 2015), leading to inhi-

bition of presynaptic glutamate release or postsynaptic
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excitation (Ambrosini et al., 1995; Ferraguti and
Shigemoto, 2006).

The ionotropic glutamate receptors are expressed both
pre- and postsynaptically (Wisden and Seeburg, 1993;
Rudy et al., 2015) and include a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPAR),
N-methyl-D-aspartic acid receptors (NMDAR), and kai-
nate receptors. AMPARs function presynaptically to
promote synapse and spine formation (Isaac et al.,
2007). On the postsynaptic side, all three ionotropic
receptors are expressed (Wisden and Seeburg, 1993;
Rudy et al., 2015). AMPARs are bound by glutamate
and lead to membrane depolarization, while NMDARs
have a magnesium block which is released upon mem-
brane depolarization. This results from either high-
frequency stimulation inducing Naþ influx through
AMPARs or disinhibition of GABAergic synapses
(Parsons et al., 2007), which then opens the NMDAR
ion channel (Calabresi et al., 1992; Pandis et al., 2006;
Parsons et al., 2007). In fact, AMPARs and NMDARs
are colocalized on the postsynaptic membrane because of
the cooperation required between the two receptors in
response to membrane depolarization (Takumi et al.,
1999; Antal et al., 2008). The opening of NMDARs
results in Ca2þ influx into the postsynaptic neuron and,
along with Group I mGluRs, increases intracellular Ca2þ

(Chen et al., 2002; Hardingham et al., 2002; Hardingham
and Bading, 2003; Verkhratsky and Kirchhoff, 2007;
Yamin, 2009; Zhang et al., 2016). NMDA interacts
with glutamate such that the NR2 subunit of the
NMDA receptor binds glutamate, with NR2A and
NR2B subtypes mediating excitotoxicity in cultured cor-
tical neurons (von Engelhardt et al., 2007). The NR2
subunit is expressed both synaptically (NR2A) and extra-
synaptically (NR2B; Rudy et al., 2015). Extrasynaptic
NMDARs (E-NMDARS) are activated only by high
concentrations of glutamate, unlike synaptic NMDARs
(S-NMDARS) that are located closer to the synaptic cleft
and are activated by presynaptic glutamate release (Groc
et al., 2009; Newpher and Ehlers, 2009; Rudy et al.,
2015). Both E-NMDAR stimulation and NMDA/
mGluR-mediated Ca2þ influx constitute important fac-
tors in soluble amyloid beta (Ab)-mediated neurotoxicity
as explored further in this review.

Glutamate is synthesized from glutamine by glutamin-
ase in the presynaptic neuron (Revett et al., 2013), and
then transported to the synaptic terminals where vesicu-
lar glutamate transporter-1/2 (VGluT-1/2) packages glu-
tamate into vesicles, which release glutamate upon
neuronal depolarization (Takamori et al., 2000;
Fremeau et al., 2001, 2004). Glutamate clearance from
the synapse is carried out through high-efficiency excit-
atory amino acid transporters (EAATs) located primarily
on astrocytes. Glutamate transporter-1 (GLT-1) and glu-
tamate aspartate transporter (GLAST) allow for uptake

of glutamate into astrocytes (Lehre et al., 1995), where

glutamate is then converted into glutamine by glutamine
synthetase (GS) and transported back to the presynaptic

neuron (Norenberg and Martinez-Hernandez, 1979).
This is referred to as the glutamate/glutamine cycle

(Revett et al., 2013), a critical regulation point for the
glutamatergic system to terminate receptor signaling

while preventing excess accumulation of synaptic gluta-
mate potentially leading to excitoxicity (Olney et al.,

1997). As well, dysregulation of glucose metabolism can
potentially impact glutamate synthesis in the glutamate/

glutamine cycle (Knight et al., 2014), underlining the
importance of this regulatory cycle for learning and

memory (Valladolid-Acebes et al., 2012; Hascup

et al., 2019a).

Alterations in Glutamatergic Signaling

Throughout Alzheimer’s Disease

Progression

The Relationship Between Ab and Glutamate

Alzheimer’s disease (AD) is characterized by excitotoxic

levels of extracellular glutamate alongside accumulation
of soluble Ab and hyperphosphorylated tau protein lead-

ing to neuronal cell death (Hiruma et al., 2003;
Kopeikina et al., 2012). Evidence shows that soluble

Ab accumulation results in synaptic failure, potentially
through modifications to the glutamatergic system

(Walsh et al., 2002; Wang et al., 2002; Barghorn et al.,
2005; Cleary et al., 2005; Selkoe, 2008; Ferreira and

Klein, 2011; Wilcox et al., 2011). Early stages of the dis-
ease show an increased excitability of pyramidal neurons

(Grutzendler et al., 2007; �Si�sková et al., 2014; Hascup

and Hascup, 2015) and an upregulation of glutamatergic
presynaptic boutons as observed in mild cognitive

impairment (MCI; Bell et al., 2007) and in mouse
models of AD (Hascup et al., 2019a). Several studies

have noted hyperactivity in the hippocampus of MCI
patients (Bell et al., 2007; Miller et al., 2008; O’Brien

et al., 2010; Huijbers et al., 2015) with familial history
of AD (Okonkwo et al., 2014) and elevated Ab deposi-

tion (Huijbers et al., 2015) also contributing to excitabil-
ity. In fact, hyperactivity at baseline, as detected by

functional magnetic resonance imaging, is associated
with increased severity of cognitive decline (Miller

et al., 2008; O’Brien et al., 2010; Huijbers et al., 2015).
Along with increased excitability, morphological

changes in dendritic structure of hippocampal pyramidal

neurons have been noted (Grutzendler et al., 2007;
�Si�sková et al., 2014), with specific responsiveness to amy-

loid plaques (Masliah et al., 1993; Ovsepian et al., 2018).
Whole-cell patch clamp recordings of CA1 pyramidal

neurons in AbPP/PS1DE9 (APP/PS1; RRID:

Findley et al. 3



MMRRC_034832-JAX) mice show reductions in length,
branching, and surface area of dendrites while also dis-
playing a localized hyperactivity effect and increased syn-
aptic integration that is attributed to the changes in
dendritic structure (�Si�sková et al., 2014). Similar mor-
phological changes appear in the PSAPP double trans-
genic mouse model (Tg2576 RRID: IMSR_TAC:1349;
PSEN1 (M146L): RRID: IMSR_JAX:033255) and post-
mortem AD brain samples (Grutzendler et al., 2007).

Later stages of AD show markedly decreased gluta-
matergic activity in stark juxtaposition to earlier hyper-
activity. The APP/PS1 AD mouse model shows increased
stimulus-evoked glutamate release at younger ages,
which then steadily decreases with age and Ab accumu-
lation (Minkeviciene et al., 2008; Hascup and Hascup,
2015; Hascup et al., 2019b). Busche et al. (2012) also
note increased glutamatergic hyperactivity in young
APPswe/PS1G384A double transgenic mice (APPswe:
RRID: MGI: 3665286; PS1G384A: RRID: MGI:
4819108), with hyperactive neurons preferentially sur-
rounding amyloid plaques. Such findings are observed
in AD patients, with a decrease in presynaptic glutama-
tergic boutons and glutamate signaling noted in later dis-
ease stages (Bell et al., 2007; Miller et al., 2008; O’Brien
et al., 2010). This could result in chronically elevated
glutamate levels eventually leading to inhibition of
axonal transport and neurodegeneration through Ab
accumulation and increased Ca2þ intracellular concen-
trations (Hiruma et al., 2003; Stutzmann, 2005).

Studies attempting to characterize disease cell signal-
ing and pathology in human AD typically use postmor-
tem tissue due to logistical difficulties in obtaining tissues
and data from patients in earlier disease stages. Such
limitations hinder study of earlier cell signaling changes,
although there are some methods currently used to exam-
ine glutamate in live patients. Of note, studies using
proton magnetic resonance spectroscopy (1H MRS)
and glutamate chemical exchange saturation transfer
(GluCEST) show decreased overall glutamate concentra-
tion in APP/PS1 mice and AD patients (Rupsingh et al.,
2011; Haris et al., 2013). The hippocampus was specifi-
cally noted as having a large decrease in glutamate con-
centration, and as previously discussed, the hippocampus
is especially vulnerable to Ab accumulation. The CA1
region is particularly susceptible to disease-related neu-
ronal loss (West et al., 1994; Hof et al., 2003) and shows
decreased stimulus-evoked glutamate with age in APP/
PS1 mice (Hascup et al., 2016). This supports that the
decrease in total concentration observed may be a con-
sequence of neuronal loss resulting from excitotoxicity,
as opposed to decreased glutamate concentration in the
hippocampus.

These findings display a flexibility in glutamatergic
characterization such that it is specific to the disease
stage. The paradoxical nature of glutamate signaling in

AD petitions for a deeper look into the individual impact
on glutamatergic synaptic components throughout dis-
ease progression. Modifications in expression of synaptic
elements could lead to alterations in cell signaling, allow-
ing for excitotoxic conditions to grow and building the
foundation for cognitive decline.

Neuronal Glutamate Synaptic Component
Changes in AD

Individual changes in glutamatergic synaptic components
underlie the altered glutamate release observed through-
out disease progression. As mentioned previously, earlier
stages are marked with elevated glutamate release that
eventually increases glutamate concentrations in and
around the synapse. Evidence supports that this starts
presynaptically, with Ab and VGluT1 colocalizing on
glutamatergic synaptic boutons and preferentially accu-
mulating in these terminals (Sokolow et al., 2012). This
coincides with elevated expression of VGluT1 in mouse
models of AD, supporting increased vesicle trafficking of
glutamate (Hascup et al., 2019a). Several studies have
also shown a downregulation of VGluT1 expression in
AD (Kashani et al., 2008; Canas et al., 2014; Rodriguez-
Perdigon et al., 2016), but only VGluT2 downregulation
in MCI subjects (Kashani et al., 2008), supporting that
VGluT1 levels are not downregulated until later stages of
AD. This expression pattern matches that of glutamate
release such that initially more glutamate is packaged
into vesicles for release, contributing to an increase in
extracellular glutamate levels into a toxic range.

Postsynaptically, the impact of Ab accumulation on
AMPA/NMDA receptors has been well documented.
Bath application of Ab reduces both the amplitude and
frequency of AMPA postsynaptic currents in CA1 pyra-
midal neurons (Parameshwaran et al., 2007). Neuronal
cell cultures taken from the cortex and hippocampus of
Tg2576 transgenic AD mice show decreased expression
of the GluR1 AMPA subunit as Ab concentrations
increased (Almedia et al., 2005). A decrease in GluR1
and GluR2/3 expression has also been observed in post-
mortem AD entorhinal cortex (Yasuda et al., 1995),
although GluR2/3 is expressed presynaptically as well.
In the hippocampus, ionotropic glutamate receptor
AMPA subunit-4 expression is downregulated in sporad-
ic AD (Jacob et al., 2007), along with decreased AMPA
binding in the CA1 (Dewar et al., 1991). It is arguable
that the decrease in AMPA binding may be due to
decreased GluR1 surface expression caused by decreased
expression of synaptic calcium-calmodulin II (CaMKII)
as seen in APP/PS1 mice (Gu et al., 2009). The decreased
release of stimulus-evoked glutamate mentioned earlier
could also account for this decrease in binding (Hascup
and Hascup, 2015). In cell culture, GluA1 expression is
upregulated in APP knockout corticohippocampal
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neurons supporting that Ab directly impacts expression
levels of AMPA subunits (Martinsson et al., 2019).
Interestingly, GluR2 has been shown to be upregulated
in incipient AD patients (Williams et al., 2009), support-
ing that AMPA expression may follow the same cycle of
early upregulation and then subsequent downregulation
with AD progression. Early upregulation is likely a
response to increased presynaptic glutamate stimulation,
but overtime, chronic excessive stimulation leads to
desensitization and internalization of the AMPA recep-
tor (Esposito et al., 2013).

NMDA receptors are a cornerstone in the relationship
between Ab accumulation and glutamate toxicity. Ab42
preferentially binds to glutamatergic neurons expressing
NR1 or NR2B NMDA subunits compared with other
subunits (Lacor et al., 2007). Ab42 can stimulate gluta-
mate release, potentially through a7 nicotinic acetylcho-
line receptors (a7nAChR; discussed later), to activate E-
NMDARs (Talantova et al., 2013). This can result in
long-term potentiation (LTP) inhibition (Li et al., 2011;
Kervern et al., 2012) and contribute to synaptic spine loss
(Talantova et al., 2013). This Ab-mediated increase in
glutamate concentration leads to endocytosis and
decreased surface expression of NR1 and NR2B
(Snyder et al., 2005). Downregulated NMDA subunit
expression in the hippocampus has been observed in sev-
eral postmortem studies in human AD subjects (Hynd
et al., 2004a, 2004b; Jacob et al., 2007).

NMDARs are believed to mediate soluble Ab-induced
cell death such that persistent activation of NMDA from
excessive glutamate release leads to selective neuronal
death from chronic excitotoxicity (Butterfield and
Pocernich, 2003). E-NMDARs allow for Ca2þ entry
into the cell (Zhang et al., 2016), which causes increased
dendritic calcium-induced calcium release from ryano-
dine receptors, thus increasing intracellular Ca2þ concen-
trations (Goussakov et al., 2010). In fact, MCI patients
show increased expression of ryanodine receptor 2
(Bruno et al., 2012), which would allow for further
NMDA-mediated increases in intracellular Ca2þ concen-
trations. Overtime, this can eventually result in toxic
Ca2þ levels leading to depolarization of the mitochondri-
al membrane, free radical production, and cell death.
(Hardingham et al., 2002; Hardingham and Bading,
2003; Bezprozvanny and Mattson, 2008; Zhang et al.,
2016). Along with this, E-NMDAR-mediated Ca2þ

influx activates cAMP-regulatory element binding pro-
tein (CREB) shut off pathways (Hardingham et al.,
2002). CREB plays a central role in long-term memory
(Yin and Tully, 1996; Barco et al., 2003; Tully et al.,
2003), and downregulation results in memory impair-
ment (Xiong et al., 2013; Zhang et al., 2014). Thus,
increased intracellular Ca2þ levels resulting from E-
NMDAR stimulation contributes to both cognitive
decline and neuronal loss in AD pathology.

Furthermore, soluble Ab acts through NMDAR to
activate nicotinamide adenine dinucleotide phosphate
oxidase leading to induction of reactive oxygen species
(ROS; Kishida and Klann, 2006) and release of arachi-
donic acid (Shelat et al., 2008). The influx of Ca2þ from
NMDAR activation is required for ROS formation (De
Felice et al., 2007). Although NMDA production of ROS
is a necessary element for LTP (Kishida and Klann,
2006), Ab stimulates an excessive ROS induction from
NMDARs, leading to oxidative damage and synaptic
failure (De Felice et al., 2007; Shelat et al., 2008). In
fact, elevated ROS levels contribute to impairment of
LTP (Serrano and Klann, 2004) and spatial learning
(Nicolle et al., 2001) with age. NMDA activation also
increases nitric oxide (NO) synthesis (Garthwaite et al.,
1989) in a Ca2þ (Law et al., 2001) and postsynaptic
density-95 dependent manner (Sattler et al., 1999). The
3xTg-AD (RRID: MMRRC_034830-JAX) mouse model
shows significant increases in NMDA-mediated NO con-
centration peaks in the CA1 at earlier disease stages,
which then substantially decreased with age (Dias et al.,
2016), an effect that could underlie the changes in gluta-
mate cell signaling seen throughout disease progression.
Furthermore, inducible nitric oxide synthase (iNOS)
mediates Ab-induced LTP inhibition (Wang et al.,
2004), while soluble Ab works through both NMDA
and NOS to increase oxidative stress (Parks et al.,
2001). However, NO can in turn inhibit NMDAR
action (Manzoni et al., 1992), which could play a role
in decreased NMDAR activity in later stages of AD.
Even with increasing neurotoxicity, NOSþ neurons in
the hippocampus are relatively spared (Hyman et al.,
1992), supporting a complicated relationship between
NO and glutamate such that NO provides some neuro-
protection while also contributing to the consequences of
excitotoxicity.

Studies performed in primary cortical neuron cultures
have shown seemingly opposing results on NMDA mod-
ulation of APP processing. NMDA (50 mM) treatment
showed both induction of Kunitz protease inhibitory
domain (KPI)-APP neuronal expression promoting pro-
duction of Ab42 (Lesné et al., 2005), and increases in
a-carboxyterminal fragment levels, supporting enhance-
ment of nonamyloidogenic a-secretase cleavage (Hoey
et al., 2009). Interestingly, the increase in a-carboxyter-
minal fragment levels was not observed in isolated E-
NMDARs, supporting that this is solely an S-NMDAR
effect (Hoey et al., 2009). Furthermore, Lesné et al.
(2005) used a longer NMDA incubation period (24 hr)
to create an excitotoxic environment, as would be
observed with chronic E-NMDAR stimulation. Bordji
et al. (2010) addressed these conflicting findings by iso-
lating either S-NMDARs or E-NMDARs in primary
cortical neuron culture. While S-NMDARs were shown
to have no impact on KPI-APP neuronal expression,
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E-NMDARs increased KPI-APP expression at the 12-

and 24-hr time points. This E-NMDAR-mediated

increase in KPI-APP expression was also found to be

calcium-calmodulin dependent, supporting induction

through NMDA-mediated Ca2þ entry into the neuron.

Along with these findings, NMDA antagonists are capa-

ble of blocking Ab42 uptake into hippocampal neurons

(Bi et al., 2002) where Ab can reduce axonal transport

through an NMDA/glycogen synthase kinase-3b depen-

dent mechanism (Decker et al., 2010). This further

emphasizes the critical roles of E-NMDARs in AD,

impacting both APP processing and Ab42 internalization,
and thereby establishing E-NMDARs as a central medi-

ator to the neurotoxic effects of Ab.
Autoradiography studies of postmortem brain tissue

shows decreased binding to mGluRs and decreased

mGluR/neuronal density ratio (Dewar et al., 1991;

Albasanz et al., 2005). This effect was associated with a

decrease in mGluR1 expression, which continuously

declines with AD progression (Albasanz et al., 2005).

Interestingly, another study found mGluR2, which is pri-

marily expressed presynaptically, to be upregulated in

AD (Lee et al., 2004). mGluR2 protects against excito-

toxicity by inhibiting presynaptic glutamate release

(Buisson and Choi, 1995; Imre, 2007; Hascup et al.,

2010; Quintero et al., 2011; Hascup et al., 2019b) and

has been shown to directly activate extracellular signal-

regulated kinase (ERK) in a phosphoinositide 3-kinase

(P13K)-dependent manner (Ferraguti et al., 1999). ERK

impacts CREB phosphorylation and promotes cell sur-

vival (Lu and Xu, 2006; Lee et al., 2009) but also phos-

phorylates tau which can contribute to aberrant

hyperphosphorylation resulting in neurofibrillary tangles

(Lee et al., 2009). These findings support that while this

mechanism may initially be neuroprotective (Bond et al.,

2000), over time, it may contribute to disease pathology.

Astrocytic Glutamate Component Changes in AD

Astrocytes play a key role both in the tripartite glutama-

tergic synapse and in AD pathogenesis (Rudy et al.,

2015). Reactive astrocytes are known to associate with

senile plaques in AD mouse models and human tissue

(Verkhratsky et al., 2010; Rodr�ıguez-Arellano et al.,

2016), leading to astrogliosis in the hippocampus and

cortex characterized by increased expression of glial

fibrillary acidic protein (GFAP; Nagele et al., 2004;

Olabarria et al., 2010; Hascup et al., 2019a). This

response is triggered by damaged neuronal signals,

referred to as damaged-associated molecular patterns,

and Ab plaque deposition (Verkhratsky et al., 2010) lead-

ing to increased release of proinflammatory factors such

as interleukin-1b (IL-1b) and tumor necrosis factor-a
(Morales et al., 2014). Continuing induction of astrocytic

response leads to chronic inflammation that results in cell

damage (Streit et al., 2004).
Glutamate clearance from the synapse is hindered in

AD through decreased uptake into astrocytes. This is

supported by decreased expression of both GLT-1 and

GLAST in the hippocampus (Cassano et al., 2012) that

appears prior to plaque deposition (Schallier et al., 2011).

In later stages, GLT-1 expression is markedly decreased
around plaques (Hefendehl et al., 2016). Expression of

GLT-1 may be directly impacted by Ab through lipid

peroxidation and 4-hydroxynonenal modification as a

result of oxidative stress (Butterfield et al., 2002). This

change in GLT-1 expression contributed to spatial learn-
ing deficits in earlier stages (6 months old) but did not

cause a significant deviation in cognitive performance in

9-month-old APP/PS1 mice lacking one GLT-1 allele

(Mookherjee et al., 2011). This effect is also observed

with decreased expression of EAAT-2 (the human

GLT-1 equivalent) in postmortem AD cortex (Scott
et al., 2011) as well as EAAT-1 (GLAST) reduction in

the hippocampus (Jacob et al., 2007). Again, this reduc-

tion was specifically noted in the vicinity of senile plaques

(Jacob et al., 2007; Hefendehl et al., 2016), supporting

elevated basal glutamate surrounding plaques in both
mouse and human models. Interestingly, several

disease-specific splice variants of EAAT2 exist that

reduce the glutamate transport capacity of EAAT2 in

AD postmortem tissue (Scott et al., 2011). This may

offer an additional avenue for excitoxicity, whereby glu-

tamate transporters are both downregulated and have
decreased functional glutamate clearance.

GS action upon glutamate is a critical component in

preventing excitotoxicity (Verkhratsky and Kirchhoff,

2007; Rudy et al., 2015) but shows altered expression in
AD (Robinson, 2001; Boyd-Kimball et al., 2005;

Olabarria et al., 2011; Palmieri et al., 2017; Huang

et al., 2016). In 3xTg-AD mice, GSþ astrocyte distribu-

tion mirrored that of GFAPþ distribution in the DG and

CA1, but by 12 months of age, GSþ astrocyte cell counts

decreased, and by 18 months of age, downregulation of
GS expression in the hippocampus was observed

(Olabarria et al., 2011). Human tissue taken from

patients with advanced AD also shows a decrease in

GS expression. Interestingly, less GS staining was

observed clustering around plaques, unlike GFAPþ
astrocytes (Robinson, 2001). This is possibly due to the

level of neuronal loss experienced during advanced stages

of AD (DeKosky and Scheff, 1990; Selkoe, 2002). GS is

particularly vulnerable to oxidative modification (Boyd-

Kimball et al., 2005) that makes it a potential target of
Ab-induced oxidative damage (Huang et al., 2016).

Along with this, GS inhibition in activated microglia

results in stronger induction of inflammatory markers

which increases neuronal toxicity (Palmieri et al., 2017).
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The evidence presented for both neuronal and astro-
cytic components of the tripartite glutamate synapse
involvement in AD progression support that Ab can
impact the glutamatergic system through various mech-
anisms. Changes in expression of each of the synaptic
components lead to chronically elevated extracellular
glutamate that becomes excitotoxic and underlies
AD pathology.

Ab–a7nAChR Interactions

a7nAChRs are expressed on both neurons and glia, with
hippocampal immunostaining showing the highest densi-
ty of a7nAChR-expressing neurons in the neuropil and
a7nAChR-expressing glia in the distal regions of the stra-
tum radiatum (Gahring et al., 2004). It has been well
established in the literature that application of nicotine
elicits glutamate release both in vitro and in vivo (Marchi
et al., 2002; Lambe et al., 2003; Konradsson-Geuken
et al., 2009). In vivo microelectrode array recording stud-
ies have shown nicotine-induced glutamate release in the
prefrontal cortex of freely moving rats, that is attenuated
with application of a-bungarotoxin, an a7nAChR antag-
onist (Konradsson-Geuken et al., 2009). Soluble Ab40
and Ab42 interact with nAChRs at these synapses
(Wang et al., 2000a, 2000b) impacting glutamate release.
Ab interacts with both a7 and a4b2 nAChRs; however,
a4b2nAChR receptor binding requires a significantly
higher concentration than a7nAChR (Wang et al.,
2000b). Regarding differences between Ab40 and Ab42,
Ab40 was found to bind with less affinity and decreased
potency compared with Ab42 (Wang et al., 2000a;
Dineley et al., 2002a). More specifically, Ab42 binds
with femtomolar affinity to the nicotine/acetylcholine
(ACh)-binding pocket of a7nAChR (Wang et al.,
2000b; Magdesian et al., 2005) and can elicit different
responses dependent on Ab preparation and concentra-
tion used (Parri et al., 2011; Hascup and Hascup, 2016).
High concentrations of Ab (nM-mM) noncompetitively
block hippocampal a7nAChRs in in vitro hippocampal
cell culture and slices (Liu et al., 2001; Mura et al., 2012).
Alternatively, low concentrations of Ab (fM-pM) have
been shown to potentiate glutamate release (Puzzo
et al., 2008; Mura et al., 2012; Hascup and Hascup,
2016) with some effects on aspartate and GABA release
also observed in vivo (Mura et al., 2012). In fact, Ab-
stimulated a7nAChR glutamate release from neurons
and astrocytes can result in rising extracellular glutamate
levels that can chronically activate E-NMDARs, thereby
contributing to excitotoxicity (Rudy et al., 2015).

Lower concentrations of Ab42 have been shown to
enhance LTP and spatial memory performance in
C57BL/6 mice (RRID: IMSR_JAX:000664; Puzzo
et al., 2008), while higher concentrations result in LTP
deficits (Chen et al., 2006, 2010; Gu and Yakel, 2011).

The LTP-enhancing aspect of Ab42 is not mediated by
AMPA/NMDA receptors, as Ab42 perfusion of hippo-
campal slices does not impact AMPA/NMDA receptor
currents or amplitude frequency and distribution (Puzzo
et al., 2008). This concentration-dependent action of Ab
supports a transformation from excitation to inhibition
of a7nAChRs as AD progresses, with Ab levels rising
from picomolar to nanomolar levels (N€aslund et al.,
1994; Auld et al., 1998; Puzzo and Arancio, 2012). It
should be noted that presynaptic a7nAChRs are known
to interact with neighboring NMDARs such that the
chronic inactivation of a7nAChR, resulting from desen-
sitization by Ab, could result in enhanced NMDAR
function (Lin et al., 2010). However, this increased pre-
synaptic glutamate release may not evoke LTP enhance-
ment as postsynaptic AMPA/NMDA receptors become
desensitized and downregulated in the excitotoxic state
associated with AD (Yasuda et al., 1995; Selkoe, 2002;
Hynd et al., 2004a, 2004b; Parameshwaran et al., 2007).

Evidence of Ab42 concentration-dependent a7nAChR
modulation is further characterized through microelec-
trode array recordings in the hippocampus. Hascup and
Hascup (2016) showed glutamatergic stimulation with
local application of Ab42 in hippocampal recordings
from anesthetized C57BL/6 mice, an effect that was
blocked with co-application of a-bungarotoxin support-
ing involvement of a7nAChR. Interestingly, different
responses to Ab42 application were observed depending
on the hippocampal subfield, with the CA1 and dentate
gyrus responding most to lower concentrations of Ab42
compared with the CA3. These findings mirror current
knowledge of AD disease progression, with the CA1
showing the earliest increases in glutamate release in
the APP/PS1 transgenic AD mouse model (Hascup and
Hascup, 2015) and the earliest site of plaque deposition
for the hippocampus in human AD patients (Thal et al.,
2000; Shie et al., 2003).

a7nAChRs open upon nicotine binding, allowing a
Ca2þ influx into the presynaptic neuron (Gray et al.,
1996). Similarly, binding of soluble Ab to the
a7nAChR triggers an influx of Ca2þ into the presynaptic
neuron (Dineley et al., 2001, 2002a; Dougherty et al.,
2003) and has been shown to activate the ERK/
mitogen-activated protein kinases pathway (Dineley
et al., 2001; Bell et al., 2004; Abbott et al., 2008;
Young et al., 2009) in a P13K-dependent manner (Bell
et al., 2004) which in turn impacts the phosphorylation of
CREB (Dineley et al., 2001). Intraperitoneal injection of
a7nAChR selective agonist A-582941 resulted in
increased ERK 1/2 and CREB phosphorylation that
improved behavioral performance on delayed matching
to sample titration, inhibitory avoidance, and social rec-
ognition (Bitner et al., 2007). However, in the Tg2576
mouse model, CREB was found to be upregulated at
13 months of age and then downregulated by 20
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months of age (Dineley et al., 2001). This supports that

CREB activation mirrors the Ab-a7nAChR interaction

such that CREB expression is enhanced in the early

stages of AD when there are lower concentrations of

Ab, and then decreases with disease progression corre-

sponding to Ab accumulation.
The potentiation of glutamate release from Ab activa-

tion of a7nAChR contributes to excitotoxicity while also

resulting in rapid desensitization of the a7nAChR

(Dineley et al., 2002b). Ab42 and a7nAChR have been

shown to form a complex that becomes internalized in

the neuron and leads to cell lysis and plaque deposition

(D’Andrea et al., 2001; Nagele et al., 2002; Deutsch et al.,

2014; Gody�n et al., 2016). In fact, Ab accumulates at a

faster rate in neuroblastoma cells transfected with

a7nAChR (Nagele et al., 2002). The Ab42-a7nAChR

complex internalization leads to decreased surface

expression of a7nAChR (Nagele et al., 2002), coinciding

with upregulation of a7nAChR seen throughout AD pro-

gression (Hellstr€om-Lindahl et al., 1999; Dineley et al.,

2001, 2002b; D’Andrea and Nagele, 2006) supporting an

a7nAChR compensatory mechanism for decreased sur-

face expression. Interestingly, this chronic desensitization
of a7nAChR has been shown to increase NMDAR sur-

face expression (Lin et al., 2010), suggesting a complex

compensatory response to accumulation of Ab42.

Learning and Memory Consequences of

Altered Glutamatergic Signaling

Glutamatergic dysfunction due to deregulation of synap-

tic components has phenotypic consequences in the form
of decreased learning and memory performance.

Presynaptically, reductions in VGluT1 and VGluT2 cor-

related with decline in cognitive status and disease dura-

tion in AD patients (Kashani et al., 2008). Cognitive

ability is negatively correlated with glutamate presynap-

tic bouton density in MCI patients such that the increase

in bouton density leads to decreased cognitive ability

(Bell et al., 2007). Similarly, elevated hippocampal gluta-

mate release negatively correlated with cognitive perfor-

mance prior to cognitive decline in APP/PS1 mice

(Hascup and Hascup, 2015). This is in stark contrast to

cognitively normal patients that have a positive correla-

tion (Bell et al., 2007), supporting a threshold in which

increased glutamate signaling switches from stimulating

to hindering cognition.
NMDA and mGluRs are both known to play vital

roles in induction of LTP and long-term depression

(LTD; Parameshwaran et al., 2007; Shankar et al.,

2008). Soluble Ab inhibits S-NMDARs that are required

for LTP conduction (Collingridge and Bliss, 1995;

Parsons et al., 2007). Treatment with (2R)-amino-5-phos-

phonovaleric acid (D-AP5), a selective NMDA

antagonist, impairs LTP in vivo supporting that the involve-

ment of NMDARs in LTP (Davis et al., 1992). However, in

GLT-1 knockout mice, the LTP impairment observed was
reversed with application of D-AP5, supporting that both

blockade and overactivation of NMDARs can interfere

with LTP (Katagiri et al., 2001). This effect may be due to

the involvement of E-NMDARs, whereby inhibition of E-
NMDARs prevents Ab-mediated LTP impairments (Li

et al., 2011; Rammes et al., 2011). Memantine, an FDA-

approved noncompetitive NR2 antagonist (Parsons et al.,

1998) for treating AD has shown efficacy in improving

Morris water maze performance (Barnes et al., 1996; Van
Dam et al., 2005; Banerjee et al., 2006) and blocked Ab
inhibition of LTP in 3xTg-AD hippocampal slices

(Parsons et al., 2009; Martinez-Coria et al., 2010). Thus,

supporting that noncompetitive inhibition of NR2þ
NMDARs provides a counterbalance to both inhibition of

S-NMDARS and overactivation of E-NMDARS, explored

further in the next section.mGluRs are involved in both the

Ab-induced suppression of LTP and potentiation of LTD
(Wang et al., 2004; Shankar et al., 2008; Rammes et al.,

2011). Ab-mediated LTP impairments can be blocked by

inhibition of mGluR5 (Wang et al., 2004; Rammes et al.,

2011). As NMDARs and mGluRs are mechanistically cou-

pled, chronic stimulation of either can lead to synaptic fail-
ure as seen in AD (Rammes et al., 2011; Kervern et al.,

2012). This failure is potentially due to Ca2þ dysregulation

and dephosphorylation of CREB as both E-NMDARs and

mGluR5 elevate intracellular Ca2þ (Chen et al., 2002;
Hardingham et al., 2002; Hardingham and Bading, 2003;

Verkhratsky and Kirchhoff, 2007; Yamin, 2009; Zhang

et al., 2016). In addition, mGluR1 has been shown to be

involved in synaptic plasticity and LTP in the CA1
(Neyman and Manahan-Vaughan, 2008; Rudy et al.,

2015). Of note, agonism of mGluR1 and mGluR5 with 3-

hydroxyphenylglycine potentiated NMDAR-induced neu-

rotoxicity, juxtaposing the neuroprotective effects observed

with mGluR2 agonism (Buisson and Choi, 1995;
Tyszkiewicz and Yan, 2005) and further supporting a dele-

terious relationship between NMDAR and mGluRs upon

LTP and excitotoxicity. Furthermore, mGluRs are required

for soluble Ab-mediated LTD enhancement (Shankar et al.,
2008; Palop and Mucke, 2010; Um et al., 2013). Treatment

with a similar Group I mGluR agonist, 3,5-dihydroxyphe-

nylglycine, results in decreased AMPAR surface expression

during LTD (Um et al., 2013), supporting another mecha-
nism by which soluble Ab impacts learning and memory

signal conductance.

Theories on the Paradoxical Nature of

Glutamate in AD

The two-stage model theory was first set forth by Olney

et al. (1997) describing two stages of NMDAR-mediated
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toxicity in AD pathology. The first stage, referred to as
NRHyper, describes persistent activation of NMDA
receptors. Chronic NMDAR stimulation then leads to
the second disease stage, referred to as NRHypo, in
which the NMDARs become hypoactive as a result of
chronic overstimulation leading to inhibition of LTP
conductance and cognitive decline. These disease stages
are driven by soluble Ab accumulation. During the
NRHyper phase, Ab potentiates glutamate release and
increases NMDA activation and sensitivity to glutamate.
This leads to partial membrane depolarization allowing
tonic activation of NMDA receptors (Koh et al., 1990;
Gray and Patel, 1995; Danysz and Parsons, 2012). This
overstimulation subsequently results in an NRHypo state
in which glutamatergic activation is depressed and syn-
aptic components are downregulated. NMDARs become
hypofunctional in normal brain aging; however, this is
experienced to an extreme in AD possibly due to the
increase hyperactivation state experienced in AD that
precedes hypoactivation. NMDAR hypoactivation
applies to NMDARs on GABAergic neurons as well,
causing disinhibition of the glutamatergic system and
resulting in increased extracellular glutamate concentra-
tions and neuronal loss. This is expanded upon by the
findings of Huijber et al. (2015) and the trait versus state
hypothesis set forth by Aizenstein and Klunk (2015),
describing two models of hippocampal activity such
that some individuals have a trait of high levels of hip-
pocampal activation prior to MCI and some experience
hyperactivation as a state with MCI onset. Both models
subsequently result in cognitive decline and support a
period of hippocampal hyperactivation occurring before
hypoactivation.

Similarly, Parsons et al. (2007) proposed the signal-to-
noise ratio hypothesis. This hypothesis notes that in AD
pathology, NMDAR is stimulated by glutamate for
longer periods of time due to a hyperactive glutamatergic
system (Buisson et al., 1992; Mitani et al., 1992). As such,
this leads to tonic activation of NMDAR that generates
increasing amounts of noise. This noise raises the thresh-
old by which neuronal stimulation must pass to generate
a stimulus-evoked signal. With disease progression, the
increased noise eventually drowns out the signal, leading
to learning and memory deficits seen in AD. This effect
has been observed in our lab, with APP/PS1 mice show-
ing a decline in stimulus-evoked glutamate and an
increase in basal glutamate levels with disease progres-
sion, impacting spatial memory performance (Hascup
and Hascup, 2015). This hypothesis is further elucidated
with the proposed action of memantine, the noncompe-
titive NR2 antagonist, which shows fast unblocking
kinetics dependent upon membrane potential. This char-
acteristic allows memantine to quickly unblock the
NMDAR during strong depolarization of the postsynap-
tic membrane and remain bound during tonic

stimulation. In fact, recovery from memantine blockade
is shown to be even faster in the presence of higher syn-
aptic glutamate concentrations (Clements et al., 1992).
Memantine benefits both S-NMDARs and E-
NMDARs in LTP such that LTP conductance is not
hindered at the synapse but chronic stimulation of E-
NMDARs is blocked, ultimately helping to alleviate exci-
totoxic effects. This is seen with memantine improve-
ments in LTP induction and Morris water maze
performance as discussed earlier (Barnes et al., 1996;
Van Dam et al., 2005; Banerjee et al., 2006; Parsons
et al., 2009; Martinez-Coria et al., 2010). Of note, mem-
antine has also showed efficacy in reducing Ab produc-
tion brought on by E-NMDAR prolonged activation
(Bordji et al., 2010), as well as reducing the levels of
both soluble Ab and insoluble Ab plaques in 3xTg-AD
mice (Martinez-Coria et al., 2010) and blocking soluble
Ab-induced oxidative stress (De Felice et al., 2007). As
such, memantine shows modulation of Ab-and-gluta-
mate-induced neurotoxicity giving support to the idea
that noise created by extracellular glutamate overpowers
stimulus-evoked glutamate signals in AD.

In clinical trials, memantine was shown to reduce cog-
nitive deficits in mild to severe AD patients (Winblad and
Poritis, 1999; Reisberg et al., 2003; Peskind et al., 2006). A
meta-analysis of memantine trials also revealed efficacy in
treating patients with moderate to severe AD (Winblad
et al., 2007). However, the weak procognitive effects
observed in AD patients treated with memantine
(McShane et al., 2006; Schneider et al., 2011) may be due
to the disease stage when treatment was initiated.
If memantine treatment is initiated too late in disease pro-
gression, neuronal loss may be too severe to yield procog-
nitive effects. As such, post hoc analysis of nine clinical
trials of memantine show delay of clinical worsening in
moderate to severe AD patients (Hellweg et al., 2012).
Danysz and Parsons (2012) argue that starting treatment
in the prodromal stage of AD would allow for memantine-
induced neuroprotection, which could yield more promis-
ing clinical results and further delay cognitive decline.

In addition, NMDARs are not the only components
that modulate the signal-to-noise ratio. mGluRs are mul-
tifaceted due to their G-protein and NMDAR coupling
and as such are also a vital mediator in LTP. Riedel
(1996) has argued that mGluRs are responsible for the
initial setup of the signal-to-noise ratio to allow for effi-
cient plasticity. Pretraining injection of mGluR agonists
leads to nonspecific activation of Group I mGluRs, gen-
erating an increase in noise and preventing memory for-
mation. Groups II and III mGluRs then act as mediators
to reduce noise and allow for signal conductance and
memory formation. This initial organization of the
signal-to-noise ratio is impacted at the mGluR level in
AD pathology, as mentioned earlier with mGluR1 and
mGluR5 potentiating NMDA-induced neurotoxicity and
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then experiencing a downregulation in expression in later
disease stages (Buisson and Choi, 1995; Albasanz et al.,
2005), following a similar hyper- to hypoactivation trend.
This initial noise generation overpowers the inhibitory
modulation of mGluR2, despite its upregulation in

early AD (Buisson and Choi, 1995). However, our labo-
ratory recently demonstrated that prodromal treatment
with the mGluR Group II agonist LY379268 does not
offer long-term procognitive benefits in APP/PS1 mice
(Hascup et al., 2019b).

Figure 1. Changes in glutamatergic synapse component expression and signaling with AD progression. (a) Preclinical AD upregulation of
several neuronal components contributing to hyperactivation and building the foundation for excitotoxicity. (b) Clinical AD is charac-
terized by hypoactivation of the glutamatergic system, possibly a consequence of the earlier preclinical stage. This results in cognitive
deficits due to signal-to-noise ratio imbalance.
AD¼Alzheimer’s disease; a7nAChR¼ alpha-7 nicotinic acetylcholine receptor; Abo¼ amyloid beta oligomer; VGluT1¼ vesicular gluta-
mate transporter 1; AMPAR¼ a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; E-NMDAR¼ extrasynaptic N-methyl-D-
aspartic acid receptor; mGluR¼metabotropic glutamate receptor; S-NMDAR¼ synaptic N-methyl-D-aspartic acid receptor;
EAAT¼excitatory amino acid transporter.
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Furthermore, our laboratory and others have reported

a relationship between Ab and glutamate mediated by

a7nAChR stimulation that contributes to increases in

glutamate release (Puzzo et al., 2008; Mura et al., 2012;

Hascup and Hascup, 2016), generating a large amount of

signal. This relationship changes as AD progresses and

Ab increases in concentration and plaque formation such

that we see an opposite impact through a7nAChR in

which glutamate release is inhibited and thus contributes

to overall hypoactivation (Liu et al., 2001; Mura et al.,

2012). Interestingly, a7nAChR desensitization leads to

increased NMDAR surface expression and enhanced

function (Lin et al., 2010), and both pathways modulate

Ab toxicity such that a7nAChR and E-NMDARs lead to

Ab42 internalization (D’Andrea et al., 2001; Bi et al.,

2002; Nagele et al., 2002; Deutsch et al., 2014; Gody�n

et al., 2016), and E-NMDARs lead to increased amyloi-

dogenic processing (Bordji et al., 2010). In addition,

nicotine-mediated enhancement of LTP is both NMDA

and mGluR5 dependent (Welsby et al., 2006), and

because Ab42 binds to the same pocket as nicotine, it

follows that mGluR5 may potentiate both NMDA and

a7nAChR-induced excitotoxicity. Other pathways previ-

ously discussed in this review also result in toxic Ca2þ

intracellular levels and modulation in CREB expression

that result in neuronal cell loss. This interaction between

multiple glutamatergic pathways emphasizes the breadth

of Ab modulation of the glutamatergic system to gener-

ate neurotoxicity as outlined in Figure 1.

Conclusion

Taken together, the presented evidence supports a signal-

to-noise ratio imbalance occurring in AD pathology. Ab
modulates several parts of the tripartite glutamatergic

synapse that culminates in an excitotoxic environment.

The excitation threshold at which glutamate signals must

surpass for learning and memory increases while also

undergoing an overall dampening of the glutamatergic

system. Loss of signal detection due to persistently ele-

vated synaptic and extrasynaptic glutamate levels leads

to the hallmark symptoms of cognitive deficits and even-

tual neuronal loss in AD disease progression.

Summary

Glutamatergic transmission displays stark changes

throughout AD progression. Earlier stages are character-

ized by upregulation of synaptic components contribut-

ing to increased glutamate signaling. Later stages exhibit

hypoactivation possibly due to cell damage and neuronal

loss, subsequently resulting in cognitive decline.
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