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Coefficient alpha has been a widely used measure by which internal consistency reliabil-
ity is assessed. In addition to essential tau-equivalence and uncorrelated errors, normality
has been noted as another important assumption for alpha. Earlier work on evaluating this
assumption considered either exclusively non-normal error score distributions, or limited
conditions. In view of this and the availability of advanced methods for generating univariate
non-normal data, Monte Carlo simulations were conducted to show that non-normal distri-
butions for true or error scores do create problems for using alpha to estimate the internal
consistency reliability. The sample coefficient alpha is affected by leptokurtic true score
distributions, or skewed and/or kurtotic error score distributions. Increased sample sizes,
not test lengths, help improve the accuracy, bias, or precision of using it with non-normal
data.

Keywords: coefficient alpha, true score distribution, error score distribution, non-normality, skew, kurtosis, Monte

Carlo, power method polynomials

INTRODUCTION
Coefficient alpha (Guttman, 1945; Cronbach, 1951) has been one
of the most commonly used measures today to assess internal
consistency reliability despite criticisms of its use (e.g., Raykov,
1998; Green and Hershberger, 2000; Green andYang, 2009; Sijtsma,
2009). The derivation of the coefficient is based on classical test
theory (CTT; Lord and Novick, 1968), which posits that a person’s
observed score is a linear function of his/her unobserved true score
(or underlying construct) and error score. In the theory, measures
can be parallel (essential) tau-equivalent, or congeneric, depend-
ing on the assumptions on the units of measurement, degrees of
precision, and/or error variances. When two tests are designed to
measure the same latent construct, they are parallel if they mea-
sure it with identical units of measurement, the same precision,
and the same amounts of error; tau-equivalent if they measure it
with the same units, the same precision, but have possibly differ-
ent error variance; essentially tau-equivalent if they assess it using
the same units, but with possibly different precision and differ-
ent amounts of error; or congeneric if they assess it with possibly
different units of measurement, precision, and amounts of error
(Lord and Novick, 1968; Graham, 2006). From parallel to con-
generic, tests are requiring less strict assumptions and hence are
becoming more general. Studies (Lord and Novick, 1968, pp. 87–
91; see also Novick and Lewis, 1967, pp. 6–7) have shown formally
that the population coefficient alpha equals internal consistency
reliability for tests that are tau-equivalent or at least essential tau-
equivalent. It underestimates the actual reliability for the more
general congeneric test. Apart from essential tau-equivalence, coef-
ficient alpha requires two additional assumptions: uncorrelated
errors (Guttman, 1945; Novick and Lewis, 1967) and normality
(e.g., Zumbo, 1999). Over the past decades, studies have well doc-
umented the effects of violations of essential tau-equivalence and
uncorrelated errors (e.g., Zimmerman et al., 1993; Miller, 1995;
Raykov, 1998; Green and Hershberger, 2000; Zumbo and Rupp,

2004; Graham, 2006; Green and Yang, 2009), which have been
considered as two major assumptions for alpha. The normality
assumption, however, has received little attention. This could be
a concern in typical applications where the population coeffi-
cient is an unknown parameter and has to be estimated using
the sample coefficient. When data are normally distributed, sam-
ple coefficient alpha has been shown to be an unbiased estimate
of the population coefficient alpha (Kristof, 1963; van Zyl et al.,
2000); however, less is known about situations when data are
non-normal.

Over the past decades, the effect of departure from normality
on the sample coefficient alpha has been evaluated by Bay (1973),
Shultz (1993), and Zimmerman et al. (1993) using Monte Carlo
simulations. They reached different conclusions on the effect of
non-normal data. In particular, Bay (1973) concluded that a lep-
tokurtic true score distribution could cause coefficient alpha to
seriously underestimate internal consistency reliability. Zimmer-
man et al. (1993) and Shultz (1993), on the other hand, found
that the sample coefficient alpha was fairly robust to departure
from the normality assumption. The three studies differed in the
design, in the factors manipulated and in the non-normal distribu-
tions considered, but each is limited in certain ways. For example,
Zimmerman et al. (1993) and Shultz (1993) only evaluated the
effect of non-normal error score distributions. Bay (1973), while
looked at the effect of non-normal true score or error score dis-
tributions, only studied conditions of 30 subjects and 8 test items.
Moreover, these studies have considered only two or three scenar-
ios when it comes to non-normal distributions. Specifically, Bay
(1973) employed uniform (symmetric platykurtic) and exponen-
tial (non-symmetric leptokurtic with positive skew) distributions
for both true and error scores. Zimmerman et al. (1993) generated
error scores from uniform, exponential, and mixed normal (sym-
metric leptokurtic) distributions, while Shultz (1993) generated
them using exponential, mixed normal, and negative exponential
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(non-symmetric leptokurtic with negative skew) distributions.
Since the presence of skew and/or kurtosis determines whether
and how a distribution departs from the normal pattern, it is
desirable to consider distributions with varying levels of skew
and kurtosis so that a set of guidelines can be provided. Gen-
erating univariate non-normal data with specified moments can
be achieved via the use of power method polynomials (Fleish-
man, 1978), and its current developments (e.g., Headrick, 2010)
make it possible to consider more combinations of skew and
kurtosis.

Further, in the actual design of a reliability study, sample size
determination is frequently an important and difficult aspect. The
literature offers widely different recommendations, ranging from
15 to 20 (Fleiss, 1986), a minimum of 30 (Johanson and Brooks,
2010) to a minimum of 300 (Nunnally and Bernstein, 1994).
Although Bay (1973) has used analytical derivations to suggest
that coefficient alpha shall be robust against the violation of the
normality assumption if sample size is large, or the number of
items is large and the true score kurtosis is close to zero, it is
never clear how many subjects and/or items are desirable in such
situations.

In view of the above, the purpose of this study is to investigate
the effect of non-normality (especially the presence of skew and/or
kurtosis) on reliability estimation and how sample sizes and test
lengths affect the estimation with non-normal data. It is believed
that the results will not only shed insights on how non-normality
affects coefficient alpha, but also provide a set of guidelines for
researchers when specifying the numbers of subjects and items in
a reliability study.

MATERIALS AND METHODS
This section starts with a brief review of the CTT model for coef-
ficient alpha. Then the procedures for simulating observed scores
used in the Monte Carlo study are described, followed by measures
that were used to evaluate the performance of the sample alpha in
each simulated situation.

PRELIMINARIES
Coefficient alpha is typically associated with true score the-
ory (Guttman, 1945; Cronbach, 1951; Lord and Novick, 1968),
where the test score for person i on item j, denoted as Xij, is
assumed to be a linear function of a true score (tij) and an error
score (eij):

Xij = tij + eij , (1)

i = 1, . . ., n and j = 1, . . ., k, where E(eij) = 0, ρte = 0, and
ρeij ,eij′ = 0. Here, eij denotes random error that reflects unpre-

dictable trial-by-trial fluctuations. It has to be differentiated from
systematic error that reflects situational or individual effects that
may be specified. In the theory, items are usually assumed to be tau-
equivalent, where true scores are restricted to be the same across
items, or essentially tau-equivalent, where they are allowed to dif-
fer from item to item by a constant (υ j). Under these conditions
(1) becomes

Xij = ti + eij (2)

for tau-equivalence, and

Xij = ti + υj + eij , (3)

where Σjυ j = 0, for essential tau-equivalence.
Summing across k items, we obtain a composite score (Xi+)

and a scale error score (ei+). The variance of the composite scores
is then the summation of true score and scale error score variances:

σ2
X+ = σ2

t + σ2
e+ . (4)

The reliability coefficient, ρXX
′, is defined as the proportion of

composite score variance that is due to true score variance:

ρXX ′ = σ2
t

σ2
X+

. (5)

Under (essential) tau-equivalence, that is, for models in (2) and
(3), the population coefficient alpha, defined as

α = k

k − 1

∑ ∑
j �=j ′σXj Xj′

σ2
X+

,

or

α = k

k − 1

⎛

⎝1 −
∑k

j=1 σ2
j

σ2
X+

⎞

⎠ , (6)

is equal to the reliability as defined in (5). As was noted, ρXX′ and
α focus on the amount of random error and do not evaluate error
that may be systematic.

Although the derivation of coefficient alpha based on Lord and
Novick (1968) does not require distributional assumptions for ti

and eij, its estimation does (see Shultz, 1993; Zumbo, 1999), as the
sample coefficient alpha estimated using sample variances s2,

α̂ = k

k − 1

⎛

⎝1 −
∑k

j=1 s2
j

s2
X+

⎞

⎠ , (7)

is shown to be the maximum likelihood estimator of the popu-
lation alpha assuming normal distributions (Kristof, 1963; van
Zyl et al., 2000). Typically, we assume ti ∼ N (μt , σ2

t ) and
eij ∼ N (0, σ2

e ), where σ2
e has to be differentiated from the scale

error score variance σ2
e+ defined in (4).

STUDY DESIGN
To evaluate the performance of the sample alpha as defined in
(7) in situations where true score or error score distributions
depart from normality, a Monte Carlo simulation study was car-
ried out, where test scores of n persons (n = 30, 50, 100, 1000) for k
items (k = 5, 10, 30) were generated assuming tau-equivalence and
where the population reliability coefficient (ρXX

′) was specified to
be 0.3, 0.6, or 0.8 to correspond to unacceptable, acceptable, or
very good reliability (Caplan et al., 1984, p. 306; DeVellis, 1991,
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p. 85; Nunnally, 1967, p. 226). These are referred to as small,
moderate, and high reliabilities in subsequent discussions. Specifi-
cally, true scores (ti) and error scores (eij) were simulated from their

respective distributions with σ2
e = 1, μt = 5 and σ2

t = σ2
e ρXX ′

(1−ρXX ′ )k .

The observed scores (Xij) were subsequently obtained using
Eq. (2).

In addition, true score or error score distributions were manip-
ulated to be symmetric (so that skew, γ1, is 0) or non-symmetric
(γ1 > 0) with kurtosis (γ2) being 0, negative or positive. It is
noted that only positively skewed distributions were considered
in the study because due to the symmetric property, negative
skew should have the same effect as positive skew. Generating
non-normal distributions in this study involves the use of power
method polynomials. Fleishman (1978) introduced this popu-
lar moment matching technique for generating univariate non-
normal distributions. Headrick (2002, 2010) further extended
from third-order to fifth-order polynomials to lower the skew
and kurtosis boundary. As is pointed out by Headrick (2010, p.
26), for distributions with a mean of 0 and a variance of 1, the
skew and kurtosis have to satisfy γ2 � γ2

1 − 2, and hence it is
not plausible to consider all possible combinations of skew and
kurtosis using power method polynomials. Given this, six distrib-
utions with the following combinations of skew and kurtosis were
considered:

1. γ1 = 0, γ2 = 0 (normal distribution);
2. γ1 = 0, γ2 = − 1.385 (symmetric platykurtic distribution);
3. γ1 = 0, γ2 = 25 (symmetric leptokurtic distribution);
4. γ1 = 0.96, γ2 = 0.13 (non-symmetric distribution);
5. γ1 = 0.48, γ2 = − 0.92 (non-symmetric platykurtic distribu-

tion);
6. γ1 = 2.5, γ2 = 25 (non-symmetric leptokurtic distribution).

A normal distribution was included so that it could be used as
a baseline against which the non-normal distributions could be
compared. To actually generate univariate distributions using the
fifth-order polynomial transformation, a random variate Z is first
generated from a standard normal distribution, Z ∼ N (0,1). Then
the following polynomial,

Y = c0 + c1Z + c2Z 2 + c3Z 3 + c4Z 4 + c5Z 5 (8)

is used to obtain Y. With appropriate coefficients (c0, . . ., c5), Y
would follow a distribution with a mean of 0, a variance of 1, and
the desired levels of skew and kurtosis (see Headrick, 2002, for a
detailed description of the procedure). A subsequent linear trans-
formation would rescale the distribution to have a desired location
or scale parameter. In this study, Y could be the true score (ti) or
the error score (eij). For the six distributions considered for ti or
eij herein, the corresponding coefficients are:

1. c0 = 0, c1 = 1, c2 = 0, c3 = 0, c4 = 0, c5 = 0;
2. c0 = 0, c1 = 1.643377, c2 = 0, c3 = −0.319988, c4 = 0, c5 =

0.011344;
3. c0 = 0, c1 = 0.262543, c2 = 0, c3 = 0.201036, c4 = 0, c5 =

0.000162;

4. c0 = −0.446924, c1 = 1.242521, c2 = 0.500764, c3 = −0.184710,
c4 = −0.017947, c5 = 0.003159;

5. c0 = −0.276330, c1 = 1.506715, c2 = 0.311114, c3 = −0.274078,
c4 = −0.011595, c5 = 0.007683;

6. c0 = −0.304852, c1 = 0.381063, c2 = 0.356941, c3 = 0.132688,
c4 = −0.017363, c5 = 0.003570.

It is noted that the effect of the true score or error score distrib-
ution was investigated independently, holding the other constant
by assuming it to be normal.

Hence, a total of 4 (sample sizes) × 3 (test lengths) × 3 (lev-
els of population reliability) × 6 (distributions) × 2 (true or error
score) = 432 conditions were considered in the simulation study.
Each condition involved 100,000 replications, where coefficient
alpha was estimated using Eq. (7) for simulated test scores (Xij).
The 100,000 estimates of α can be considered as random samples
from the sampling distribution of α̂, and its summary statistics
including the observed mean, SD, and 95% interval provide infor-
mation about this distribution. In particular, the observed mean
indicates whether the sample coefficient is biased. If it equals α, α̂
is unbiased; otherwise, it is biased either positively or negatively
depending on whether it is larger or smaller than α. The SD of
the sampling distribution is what we usually call the SE. It reflects
the uncertainty in estimating α, with a smaller SE suggesting more
precision and hence less uncertainty in the estimation. The SE is
directly related to the 95% observed interval, as the larger it is, the
more spread the distribution is and the wider the interval will be.
With respect to the observed interval, it contains about 95% of
α̂ around its center location from its empirical sampling distrib-
ution. If α falls inside the interval, α̂ is not significantly different
from α even though it is not unbiased. On the other hand, if α

falls outside of the interval, which means that 95% of the esti-
mates differ from α, we can consider α̂ to be significantly different
from α.

In addition to these summary statistics, the accuracy of the
estimate was evaluated by the root mean square error (RMSE) and
bias, which are defined as

RMSE =
√

∑ (
α̂ − α

)2

100, 000
, (9)

and

bias =
∑ (

α̂ − α
)

100, 000
, (10)

respectively. The larger the RMSE is, the less accurate the sample
coefficient is in estimating the population coefficient. Similarly,
the larger the absolute value of the bias is, the more bias the sam-
ple coefficient involves. As the equations suggest, RMSE is always
positive, with values close to zero reflecting less error in estimating
the actual reliability. On the other hand, bias can be negative or
positive. A positive bias suggests that the sample coefficient tends
to overestimate the reliability, and a negative bias suggests that it
tends to underestimate the reliability. In effect, bias provides simi-
lar information as the observed mean of the sampling distribution
of α̂.
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RESULTS
The simulations were carried out using MATLAB (MathWorks,
2010), with the source code being provided in the Section “Appen-
dix.” Simulation results are summarized in Tables 1–3 for condi-
tions where true scores follow one of the six distributions specified
in the previous section. Here, results from the five non-normal
distributions were mainly compared with those from the normal

distribution to determine if α̂ was affected by non-normality in
true scores. Take the condition where a test of 5 items with the
actual reliability being 0.3 was given to 30 persons as an example.
A normal distribution resulted in an observed mean of 0.230 and
a SE of 0.241 for the sampling distribution of α̂ (see Table 1).
Compared with it, a symmetric platykurtic distribution, with an
observed mean of 0.234 and a SE of 0.235, did not differ much.

Table 1 | Observed mean and SD of the sample alpha (α̂) for the simulated situations where the true score (ti) distribution is normal or

non-normal.

n k Mean (α̂) SD (α̂)

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.230 0.234 0.198 0.230 0.231 0.201 0.241 0.235 0.290 0.242 0.237 0.288

10 0.231 0.234 0.199 0.229 0.233 0.202 0.229 0.223 0.278 0.230 0.224 0.276

30 0.231 0.233 0.199 0.230 0.233 0.200 0.221 0.215 0.269 0.222 0.216 0.270

50 5 0.252 0.253 0.233 0.253 0.254 0.232 0.176 0.172 0.214 0.177 0.172 0.214

10 0.252 0.256 0.232 0.252 0.254 0.233 0.166 0.161 0.205 0.166 0.162 0.204

30 0.254 0.254 0.231 0.252 0.254 0.233 0.160 0.156 0.202 0.160 0.157 0.199

100 5 0.269 0.269 0.258 0.268 0.269 0.258 0.118 0.116 0.148 0.119 0.117 0.148

10 0.268 0.269 0.257 0.269 0.270 0.258 0.112 0.109 0.143 0.112 0.110 0.142

30 0.269 0.270 0.257 0.268 0.269 0.256 0.108 0.105 0.141 0.108 0.106 0.140

1000 5 0.282 0.282 0.281 0.282 0.282 0.281 0.036 0.035 0.048 0.036 0.035 0.048

10 0.282 0.282 0.281 0.282 0.282 0.281 0.034 0.033 0.046 0.034 0.033 0.046

30 0.282 0.282 0.281 0.282 0.282 0.281 0.033 0.032 0.045 0.033 0.032 0.045

ρXX
′ = 0.6

30 5 0.549 0.556 0.479 0.549 0.554 0.482 0.142 0.125 0.239 0.142 0.131 0.238

10 0.551 0.557 0.481 0.549 0.554 0.480 0.133 0.117 0.232 0.136 0.122 0.232

30 0.550 0.557 0.480 0.550 0.555 0.481 0.129 0.112 0.230 0.131 0.118 0.229

50 5 0.563 0.567 0.517 0.563 0.566 0.517 0.103 0.092 0.179 0.104 0.095 0.180

10 0.563 0.567 0.516 0.563 0.566 0.517 0.097 0.086 0.176 0.098 0.089 0.174

30 0.563 0.567 0.516 0.563 0.566 0.518 0.093 0.082 0.174 0.094 0.086 0.172

100 5 0.572 0.574 0.545 0.572 0.573 0.546 0.069 0.062 0.128 0.070 0.065 0.126

10 0.572 0.574 0.545 0.572 0.573 0.547 0.066 0.057 0.126 0.066 0.060 0.124

30 0.572 0.574 0.545 0.572 0.573 0.546 0.063 0.055 0.124 0.064 0.058 0.122

1000 5 0.580 0.580 0.576 0.580 0.580 0.577 0.021 0.019 0.043 0.021 0.020 0.042

10 0.580 0.580 0.577 0.580 0.580 0.576 0.020 0.018 0.042 0.020 0.018 0.042

30 0.580 0.580 0.576 0.580 0.580 0.576 0.019 0.017 0.042 0.019 0.018 0.041

ρXX
′ = 0.8

30 5 0.771 0.778 0.701 0.770 0.776 0.703 0.072 0.056 0.171 0.075 0.062 0.172

10 0.771 0.778 0.702 0.770 0.776 0.702 0.068 0.052 0.167 0.070 0.057 0.169

30 0.771 0.778 0.701 0.771 0.776 0.702 0.066 0.049 0.166 0.068 0.055 0.167

50 5 0.778 0.782 0.733 0.778 0.780 0.733 0.052 0.041 0.125 0.053 0.045 0.125

10 0.778 0.782 0.733 0.778 0.781 0.733 0.049 0.038 0.123 0.050 0.042 0.123

30 0.778 0.782 0.732 0.778 0.781 0.733 0.048 0.036 0.122 0.049 0.040 0.122

100 5 0.782 0.784 0.757 0.782 0.784 0.757 0.035 0.028 0.086 0.036 0.031 0.085

10 0.783 0.784 0.757 0.782 0.784 0.757 0.033 0.026 0.085 0.034 0.028 0.084

30 0.783 0.784 0.757 0.782 0.784 0.757 0.032 0.024 0.084 0.033 0.027 0.084

1000 5 0.786 0.787 0.783 0.786 0.787 0.783 0.011 0.009 0.028 0.011 0.009 0.027

10 0.786 0.787 0.783 0.787 0.787 0.783 0.010 0.008 0.028 0.010 0.009 0.027

30 0.787 0.787 0.783 0.786 0.787 0.784 0.010 0.007 0.027 0.010 0.008 0.027

dist1, Normal distribution for ti; dist2, distribution with negative kurtosis for ti; dist3, distribution with positive kurtosis for ti; dist4, skewed distribution for ti; dist5,

skewed distribution with negative kurtosis for ti; dist6, skewed distribution with positive kurtosis for ti.
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Table 2 | Root mean square error and bias for estimating α for the simulated situations where the true score (t i ) distribution is normal or

non-normal.

n k RMSE bias

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.251 0.244 0.308 0.252 0.247 0.305 −0.070 −0.066 −0.102 −0.070 −0.069 −0.100

10 0.240 0.233 0.296 0.241 0.234 0.292 −0.069 −0.067 −0.101 −0.071 −0.067 −0.098

30 0.232 0.226 0.287 0.232 0.226 0.288 −0.069 −0.067 −0.101 −0.070 −0.067 −0.101

50 5 0.182 0.178 0.224 0.183 0.178 0.224 −0.048 −0.047 −0.067 −0.047 −0.046 −0.068

10 0.173 0.167 0.216 0.173 0.169 0.215 −0.048 −0.044 −0.068 −0.048 −0.046 −0.067

30 0.166 0.162 0.213 0.167 0.164 0.210 −0.046 −0.046 −0.069 −0.048 −0.046 −0.067

100 5 0.122 0.120 0.154 0.123 0.121 0.154 −0.031 −0.031 −0.042 −0.032 −0.031 −0.042

10 0.116 0.114 0.149 0.116 0.114 0.148 −0.032 −0.031 −0.043 −0.031 −0.031 −0.042

30 0.112 0.109 0.147 0.113 0.110 0.147 −0.031 −0.030 −0.043 −0.032 −0.031 −0.044

1000 5 0.040 0.040 0.052 0.041 0.040 0.051 −0.018 −0.018 −0.019 −0.018 −0.018 −0.019

10 0.038 0.038 0.050 0.039 0.038 0.050 −0.018 −0.018 −0.019 −0.018 −0.018 −0.020

30 0.038 0.037 0.049 0.038 0.037 0.049 −0.018 −0.018 −0.019 −0.018 −0.018 −0.019

ρXX
′ = 0.6

30 5 0.151 0.132 0.268 0.151 0.139 0.266 −0.051 −0.044 −0.121 −0.051 −0.046 −0.118

10 0.142 0.125 0.261 0.145 0.131 0.261 −0.050 −0.043 −0.120 −0.051 −0.046 −0.120

30 0.139 0.120 0.260 0.140 0.126 0.258 −0.050 −0.043 −0.120 −0.051 −0.045 −0.119

50 5 0.109 0.097 0.198 0.110 0.101 0.198 −0.037 −0.033 −0.083 −0.037 −0.035 −0.083

10 0.104 0.092 0.195 0.105 0.096 0.193 −0.037 −0.033 −0.084 −0.037 −0.034 −0.083

30 0.100 0.088 0.193 0.102 0.092 0.191 −0.037 −0.033 −0.084 −0.037 −0.034 −0.083

100 5 0.075 0.067 0.139 0.076 0.070 0.137 −0.028 −0.026 −0.055 −0.028 −0.027 −0.054

10 0.071 0.063 0.137 0.072 0.066 0.135 −0.028 −0.026 −0.056 −0.028 −0.027 −0.053

30 0.069 0.061 0.135 0.070 0.064 0.133 −0.028 −0.026 −0.055 −0.028 −0.027 −0.054

1000 5 0.029 0.028 0.049 0.029 0.028 0.049 −0.020 −0.020 −0.024 −0.020 −0.020 −0.024

10 0.028 0.027 0.048 0.029 0.027 0.048 −0.020 −0.020 −0.023 −0.020 −0.020 −0.024

30 0.028 0.026 0.048 0.028 0.027 0.048 −0.020 −0.020 −0.024 −0.020 −0.020 −0.024

ρXX
′ = 0.8

30 5 0.078 0.060 0.197 0.080 0.066 0.198 −0.030 −0.022 −0.099 −0.030 −0.024 −0.097

10 0.074 0.056 0.194 0.076 0.062 0.196 −0.029 −0.023 −0.098 −0.030 −0.024 −0.099

30 0.072 0.053 0.193 0.074 0.060 0.193 −0.029 −0.022 −0.099 −0.029 −0.024 −0.098

50 5 0.057 0.045 0.142 0.058 0.049 0.142 −0.022 −0.018 −0.067 −0.023 −0.020 −0.067

10 0.054 0.042 0.140 0.055 0.046 0.140 −0.022 −0.018 −0.067 −0.022 −0.020 −0.067

30 0.052 0.040 0.140 0.054 0.044 0.139 −0.022 −0.018 −0.068 −0.022 −0.019 −0.067

100 5 0.039 0.032 0.096 0.040 0.035 0.095 −0.018 −0.016 −0.043 −0.018 −0.016 −0.043

10 0.038 0.030 0.095 0.038 0.033 0.094 −0.018 −0.016 −0.043 −0.018 −0.016 −0.043

30 0.037 0.029 0.094 0.037 0.032 0.094 −0.018 −0.016 −0.043 −0.018 −0.016 −0.043

1000 5 0.017 0.016 0.033 0.017 0.016 0.032 −0.014 −0.013 −0.017 −0.014 −0.013 −0.017

10 0.017 0.016 0.032 0.017 0.016 0.032 −0.014 −0.013 −0.017 −0.014 −0.013 −0.017

30 0.017 0.015 0.032 0.017 0.016 0.032 −0.014 −0.013 −0.017 −0.014 −0.013 −0.017

dist1, Normal distribution for ti; dist2, distribution with negative kurtosis for ti; dist3, distribution with positive kurtosis for ti; dist4, skewed distribution for ti; dist5,

skewed distribution with negative kurtosis for ti; dist6, skewed distribution with positive kurtosis for ti.

On the other hand, a symmetric leptokurtic distribution resulted
in a much smaller mean (0.198) and a larger SE (0.290), indicat-
ing that the center location of the sampling distribution of α̂ was
further away from the actual value (0.3) and more uncertainty
was involved in estimating α. With respect to the accuracy of the
estimate, Table 2 shows that the normal distribution had a RMSE
of 0.251 and a bias value of −0.070. The platykurtic distribution
gave rise to smaller but very similar values: 0.244 for RMSE and

−0.066 for bias, whereas the leptokurtic distribution had a rela-
tively larger RMSE value (0.308) and a smaller bias value (−0.102),
indicating that it involved more error and negative bias in estimat-
ing α. Hence, under this condition, positive kurtosis affected (the
location and scale of) the sampling distribution of α̂ as well as the
accuracy of using it to estimate α whereas negative kurtosis did
not. Similar interpretations are used for the 95% interval shown
in Table 3, except that one can also use the intervals to determine
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Table 3 | Observed 95% interval of the sample alpha (α̂) for the simulated situations where the true score (t i ) distribution is normal or

non-normal.

n k dist1 dist2 dist3 dist4 dist5 dist6

LB UB LB UB LB UB LB UB LB UB LB UB

ρXX
′ = 0.3

30 5 −0.351 0.580 −0.329 0.577 −0.490 0.635 −0.356 0.580 −0.342 0.576 −0.481 0.637

10 −0.323 0.563 −0.305 0.556 −0.457 0.630 −0.328 0.561 −0.308 0.558 −0.450 0.624

30 −0.303 0.550 −0.285 0.545 −0.435 0.618 −0.303 0.551 −0.286 0.547 −0.435 0.616

50 5 −0.155 0.528 −0.143 0.524 −0.252 0.587 −0.155 0.529 −0.147 0.524 −0.255 0.583

10 −0.136 0.512 −0.115 0.508 −0.233 0.576 −0.134 0.514 −0.123 0.510 −0.229 0.573

30 −0.116 0.505 −0.106 0.500 −0.219 0.571 −0.119 0.504 −0.109 0.501 −0.216 0.568

100 5 0.005 0.469 0.013 0.465 −0.062 0.522 0.004 0.469 0.010 0.466 −0.062 0.521

10 0.020 0.457 0.027 0.454 −0.050 0.515 0.021 0.458 0.025 0.455 −0.046 0.512

30 0.030 0.452 0.039 0.447 −0.044 0.512 0.028 0.451 0.035 0.447 −0.040 0.508

1000 5 0.208 0.350 0.211 0.349 0.186 0.374 0.208 0.350 0.210 0.348 0.186 0.373

10 0.213 0.346 0.215 0.344 0.189 0.371 0.213 0.346 0.214 0.345 0.190 0.371

30 0.215 0.343 0.217 0.342 0.192 0.369 0.215 0.344 0.217 0.343 0.192 0.369

ρXX
′ = 0.6

30 5 0.212 0.754 0.258 0.742 −0.088 0.836 0.206 0.754 0.239 0.746 −0.086 0.834

10 0.231 0.743 0.277 0.730 −0.067 0.833 0.219 0.744 0.261 0.734 −0.071 0.832

30 0.239 0.737 0.289 0.723 −0.063 0.831 0.235 0.737 0.273 0.727 −0.059 0.828

50 5 0.325 0.723 0.357 0.713 0.111 0.809 0.322 0.724 0.348 0.718 0.105 0.807

10 0.338 0.716 0.371 0.704 0.118 0.807 0.335 0.716 0.358 0.707 0.122 0.801

30 0.349 0.711 0.377 0.697 0.127 0.806 0.343 0.710 0.370 0.702 0.130 0.801

100 5 0.417 0.689 0.439 0.680 0.270 0.770 0.416 0.689 0.430 0.683 0.274 0.768

10 0.426 0.682 0.448 0.672 0.277 0.768 0.426 0.684 0.440 0.676 0.280 0.768

30 0.432 0.678 0.452 0.668 0.283 0.767 0.430 0.679 0.446 0.672 0.286 0.764

1000 5 0.537 0.619 0.541 0.616 0.492 0.660 0.537 0.620 0.539 0.617 0.493 0.659

10 0.539 0.617 0.544 0.613 0.494 0.660 0.539 0.617 0.543 0.615 0.495 0.658

30 0.541 0.616 0.546 0.612 0.494 0.658 0.540 0.616 0.544 0.613 0.495 0.657

ρXX
′ = 0.8

30 5 0.596 0.875 0.646 0.864 0.281 0.930 0.590 0.875 0.630 0.868 0.274 0.928

10 0.607 0.869 0.655 0.857 0.292 0.929 0.598 0.869 0.641 0.861 0.283 0.926

30 0.612 0.866 0.663 0.852 0.300 0.927 0.604 0.867 0.645 0.858 0.291 0.926

50 5 0.656 0.860 0.688 0.849 0.436 0.917 0.653 0.860 0.677 0.853 0.433 0.914

10 0.664 0.855 0.696 0.844 0.444 0.916 0.660 0.856 0.686 0.848 0.439 0.913

30 0.667 0.853 0.700 0.840 0.444 0.915 0.664 0.853 0.690 0.845 0.443 0.913

100 5 0.704 0.842 0.723 0.833 0.562 0.896 0.703 0.842 0.717 0.837 0.564 0.896

10 0.708 0.838 0.728 0.829 0.567 0.896 0.706 0.840 0.722 0.833 0.568 0.895

30 0.711 0.836 0.731 0.827 0.569 0.896 0.710 0.837 0.725 0.830 0.568 0.894

1000 5 0.764 0.807 0.769 0.803 0.726 0.837 0.764 0.807 0.768 0.804 0.728 0.836

10 0.766 0.805 0.771 0.802 0.728 0.836 0.766 0.806 0.769 0.803 0.728 0.836

30 0.766 0.805 0.772 0.801 0.728 0.836 0.766 0.805 0.770 0.802 0.729 0.836

dist1, Normal distribution for ti; dist2, distribution with negative kurtosis for ti; dist3, distribution with positive kurtosis for ti; dist4, skewed distribution for ti; dist5,

skewed distribution with negative kurtosis for ti; dist6, skewed distribution with positive kurtosis for ti; LB, lower bound; UB, upper bound.

whether the sample coefficient was significantly different from α

as described in the previous section.
Guided by these interpretations, one can make the following

observations:

1. Among the five non-normal distributions considered for ti,
skewed or platykurtic distributions do not affect the mean or
the SE for α̂(see Table 1). They do not affect the accuracy

or bias in estimating α, either (see Table 2). On the other
hand, symmetric or non-symmetric distributions with posi-
tive kurtosis tend to result in a much smaller average of α̂

with a larger SE (see Table 1), which in turn makes the 95%
observed interval wider compared with the normal distribu-
tion (see Table 3). In addition, positive kurtosis tends to involve
more bias in underestimating α with a reduced accuracy (see
Table 2).

Frontiers in Psychology | Quantitative Psychology and Measurement February 2012 | Volume 3 | Article 34 | 6

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Sheng and Sheng Effect of non-normality on coefficient alpha

2. Sample size (n) and test length (k) play important roles for
α̂ and its sampling distribution, as increased n or k tends to
result in the mean of α̂ that is closer to the specified population
reliability (ρXX

′) with a smaller SE. We note that n has a larger
and more apparent effect than k. Sample size further helps off-
set the effect of non-normality on the sampling distribution
of α̂. In particular, when sample size gets large, e.g., n = 1000,
departure from normal distributions (due to positive kurto-
sis) does not result in much different mean of α̂ although the
SE is still slightly larger compared with normal distributions
(see Table 1).

3. Increased n or k tends to increase the accuracy in estimating
α while reducing bias. However, the effect of non-normality
(due to positive kurtosis) on resulting in a larger estimating
error and bias remains even with increased n and/or k (see
Table 2). It is also noted that for all the conditions considered,
α̂ has a consistently negative bias regardless of the shape of the
distribution for ti.

4. The 95% observed interval shown in Table 3 agrees with the
corresponding mean and SE shown in Table 1. It is noted that
regardless of the population distribution for ti, when n or k gets
larger, α̂ has a smaller SE, and hence a narrower 95% interval,
as the precision in estimating α increases. Given this, and that
all intervals in the table, especially those for n = 1000, cover
the specified population reliability (ρXX

′), one should note that
although departure from normality affects the accuracy, bias,
and precision in estimating α, it does not result in systematically
different α̂. In addition, when the actual reliability is small (i.e.,
ρXX

′ = 0.3), the use of large n is suggested, as when n < 1000,
the 95% interval covers negative values of α̂. This is especially
the case for the (symmetric or non-symmetric) distributions
with positive kurtosis. For these distributions, at least 100 sub-
jects are needed for α̂ to avoid relatively large estimation error
when the actual reliability is moderate to large. For the other
distributions, including the normal distribution, a minimum
of 50 subjects is suggested for tests with a moderate reliability
(i.e., ρXX

′ = 0.6), and 30 or more subjects are needed for tests
with a high reliability (i.e., ρXX

′ = 0.8; see Table 2).

In addition, results for conditions where error scores depart from
normal distributions are summarized in Tables 4–6. Given the
design of the study, the results for the condition where eij followed
a normal distribution are the same as those for the condition where
the distribution for ti was normal. For the purpose of comparisons,
they are displayed in the tables again. Inspections of these tables
result in the following findings, some of which are quite different
from what are observed from Tables 1–3:

1. Symmetric platykurtic distributions or non-symmetric lep-
tokurtic distributions consistently resulted in a larger mean but
not a larger SE of α̂ than normal distributions (see Table 4).
Some of the means, and especially those for non-symmetric
leptokurtic distributions, are larger than the specified popula-
tion reliability (ρXX

′). This is consistent with the positive bias
values in Table 5. On the other hand, symmetric leptokurtic,
non-symmetric, or non-symmetric platykurtic distributions
tend to have larger SE of α̂ than the normal distribution (see
Table 4).

2. Sample size (n) and test length (k) have different effects on α̂

and its sampling distribution. Increased n consistently results
in a larger mean of α̂ with a reduced SE. However, increased
k may result in a reduced SE, but it has a negative effect on
the mean in pushing it away from the specified population reli-
ability (ρXX

′), especially when ρXX
′ is not large. In particular,

with larger k, the mean of α̂ decreases to be much smaller for the
non-normal distributions that are leptokurtic, non-symmetric,
or non-symmetric platykurtic; but it increases to exceed ρXX

′
for symmetric platykurtic or non-symmetric leptokurtic dis-
tributions. It is further observed that with increased n, the
difference between non-normal and normal distributions of
eij on the mean and SE of α̂ reduces. This is, however, not
observed for increased k (see Table 4).

3. The RMSE and bias values presented in Table 5 indicate that
non-normal distributions for eij, especially leptokurtic, non-
symmetric, or non-symmetric platykurtic distributions tend
to involve larger error, if not bias, in estimating α. In addition,
when k increases, RMSE or bias does not necessarily reduce.
On the other hand, when n increases, RMSE decreases while
bias increases. Hence, with larger sample sizes, there is more
accuracy in estimating α, but bias is not necessarily reduced for
symmetric platykurtic or non-symmetric leptokurtic distribu-
tions, as some of the negative bias values increase to become
positive and non-negligible.

4. The effect of test length on the sample coefficient is more
apparent in Table 6. From the 95% observed intervals for α̂,
and particularly those obtained when the actual reliability is
small to moderate (i.e., ρXX

′ ≤ 0.6) with large sample sizes (i.e.,
n = 1000), one can see that when test length gets larger (e.g.,
k = 30), the intervals start to fail to cover the specified popula-
tion reliability (ρXX

′) regardless of the degree of the departure
from the normality for eij. Given the fact that larger sample sizes
result in less dispersion (i.e., smaller SE) in the sampling dis-
tribution of α̂ and hence a narrower 95% interval, and the fact
that increased k pushes the mean of α̂ away from the specified
reliability, this finding suggests that larger k amplifies the effect
of non-normality of eij on α̂ in resulting in systematically biased
estimates of α, and hence has to be avoided when the actual reli-
ability is not large. With respect to sample sizes, similar patterns
arise. That is, the use of large n is suggested when the actual
reliability is small (i.e., ρXX

′ = 0.3), especially for tests with 30
items, whereas for tests with a high reliability (i.e.,ρXX

′ = 0.8), a
sample size of 30 may be sufficient. In addition, when the actual
reliability is moderate, a minimum of 50 subjects is needed for
α̂ to be fairly accurate for short tests (k ≤ 10), and at least 100
are suggested for longer tests (k = 30; see Table 5).

Given the above results, we see that non-normal distributions
for true or error scores do create problems for using coefficient
alpha to estimate the internal consistency reliability. In particu-
lar, leptokurtic true score distributions that are either symmetric
or skewed result in larger error and negative bias in estimat-
ing population α with less precision. This is similar to Bay’s
(1973) finding, and we see in this study that the problem remains
even after increasing sample size to 1000 or test length to 30,
although the effect is getting smaller. With respect to error score
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Table 4 | Observed mean and SD of the sample alpha (α̂) for the simulated situations where the error score (eij) distribution is normal or

non−normal.

n k Mean (α̂) SD (α̂)

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.230 0.255 0.215 0.206 0.213 0.313 0.241 0.233 0.257 0.252 0.250 0.223

10 0.231 0.295 0.158 0.174 0.185 0.367 0.229 0.207 0.256 0.248 0.248 0.195

30 0.231 0.371 0.103 0.155 0.139 0.460 0.221 0.177 0.258 0.244 0.249 0.160

50 5 0.252 0.279 0.232 0.231 0.237 0.324 0.176 0.169 0.191 0.183 0.181 0.166

10 0.252 0.316 0.180 0.198 0.213 0.380 0.166 0.150 0.187 0.180 0.178 0.143

30 0.254 0.390 0.128 0.181 0.164 0.474 0.160 0.128 0.188 0.176 0.181 0.116

100 5 0.269 0.295 0.245 0.247 0.255 0.332 0.118 0.113 0.130 0.124 0.122 0.115

10 0.268 0.331 0.196 0.216 0.229 0.390 0.112 0.101 0.128 0.121 0.120 0.098

30 0.269 0.403 0.146 0.198 0.182 0.484 0.108 0.086 0.127 0.119 0.122 0.078

1000 5 0.282 0.308 0.254 0.261 0.269 0.338 0.036 0.035 0.040 0.038 0.037 0.036

10 0.282 0.343 0.208 0.231 0.244 0.398 0.034 0.031 0.039 0.037 0.037 0.030

30 0.282 0.414 0.161 0.213 0.197 0.493 0.033 0.026 0.039 0.036 0.037 0.024

ρXX
′ = 0.6

30 5 0.549 0.550 0.565 0.552 0.551 0.571 0.142 0.140 0.163 0.141 0.140 0.159

10 0.551 0.560 0.547 0.543 0.545 0.586 0.133 0.127 0.157 0.141 0.139 0.132

30 0.550 0.615 0.452 0.482 0.500 0.669 0.129 0.102 0.180 0.160 0.156 0.093

50 5 0.563 0.564 0.574 0.565 0.564 0.579 0.103 0.100 0.121 0.103 0.101 0.118

10 0.563 0.573 0.559 0.557 0.560 0.595 0.097 0.092 0.115 0.102 0.100 0.099

30 0.563 0.625 0.472 0.499 0.518 0.676 0.093 0.074 0.131 0.115 0.112 0.068

100 5 0.572 0.573 0.579 0.574 0.574 0.584 0.069 0.068 0.084 0.069 0.068 0.082

10 0.572 0.582 0.567 0.567 0.570 0.600 0.066 0.062 0.078 0.069 0.067 0.068

30 0.572 0.633 0.484 0.511 0.530 0.681 0.063 0.050 0.088 0.078 0.075 0.046

1000 5 0.580 0.581 0.583 0.582 0.582 0.588 0.021 0.021 0.026 0.021 0.021 0.026

10 0.580 0.589 0.574 0.576 0.578 0.605 0.020 0.019 0.024 0.021 0.020 0.021

30 0.580 0.638 0.496 0.522 0.540 0.686 0.019 0.015 0.027 0.024 0.023 0.014

ρXX
′ = 0.8

30 5 0.771 0.771 0.777 0.772 0.772 0.779 0.072 0.070 0.094 0.072 0.070 0.092

10 0.771 0.771 0.776 0.773 0.772 0.777 0.068 0.067 0.081 0.068 0.067 0.080

30 0.771 0.782 0.760 0.763 0.766 0.798 0.066 0.058 0.085 0.076 0.073 0.057

50 5 0.778 0.778 0.782 0.779 0.779 0.783 0.052 0.051 0.070 0.052 0.051 0.070

10 0.778 0.778 0.781 0.779 0.779 0.784 0.049 0.048 0.060 0.049 0.048 0.059

30 0.778 0.788 0.768 0.771 0.774 0.802 0.048 0.042 0.060 0.054 0.052 0.042

100 5 0.782 0.783 0.785 0.783 0.783 0.787 0.035 0.034 0.049 0.035 0.034 0.049

10 0.783 0.783 0.785 0.784 0.784 0.787 0.033 0.033 0.041 0.033 0.033 0.041

30 0.783 0.792 0.774 0.777 0.779 0.805 0.032 0.028 0.040 0.036 0.034 0.029

1000 5 0.786 0.787 0.788 0.787 0.787 0.789 0.011 0.010 0.015 0.011 0.011 0.015

10 0.786 0.787 0.788 0.788 0.788 0.791 0.010 0.010 0.013 0.010 0.010 0.013

30 0.787 0.795 0.779 0.781 0.784 0.807 0.010 0.009 0.012 0.011 0.010 0.009

dist1, Normal distribution for eij; dist2, distribution with negative kurtosis for eij; dist3, distribution with positive kurtosis for eij; dist4, skewed distribution for eij; dist5,

skewed distribution with negative kurtosis for eij; dist6, skewed distribution with positive kurtosis for eij.

distributions, unlike conclusions from previous studies, depar-
ture from normality does create problems in the sample coeffi-
cient alpha and its sampling distribution. Specifically, leptokurtic,
skewed, or non-symmetric platykurtic error score distributions
tend to result in larger error and negative bias in estimating popu-
lation α with less precision, whereas platykurtic or non-symmetric
leptokurtic error score distributions tend to have increased posi-
tive bias when sample size, test length, and/or the actual reliability
increases. In addition, different from conclusions made by Bay

(1973) and Shultz (1993), an increase in test length does have an
effect on the accuracy and bias in estimating reliability with the
sample coefficient alpha when error scores are not normal, but
it is in an undesirable manner. In particular, as is noted earlier,
increased test length pushes the mean of α̂ away from the actual
reliability, and hence causes the sample coefficient alpha to be sig-
nificantly different from the population coefficient when the actual
reliability is not high (e.g., ρXX

′ ≤ 0.6) and the sample size is large
(e.g., n = 1000). This could be due to the fact that eij is involved
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Table 5 | Root mean square error and bias for estimating α for the simulated situations where the error score (eij ) distribution is normal or

non−normal.

n k RMSE bias

dist1 dist2 dist3 dist4 dist5 dist6 dist1 dist2 dist3 dist4 dist5 dist6

ρXX
′ = 0.3

30 5 0.251 0.237 0.271 0.269 0.264 0.224 −0.070 −0.045 −0.085 −0.094 −0.087 0.013

10 0.240 0.208 0.293 0.278 0.273 0.206 −0.069 −0.005 −0.142 −0.126 −0.115 0.067

30 0.232 0.191 0.325 0.284 0.297 0.226 −0.069 0.071 −0.197 −0.145 −0.162 0.160

50 5 0.182 0.170 0.202 0.195 0.192 0.167 −0.048 −0.022 −0.068 −0.069 −0.063 0.024

10 0.173 0.151 0.222 0.207 0.198 0.164 −0.048 0.016 −0.120 −0.103 −0.088 0.080

30 0.166 0.157 0.255 0.212 0.226 0.209 −0.046 0.090 −0.172 −0.119 −0.136 0.174

100 5 0.122 0.113 0.141 0.135 0.130 0.119 −0.031 −0.006 −0.055 −0.053 −0.045 0.032

10 0.116 0.106 0.165 0.148 0.140 0.133 −0.032 0.031 −0.105 −0.084 −0.071 0.090

30 0.112 0.134 0.200 0.157 0.170 0.200 −0.031 0.103 −0.154 −0.102 −0.118 0.184

1000 5 0.040 0.035 0.061 0.054 0.048 0.052 −0.018 0.008 −0.046 −0.039 −0.031 0.038

10 0.038 0.053 0.100 0.079 0.067 0.102 −0.018 0.043 −0.092 −0.070 −0.056 0.098

30 0.038 0.117 0.144 0.095 0.109 0.194 −0.018 0.114 −0.139 −0.087 −0.103 0.193

ρXX
′ = 0.6

30 5 0.151 0.148 0.166 0.149 0.149 0.161 −0.051 −0.050 −0.035 −0.048 −0.050 −0.029

10 0.142 0.133 0.165 0.152 0.149 0.133 −0.050 −0.040 −0.053 −0.057 −0.055 −0.014

30 0.139 0.103 0.233 0.199 0.185 0.116 −0.050 0.015 −0.148 −0.118 −0.100 0.069

50 5 0.109 0.106 0.124 0.108 0.107 0.120 −0.037 −0.036 −0.026 −0.035 −0.036 −0.021

10 0.104 0.096 0.123 0.111 0.107 0.099 −0.037 −0.027 −0.041 −0.043 −0.040 −0.005

30 0.100 0.078 0.183 0.153 0.139 0.102 −0.037 0.025 −0.128 −0.101 −0.082 0.076

100 5 0.075 0.073 0.087 0.074 0.073 0.084 −0.028 −0.027 −0.022 −0.026 −0.026 −0.016

10 0.071 0.065 0.085 0.076 0.074 0.068 −0.028 −0.018 −0.033 −0.033 −0.031 0.000

30 0.069 0.060 0.146 0.118 0.103 0.093 −0.028 0.033 −0.116 −0.089 −0.070 0.081

1000 5 0.029 0.028 0.032 0.028 0.028 0.029 −0.020 −0.019 −0.017 −0.018 −0.018 −0.012

10 0.028 0.022 0.036 0.032 0.030 0.022 −0.020 −0.011 −0.026 −0.024 −0.022 0.005

30 0.028 0.041 0.108 0.082 0.064 0.087 −0.020 0.038 −0.104 −0.078 −0.060 0.086

ρXX
′ = 0.8

30 5 0.078 0.076 0.097 0.077 0.076 0.095 −0.030 −0.029 −0.023 −0.028 −0.029 −0.021

10 0.074 0.073 0.085 0.073 0.073 0.084 −0.029 −0.029 −0.024 −0.027 −0.028 −0.023

30 0.072 0.060 0.094 0.085 0.080 0.057 −0.029 −0.018 −0.040 −0.037 −0.034 −0.003

50 5 0.057 0.055 0.073 0.057 0.055 0.072 −0.022 −0.022 −0.018 −0.021 −0.021 −0.017

10 0.054 0.053 0.063 0.053 0.053 0.062 −0.022 −0.022 −0.019 −0.021 −0.021 −0.016

30 0.052 0.044 0.068 0.061 0.058 0.042 −0.022 −0.012 −0.032 −0.029 −0.026 0.002

100 5 0.039 0.038 0.051 0.039 0.038 0.050 −0.018 −0.017 −0.015 −0.017 −0.017 −0.013

10 0.038 0.037 0.044 0.037 0.037 0.043 −0.018 −0.017 −0.015 −0.016 −0.016 −0.013

30 0.037 0.030 0.048 0.043 0.040 0.029 −0.018 −0.008 −0.026 −0.024 −0.021 0.005

1000 5 0.017 0.017 0.020 0.017 0.017 0.019 −0.014 −0.013 −0.012 −0.013 −0.013 −0.011

10 0.017 0.016 0.017 0.016 0.016 0.016 −0.014 −0.013 −0.012 −0.012 −0.012 −0.010

30 0.017 0.010 0.024 0.022 0.019 0.012 −0.014 −0.005 −0.021 −0.019 −0.016 0.007

dist1, Normal distribution for eij; dist2, distribution with negative kurtosis for eij; dist3, distribution with positive kurtosis for eij; dist4, skewed distribution for eij; dist5,

skewed distribution with negative kurtosis for eij; dist6, skewed distribution with positive kurtosis for eij.

in each item, and hence an increase in the number of items would
add up the effect of non-normality on the sample coefficient.

DISCUSSION
In practice, coefficient alpha is often used to estimate reliabil-
ity with little consideration of the assumptions required for the
sample coefficient to be accurate. As noted by Graham (2006, p.
942), students and researchers in education and psychology are
often unaware of many assumptions for a statistical procedure,

and this situation is much worse when it comes to measurement
issues such as reliability. In actual applications, it is vital to not only
evaluate the assumptions for coefficient alpha, but also understand
them and the consequences of any violations.

Normality is not commonly considered as a major assump-
tion for coefficient alpha and hence has not been well investigated.
This study takes the advantage of recently developed techniques
in generating univariate non-normal data to suggest that different
from conclusions made by Bay (1973), Zimmerman et al. (1993),
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Table 6 | Observed 95% interval of the sample alpha (α̂) for the simulated situations where the error score (eij ) distribution is normal or

non-normal.

n k dist1 dist2 dist3 dist4 dist5 dist6

LB UB LB UB LB UB LB UB LB UB LB UB

ρXX
′ = 0.3

30 5 −0.351 0.580 −0.305 0.592 −0.404 0.587 −0.403 0.572 −0.392 0.574 −0.220 0.638

10 −0.323 0.563 −0.203 0.595 −0.459 0.529 −0.421 0.536 −0.416 0.543 −0.104 0.647

30 −0.303 0.550 −0.058 0.629 −0.522 0.478 −0.437 0.508 −0.462 0.501 0.070 0.688

50 5 −0.155 0.528 −0.114 0.544 −0.212 0.531 −0.193 0.516 −0.179 0.519 −0.057 0.585

10 −0.136 0.512 −0.031 0.551 −0.256 0.475 −0.223 0.481 −0.199 0.493 0.050 0.604

30 −0.116 0.505 0.094 0.591 −0.307 0.423 −0.229 0.458 −0.257 0.447 0.203 0.653

100 5 0.005 0.469 0.042 0.486 −0.045 0.464 −0.031 0.456 −0.016 0.461 0.077 0.525

10 0.020 0.457 0.107 0.501 −0.087 0.411 −0.052 0.421 −0.039 0.431 0.172 0.554

30 0.030 0.452 0.211 0.549 −0.136 0.361 −0.067 0.399 −0.089 0.387 0.310 0.616

1000 5 0.208 0.350 0.237 0.372 0.172 0.330 0.184 0.332 0.193 0.338 0.264 0.405

10 0.213 0.346 0.280 0.400 0.128 0.282 0.155 0.300 0.170 0.313 0.336 0.454

30 0.215 0.343 0.360 0.463 0.082 0.234 0.139 0.280 0.122 0.267 0.444 0.537

ρXX
′ = 0.6

30 5 0.212 0.754 0.212 0.752 0.171 0.794 0.212 0.756 0.210 0.752 0.186 0.796

10 0.231 0.743 0.253 0.745 0.167 0.768 0.197 0.744 0.210 0.743 0.267 0.778

30 0.239 0.737 0.370 0.766 0.015 0.711 0.099 0.713 0.121 0.721 0.444 0.803

50 5 0.325 0.723 0.331 0.722 0.289 0.758 0.326 0.725 0.329 0.722 0.302 0.762

10 0.338 0.716 0.360 0.717 0.286 0.736 0.319 0.715 0.328 0.714 0.363 0.749

30 0.349 0.711 0.455 0.743 0.167 0.675 0.229 0.680 0.256 0.691 0.520 0.783

100 5 0.417 0.689 0.422 0.688 0.389 0.716 0.420 0.691 0.422 0.689 0.398 0.721

10 0.426 0.682 0.444 0.687 0.392 0.697 0.415 0.682 0.420 0.682 0.448 0.714

30 0.432 0.678 0.521 0.718 0.287 0.632 0.338 0.643 0.363 0.656 0.579 0.759

1000 5 0.537 0.619 0.539 0.620 0.528 0.631 0.539 0.621 0.539 0.620 0.534 0.636

10 0.539 0.617 0.551 0.624 0.524 0.619 0.533 0.614 0.537 0.616 0.562 0.644

30 0.541 0.616 0.607 0.667 0.441 0.546 0.473 0.566 0.494 0.582 0.657 0.712

ρXX
′ = 0.8

30 5 0.596 0.875 0.602 0.872 0.543 0.903 0.598 0.876 0.602 0.874 0.549 0.904

10 0.607 0.869 0.611 0.868 0.575 0.889 0.608 0.870 0.611 0.869 0.581 0.890

30 0.612 0.866 0.646 0.868 0.550 0.875 0.577 0.867 0.589 0.867 0.661 0.882

50 5 0.656 0.860 0.661 0.858 0.613 0.885 0.657 0.861 0.661 0.858 0.617 0.885

10 0.664 0.855 0.667 0.854 0.637 0.872 0.665 0.856 0.667 0.855 0.644 0.873

30 0.667 0.853 0.692 0.855 0.624 0.858 0.643 0.853 0.653 0.853 0.705 0.869

100 5 0.704 0.842 0.707 0.840 0.672 0.863 0.705 0.842 0.707 0.841 0.675 0.863

10 0.708 0.838 0.711 0.838 0.692 0.853 0.711 0.840 0.711 0.839 0.696 0.854

30 0.711 0.836 0.729 0.841 0.683 0.840 0.695 0.836 0.702 0.836 0.741 0.854

1000 5 0.764 0.807 0.766 0.806 0.756 0.816 0.766 0.807 0.766 0.807 0.757 0.817

10 0.766 0.805 0.767 0.806 0.762 0.812 0.767 0.807 0.767 0.806 0.765 0.814

30 0.766 0.805 0.778 0.812 0.754 0.802 0.759 0.802 0.762 0.803 0.789 0.824

dist1, Normal distribution for eij; dist2, distribution with negative kurtosis for eij; dist3, distribution with positive kurtosis for eij; dist4, skewed distribution for eij; dist5,

skewed distribution with negative kurtosis for eij; dist6, skewed distribution with positive kurtosis for eij; LB, lower bound; UB, upper bound.

and Shultz (1993), coefficient alpha is not robust to the viola-
tion of the normal assumption (for either true or error scores).
Non-normal data tend to result in additional error or bias in
estimating internal consistency reliability. A larger error makes
the sample coefficient less accurate, whereas more bias causes it
to further under- or overestimate the actual reliability. We note
that compared with normal data, leptokurtic true or error score
distributions tend to result in additional negative bias, whereas
platykurtic error score distributions tend to result in a positive

bias. Neither case is desired in a reliability study, as the sample
coefficient would paint an incorrect picture of the test’s internal
consistency by either estimating it with a larger value or a much
smaller value and hence is not a valid indicator. For example, for a
test with reliability being 0.6, one may calculate the sample alpha
to be 0.4 because the true score distribution has a positive kurtosis,
and conclude that the test is not reliable at all. On the other hand,
one may have a test with actual reliability being 0.4. But because
the error score distribution has a negative kurtosis, the sample
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coefficient is calculated to be 0.7 and hence the test is concluded to
be reliable. In either scenario, the conclusion on the test reliability
is completely the opposite of the true situation, which may lead to
an overlook of a reliable measure or an adoption of an unreliable
instrument. Consequently, coefficient alpha is not suggested for
estimating internal consistency reliability with non-normal data.
Given this, it is important to make sure that in addition to satisfying
the assumptions of (essential) tau-equivalence and uncorrelated
errors, the sample data conform to normal distributions before
one uses alpha in a reliability study.

Further, it is generally said that increased data sizes help approx-
imate non-normal distributions to be normal. This is the case with
sample sizes, not necessarily test lengths, in helping improve the
accuracy, bias and/or precision of using the sample coefficient in
reliability studies with non-normal data. Given the results of the
study, we suggest that in order for the sample coefficient alpha to
be fairly accurate and in a reasonable range, a minimum of 1000
subjects is needed for a small reliability, and a minimum of 100
is needed for a moderate reliability when the sample data depart
from normality. It has to be noted that for the four sample size
conditions considered in the study, the sample coefficient alpha
consistently underestimates the population reliability even when

normality is assumed (see Table 2). However, the degree of bias
becomes negligible when sample size increases to 1000 or beyond.

In the study, we considered tests of 5, 10, or 30 items admin-
istered to 30, 50, 100, or 1000 persons with the actual reliability
being 0.3, 0.6, or 0.8. These values were selected to reflect levels
ranging from small to large in the sample size, test length, and
population reliability considerations. When using the results, one
should note that they pertain to these simulated conditions and
may not generalize to other conditions. In addition, we evaluated
the assumption of normality alone. That is, in the simulations,
data were generated assuming the other assumptions, namely
(essential) tau-equivalence and uncorrelated error terms, were sat-
isfied. In practice, it is common for observed data to violate more
than one assumption. Hence, it would also be interesting to see
how non-normal data affect the sample coefficient when other
violations are present. Further, this study looked at the sample
coefficient alpha and its empirical sampling distribution without
considering its sampling theory (e.g., Kristof, 1963; Feldt, 1965).
One may focus on its theoretical SE (e.g., Bay, 1973; Barchard and
Hakstian, 1997a,b; Duhachek and Iacobucci, 2004) and compare
them with the empirical ones to evaluate the robustness of an
interval estimation of the reliability for non-normal data.
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APPENDIX
CODE IN MATLAB

function result=mcalpha(n,k,evar,rho,rep)
%
% mcalpha - obtain summary statistics for sample alphas
%
% result=mcalpha(n,k,evar,rho,rep)
%
% returns the observed mean, standard deviation, and 95% interval (qtalpha)
% for sample alphas as well as the root mean square error (rmse) and bias for
% estimating the population alpha.
%
% The INPUT arguments:
% n - sample size
% k - test length
% evar - error variance
% rho - population reliability
% rep - number of replications
%

alphav=zeros(rep,1);
tbcd=[0,1,0,0,0,0];
ebcd=[0,1,0,0,0,0];

%
% note: tbcd and ebcd are vectors containing the six coefficients, c0,…,c5,
% used in equation (8) for true scores and error scores, respectively. Each
% of them can be set as:
% 1. [0,1,0,0,0,0] (normal)
% 2. [0,1.643377,0,-.319988,0,.011344] (platykurtic)
% 3. [0,0.262543,0,.201036,0,.000162] (leptokurtic)
% 4. [-0.446924 1.242521 0.500764 -0.184710 -0.017947,0.003159] (skewed)
% 5. [-.276330,1.506715,.311114,-.274078,-.011595,.007683] (skewed
% platykurtic)
% 6. [-.304852,.381063,.356941,.132688,-.017363,.003570] (skewed leptokurtic)
%

for i=1:rep
alphav(i)=alpha(n,k,evar,rho,tbcd,ebcd);

end
rmse=sqrt(mean((alphav-rho).ˆ2));
bias=mean(alphav-rho);
qtalpha=quantile(alphav,[.025,.975]);
result=[mean(alphav),std(alphav),qtalpha,rmse,bias];

function A=alpha(n,k,evar,rho,tbcd,ebcd)
%
% alpha - calculate sample alpha
%
% alp=alpha(n,k,evar,rho,tbcd,ebcd)
%
% returns the sample alpha.
%
% The INPUT arguments:
% n - sample size
% k - test length
% evar - error variance
% rho - population reliability
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% rep - number of replications
% tbcd - coefficients for generating normal/nonnormal true score
% distributions using power method polynomials
% ebcd - coefficients for generating normal/nonnormal error score
% distributions using power method polynomials
%

tvar=evar*rho/((1-rho)*k);
t=rfsimu(tbcd,n,1,5,tvar);
e=rfsimu(ebcd,n,k,0,evar);
xn=t*ones(1,k)+e;
x=round(xn);
alp=k/(k-1)*(1-sum(var(x,1))/var(sum(x,2),1));

function X=rfsimu(bcd,n,k,mean,var)
%
% rfsimu - generate normal/nonnormal distributions using 5-th order power
% method polynomials
%
% X=rfsimu(bcd,n,k,mean,var)
%
% returns samples of size n by k drawn from a distribution with the desired
% moments.
%
% The INPUT arguments:
% bcd - coefficients for generating normal/nonnormal distributions using
% the 5-th order polynomials
% k - test length
% evar - error variance
% rho - population reliability
% rep - number of replications
% tbcd - coefficients for generating normal/nonnormal true score
% distributions using power method polynomials
% ebcd - coefficients for generating normal/nonnormal error score
% distributions using power method polynomials
%

Z=randn(n,k);
Y=bcd(1)+bcd(2)*Z+bcd(3)*Z.ˆ2+bcd(4)*Z.ˆ3+bcd(5)*Z.ˆ4+bcd(6)*Z.ˆ5;
X=mean+sqrt(var)*Y;

www.frontiersin.org February 2012 | Volume 3 | Article 34 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive

	Southern Illinois University Carbondale
	OpenSIUC
	2-2012

	Is Coefficient Alpha Robust to Non-normal Data?
	Yanyan Sheng
	Zhaohui Sheng
	Recommended Citation


	Is coefficient alpha robust to non-normal data?
	Introduction
	Materials and methods
	Preliminaries
	Study design

	Results
	Discussion
	References
	Appendix
	Code in MATLAB



