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Abstract 

Although some research in confirmatory factor analysis has suggested that more indicators per 

factor is generally better, studies have also documented that sample size requirements increase as 

model size increases.  The present study used Monte Carlo simulation to investigate the effect of 

indicators per factor on sample size requirements.  Results demonstrated a nonlinear association 

between the number of indicators per factor and the minimum required sample size while avoiding 

six important consequences for the analysis, such as bias in the model chi-square statistic.  There 

is an upper limit for the desirable number of indicators per factor, and this upper limit depends on 

the number of factors and factor determinacy.  The results showed clear patterns for the specific 

consequences that were most likely with too few or too many indicators per factor and inadequate 

sample size.  Implications for further research are discussed. 

 

Keywords: confirmatory factor analysis; latent variable reliability; sample size; Swain correction; 

structural equation modeling 
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Indicators per Factor in Confirmatory Factor Analysis: More Is Not Always Better 

Past studies in confirmatory factor analysis have suggested that more indicators per factor 

is generally better (Marsh, Hau, Balla, & Grayson, 1998).  However, recent studies have shown 

that minimum sample size requirements increase as number of indicators per factor increases due 

to the model size effect (Gagné & Hancock, 2006; Herzog, Boomsma, & Reinecke, 2007; Jackson, 

Voth, & Frey, 2013; Kenny & McCoach, 2003; Moshagen, 2012; Shi, Lee, & Terry, 2018).  As the 

number of indicators per factor increases, an increase in sample size is needed to control bias in the 

model chi-square statistic (Boomsma, 1982; Hertzog, Boomsma, & Reinecke, 2007; Jackson, Voth, 

& Frey, 2013).  The need to control bias with a reasonable sample size in practice suggests the 

existence of an upper limit for the desirable number of indicators per factor in confirmatory factor 

analysis.   

The purpose of this article is to investigate the effect of indicators per factor on minimum 

sample size requirements in confirmatory factor analysis.  The goal is to find the upper limit on 

the desirable number of indicators per factor beyond which returns diminish due to increasing 

consequences for the analysis.  A Monte Carlo simulation study is presented that aimed to show 

the nonlinear association between the number of indicators per factor and the minimum required 

sample size necessary to avoid six important consequences for the analysis.  It was hypothesized 

that there is a number of indicators per factor that results in the smallest required minimum sample 

size.   

Background 

There are many potential pitfalls in the practice of conducting confirmatory factor analysis 

with maximum likelihood estimation.  Nonconverged solutions and Heywood cases pose 

immediate barriers to study completion (Boomsma, 1985; Dillon, Kumar, & Mulani, 1987).  
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Insufficient power in fitting models leads to indeterminate results and has been linked to 

replicability problems (Maxwell, 2004).  Recently more attention has been given to the insidious 

problem of bias in the model chi-square statistic, parameter estimates, and standard errors 

(Jackson, Voth, & Frey, 2013; Muthén & Muthén, 2002; Shi, Lee, & Terry, 2018).  There has been 

concern that bias can exceed ten percent in some circumstances (Muthén & Muthén, 2002), 

contributing to incorrect inferences about the model or individual parameter effects.  While other 

pitfalls may be more readily identified in practice, the presence of bias in any given analysis 

largely goes unnoticed.  

There is a large body of research investigating factors linked to adverse outcomes in 

confirmatory factor analysis with maximum likelihood estimation.  Six adverse outcomes in 

confirmatory factor analysis have been tied to inadequate sample size.  These include 

nonconvergence and improper solutions (Boomsma, 1985).  Bias in the model chi-square statistic 

(Herzog, Boomsma, & Reinecke, 2007; Jackson, Voth, & Frey, 2013) and in the parameter 

estimates and their standard errors (Muthén & Muthén, 2002) have also been shown to be related 

to inadequate sample size.  Finally, inadequate power to detect a misfitting model (MacCallum, 

Brown, & Sugawara, 1996) and inadequate power for tests of individual parameter estimates 

(Muthén & Muthén, 2002) are attributed to power being a function of sample size.  With such a 

variety of adverse outcomes tied to inadequate sample size, meeting minimum sample size 

requirements for confirmatory factor analysis is an important consideration in practice.   

Minimum sample size requirements for confirmatory factor analysis have been tied to 

model complexity.  Model complexity includes factor determinacy (saturation) and the model 

size, characterized as the number of observed variables (see Shi, Lee & Terry, 2018), which can be 

operationalized in research as a function of the number of factors and the number of indicators per 
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factor.  As the model size increases, the required minimum sample size to avoid bias also 

increases (Jackson, Voth, & Frey, 2013).   

The number of common factors to include in a model is largely empirically and theory 

driven.  The number of factors explaining a given set of observed variables may have been 

suggested by prior exploratory research.  On the other hand, a researcher may have in mind a 

theory to be tested in a latent variable path model for which fitting a confirmatory factor model is a 

first step in assessing the fit of the measurement portion of the model.  In either case, little can be 

done to change the number of factors without fundamentally changing the purpose of the study. 

Several considerations must be taken into account when selecting the number of indicators 

per factor when specifying a confirmatory factor model.  A minimum of three indicators per 

factor will generally avoid model identification problems (Kenny, 1979; Kenny, Kashy & Bolger, 

1998).  Construct validity must also be considered, including selecting indicators that will 

maintain content coverage and avoid method bias (Lambie, Blount & Mullen, 2017; Podsakoff, 

MacKenzie & Podsakoff, 2012).  It is important to have an adequate number of indicators to 

achieve a desirable level of factor reliability or replicability (Hancock & Mueller, 2001; Raykov, 

2004).  Beyond these basic considerations, researchers may have considerable latitude in 

decisions about the number of indicators per factor.  Such decisions are informed by theories of 

best practice based on empirical research studies of sample size, solution propriety, bias, and 

power. 

In theories of best practice, it has been suggested that more indicators per factor is 

generally better in confirmatory factor analysis (Marsh, Hau, Balla, & Grayson, 1998).  However, 

more indicators per factor will not necessarily be better because it leads to increases in the 

minimum required sample size.  If this increase in the minimum required sample size is ignored, 
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there is a greater chance that the obtained sample size will be inadequate and adverse outcomes 

will occur in confirmatory factor analysis.  It would be better to have a number of indicators per 

factor that minimizes sample size requirements while avoiding adverse outcomes.  The purpose 

of this study is to address four research questions that would reconcile the indicators per factor 

literature with the sample size literature.   

1. Is there an upper bound for the desirable number of indicators per factor based on 

considerations of sample size, solution propriety, bias, and power?  

2. What is the role of solution propriety, bias, and power in determining the minimum 

required sample size? 

3. How does the minimum required sample size differ when there is heterogeneous factor 

determinacy?   

4. What is the effect of adding a weak indicator on the minimum required sample size? 

The scope of the study excluded considerations of model identification, measurement reliability, 

and validity that are well established in the literature and instead focused on further considerations 

of sample size, solution propriety, bias, and power that need to be reconciled to inform best 

practice when selecting the number of indicators per factor. 

Method 

Addressing these questions required a Monte Carlo design that built upon prior knowledge 

about the connection between indicators per factor and sample size while overcoming some of the 

limitations of prior Monte Carlo study designs.  While mathematical exposition is superior to 

simulation, some adverse outcomes, such as nonconvergence, have yet to be generally explained 

by mathematical theory (Marsh, Hau, Balla, & Grayson, 1998).  

Population Models  
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The present study used similar conditions as in prior studies (Gagné & Hancock, 2006; 

Jackson, Voth, & Frey, 2013; Marsh, Hau, Balla, & Grayson, 1998).  Confirmatory factor models 

with all factors correlated .3 (medium effect size) were used to generate the data (Jackson, Voth, & 

Frey, 2013).  Because the prior literature indicated that the number of factors was an important 

facet of model complexity, the number of factors in the model was varied with three, six, or twelve 

factors (Jackson, Voth, & Frey, 2013).  Factor determinacy was also varied with standardized 

loadings set to all .4, all .6, or all .8 (Gagné & Hancock, 2006).  A minimum of three indicators per 

factor was used so that all models were over-identified and not subject to complications due to 

empirical under-identification.  Ten levels of indicators per factor from 3 to 12 were adopted, 

consistent with levels used in prior studies (Marsh, et al., 1998; Gagné & Hancock, 2006; Jackson, 

Voth, & Frey, 2013), to provide a clear picture of the shape of the trajectories.  Number of factors, 

factor determinacy, and number of indicators per factor were fully crossed for 90 base conditions 

used to address Research Questions 1 and 2. 

To address Research Question 3 regarding how the minimum required sample sizes differ 

when there is heterogeneous factor determinacy, 16 conditions were added in which loading 

magnitudes were varied within each factor but had the same average loading magnitude as in the 

comparable base condition with three or six factors and .4 or .6 standardized loadings.  Four 

levels of indicators per factor from three to six were used in these added conditions.  To address 

Research Question 4 regarding the effect of adding a weak indicator on the minimum required 

sample size, 16 conditions were added in which a single indicator of .2 was added to each factor 

from the comparable base condition with three or six factors and 4 or .6 standardized loadings.  

Four levels of indicators per factor from four to seven were used in these added conditions. 

Criteria   
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Sample size was considered adequate in this study if six criteria were met.  These criteria 

were established to minimize chances of six different adverse outcomes for confirmatory factor 

analysis based on the existing sample size literature.  First, to minimize the chance of inadequate 

power to detect overall model fit, the sample size had to yield 80 percent power at a .05 level of 

significance to reject a null hypothesis of good fit (RMSEA = .05) when presented with a model 

with not-good fit (RMSEA = .08; Browne & Cudeck, 1993).  The analytical power calculation 

based on the test of close fit (MacCallum, Brown, & Sugawara, 1996) was performed prior to data 

generation.   

Second, to minimize the chance of improper solutions, the sample size had to produce a 

minimum of 99 percent proper solutions across replications.  This differed from prior studies, 

which used either 90 percent proper solutions (Gagné & Hancock, 2006; Jackson, Voth, & Frey, 

2013) or 100 percent proper solutions (Wolf, Harrington, Clark, & Miller, 2013).  The 99 percent 

cut value was chosen to provide a high level of assurance that a given sample size would yield a 

proper solution while allowing for a trivial proportion of convergence anomalies due to sampling 

variability across the multiple replications of the simulation study.  Trivial numbers of improper 

solutions were subsequently deleted prior to computations associated with the remaining criteria. 

Third, to minimize the chance of excessive bias in the model chi-square statistic, the 

sample size had to have a reasonable rejection rate for the model chi-square statistic (Jackson, Voth, 

& Frey, 2013).  In addition to the uncorrected model chi-square statistic, the Swain corrected 

model chi-square statistic was calculated by multiplying the model chi-square statistic by the 

following correction factor 

𝑠 = 1 −
𝑝(2𝑝2+3𝑝−1)−𝑞(2𝑞2+3𝑞−1)

12(𝑑𝑓)(𝑛−1)
, 

(1) 

where 
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𝑞 =
√1+4𝑝(𝑝+1)−8(𝑑𝑓)−1

2
, 

(2) 

and 𝑝 is the number of manifest variables in the model (Hertzog, et al., 2007).  For the model 

chi-square statistic to be considered unbiased, the rejection rate across replications for either the 

uncorrected or the Swain corrected model chi-square statistic had to be within the 99 percent 

confidence interval of .05 (99% CI: . 05  2.575(.05 ∗ .95/1000)^½ =  [0.0323, 0.0677]; 

Nevitt & Hancock, 2004).     

Fourth, to minimize the chance of bias in the parameter of interest, the sample size had to 

produce a maximum of ten percent average relative bias in the parameter estimate (Muthén & 

Muthén, 2002).  For the purpose of this study the correlation between the first two factors,𝜙̂, was 

selected as the parameter of interest.  The relative bias in the estimate of the correlation between 

the first two factors,𝜙̂, was computed as  

𝑅𝐵𝜙̂ =
𝜙̅̂−.30

.30
. 

(3) 

where 𝜙̅̂ is the average of the estimates of the factor correlation across replications. 

Fifth, to minimize the chance of bias in the standard error of the parameter of interest, the 

sample size had to produce a maximum of five percent average relative bias in the standard error of 

the factor correlation (Muthén & Muthén, 2002).  The relative bias in the standard error of the 

correlation between the first two factors,𝑆𝐸̂, was computed as  

𝑅𝐵𝑆𝐸̂ =
𝑆𝐸̂̅̅̅̅ −𝑆𝐷(𝜙̂)

𝑆𝐷(𝜙̂)
, 

(4) 

where 𝑆𝐸̂̅̅̅̅  is the average of the estimates of the standard error of the factor correlation across 

replications and 𝑆𝐷(𝜙̂) is the standard deviation of the parameter estimates of the factor 

correlation, 𝜙̂, across replications (Muthén & Muthén, 2002). 
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Sixth, to minimize the chance of inadequate power to detect statistical significance of the 

parameter of interest, the sample size had to have a minimum 80 percent power to detect a .30 

(medium effect size; Cohen, 1988) factor correlation with a .05 level of significance (Muthén & 

Muthén, 2002).  In each replication the null hypothesis was rejected if 

𝜙̂

𝑆𝐸̂
> 1.96. (5) 

Power was calculated as the percent of replications in which the null hypothesis that the factor 

correlation is zero was rejected.  Again, all six criteria had to be met for a sample size to be 

considered adequate for the purposes of this study.  The criteria were selected to attain a high 

probability of a successful analysis unhindered by the major concerns discussed in the 

confirmatory factor analysis literature: nonconvergence, solution impropriety, excessive bias, or 

low power. 

Procedure   

For each condition multivariate normal data with standard deviations drawn from N(5,1) 

were generated in SAS 9.4 (SAS Institute Inc., 2018) according to the population models.  

Maximum likelihood estimation in LISREL 8.80 (Jöreskog & Sörbom, 2006) was used to fit the 

population model to the simulated data, using population values as starting values.  The use of 

population values as starting values contributed to the generalizability of the results to other latent 

variable modeling software (Gagné & Hancock, 2006).  Convergence information, the model 

chi-square statistic, and standardized parameter estimates and their corresponding standard errors 

were saved for further analysis in SAS. 

To model accurately the association between the number of indicators per factor and the 

minimum required sample size, it was necessary to obtain reasonably precise estimates of 

minimum required sample size.  The sample sizes tested were tailored to each condition in the 
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study.  For example, in the base condition with six factors, .8 standardized loadings, and five 

indicators per factor, sample sizes of 75, 100, 125, and 150 were tested, whereas in the base 

condition with six factors, .4 standardized loadings, and three indicators per factor, sample sizes of 

625, 700, 750, 850, 875, and 900 were tested.  This approach avoided wasting computational 

resources with sample sizes that were much too large or much too small based on prior research. 

In each condition an initial sample size to be tested was selected based on estimates from 

the results of Jackson, Voth, and Frey (2013), from applying the Satorra and Saris (1985) method 

for power to detect a .30 factor correlation, and from applying the MacCallum, Brown, and 

Sugawara (1996) test of not-close fit method for power to detect overall model fit.  For a given 

sample size 10,000 replications (Muthén & Muthén, 2002) were conducted.  The results were 

evaluated with the six criteria for adequate sample size.  Depending on whether all six criteria 

were met and how close the results were to meeting all six criteria, the sample size was adjusted, 

and 10,000 replications were conducted at the new sample size.  When the adequate sample size 

was found to be within an interval of 25 observations (e.g., if a sample size of 450 did not meet all 

criteria but 475 did), the larger value on the interval was recorded as the final value for the 

minimum required sample size for that condition.   

Results 

A total of 3,040,000 Monte Carlo solutions were analyzed to investigate the association 

between the number of indicators per factor and the minimum required sample size.  The 

minimum required sample size for the base conditions can be found in Table 1.  As the number of 

indicators per factor increased, most conditions showed a pattern in which sample sizes decreased 

at first, but then hit a turning point after which sample sizes increased again.  As illustrated in 
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Figure 1, this U-shaped pattern was evident among the levels of indicators per factor studied for 

six out of nine combinations of number of factors crossed with factor determinacy.  

--------------------------------------------------------- 

Insert Table 1 and Figure 1 about here 

--------------------------------------------------------- 

Thus, in addressing Research Question 1, there does appear to be an upper bound for the 

desirable number of indicators per factor.  However, the number of indicators per factor marking 

the turning point in the U-shaped curve differed based on the number of factors and factor 

determinacy.  For example, with six factors and .4 standardized loadings, nine indicators per 

factor is desirable because it results in the lowest minimum required sample size as shown in Table 

1.  However, with six factors and .6 standardized loadings, the desirable number of indicators per 

factor drops to six.  However, if we double the number of factors to 12 factors with .6 

standardized loadings, four is the desirable number of indicators per factor. 

With regard to Research Question 2, the criteria driving the minimum required sample size 

at each point, called the driving factors, may be considered.  As seen in Figure 1, prior to the 

turning point in the U-shaped curve, the driving factors tended to be adequate percentage of proper 

solutions, adequate power for the RMSEA test of close fit (MacCallum, Brown, & Sugawara, 

1996), and a reasonable level of average relative bias in the standard error of the parameter 

estimate (Muthén & Muthén, 2002).  Close to the turning point in the curve, adequate power to 

detect a medium size effect for the parameter of interest (Muthén & Muthén, 2002) tended to also 

be a driving factor.  Beyond the turning point in the U-shape, having a reasonable rejection rate 

for the model chi-square statistic (Nevitt & Hancock, 2004) was the driving factor for the 
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minimum required sample size.  The relative bias of the parameter of interest was not a driving 

factor in any of the conditions studied. 

The three combinations that did not exhibit a U-shaped pattern appear to be extreme cases 

due to the following main effects.  First, as factor determinacy increased, required sample sizes 

generally decreased.  This was an expected effect due to indicators with higher loadings on a 

factor providing information that is more reliable and thus requiring fewer cases for parameter 

estimation and statistical power.  Exceptions occurred in models with the largest number of 

observed variables where having a reasonable rejection rate for the model chi-square statistic 

(Nevitt & Hancock, 2004) was the driving factor for the minimum required sample size.  Second, 

as the number of factors increased, required minimum sample sizes generally increased.  This was 

also expected due to the model size effect.  Exceptions occurred with relatively weak loadings 

and few indicators per factor where having a reasonable level of average relative bias in the 

standard error of the parameter estimate (Muthén & Muthén, 2002) was the driving factor. 

Notice that the three combinations that did not exhibit the U-shape had extreme values on 

these factors.  In the case with three factors and .4 standardized loading (shown in the upper left 

panel of Figure 1), a small model with relatively weak indicators, extremely large sample sizes 

were required to have a reasonable level of average relative bias in the standard error of the 

parameter estimate.  Increasing the number of indicators per factor increased estimation stability 

up to the maximum of 12 indicators studied, consistent with a demonstration of the left hand side 

of the U-shape.  It is likely that somewhere beyond 12 indicators having a reasonable rejection 

rate for the model chi-square statistic would become the driving factor and an increase in required 

minimum sample size would be needed, consistent with the pattern observed for other 

combinations. 
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In cases with 6 or 12 factors and .8 standardized loading (shown in the lower middle and 

lower right panels of Figure 1), relatively large models with strong indicators, the opposite pattern 

was found.  Required minimum sample sizes were at a minimum at three indicators per factor, 

consistent with a demonstration of the right hand side of the U-shape.  In the case with six factors 

and .8 standardized loading, the driving factor for the minimum required sample size was adequate 

power for the RMSEA test of close fit (MacCallum, Brown, & Sugawara, 1996).  In the case with 

12 factors and .8 standardized loading, the driving factor for the minimum required sample size 

was having a reasonable rejection rate for the model chi-square statistic (Nevitt & Hancock, 2004).  

For both cases with 6 or 12 factors and .8 standardized loading, power and the need to control bias 

in the model chi-square statistic resulted in increases in the required minimum sample size for any 

number of indicators per factor beyond three.  This result suggests that for large models with 

strong indicators there is little benefit in having more than three indicators per factor. 

The minimum required sample size for each condition addressing Research Question 3 can 

be found in Table 2.  Results for comparable homogeneous loading base conditions are also 

included on the left hand side of Table 2 for ready comparison.  When the standardized loadings 

were all .5 or above (average loading .6), heterogeneity in the loadings made little difference in the 

minimum required sample size.  However, when the standardized loadings were all .5 or below 

(average loading .4), results became more sensitive to the exact configuration of loadings.  

Common to all of these conditions was the driving factor of the relative bias in the standard error of 

the estimate of the factor correlation.  In the larger models (six factors), the heterogeneous 

loadings reduced sample size, but in the smaller models (three factors) the heterogeneous loadings 

reduced only the most extreme sample size found in the base conditions.  It appears that a small 

model with weak loadings creates a situation where the relative bias in the standard error of the 
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estimate of the factor correlation will be very sensitive to the exact configuration of loadings.  

Regardless, the same general U-shaped pattern of sample size by indicators per factor was found in 

the heterogeneous loading conditions as in the base conditions. 

--------------------------------------------------------- 

Insert Table 2 about here 

--------------------------------------------------------- 

With regard to Research Question 4, the minimum required sample size for each base 

condition and the corresponding condition with an additional weak indicator can be found in Table 

3.  All base conditions were at a number of indicators per factor lower than the desirable number, 

except for the six factor all .6 loading condition with six indicators per factor.  In most cases the 

addition of the weak indicator reduced or maintained the minimum required sample size.  One of 

the few exceptions was the condition with three factors, four indicators per factor, and .4 

standardized loadings.  When a single weak indicator was added, the sample size increased.  

Consistent with results found with the heterogeneous indicators, the driving factor in this case was 

relative bias in the standard error of the estimate of the factor correlation.  This provides further 

evidence that a small model with relatively weak loadings creates a situation where the relative 

bias in the standard error of the estimate of the factor correlation will be very sensitive to the exact 

configuration of factor loadings.  When the base condition was at the desirable number of 

indicators, as in the six factor all .6 loading condition with six indicators per factor, the minimum 

required sample size increased as expected due to the model size effect requiring a larger sample 

size to maintain a reasonable rejection rate for the model chi-square statistic.   

--------------------------------------------------------- 

Insert Table 3 about here 
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--------------------------------------------------------- 

Discussion 

The results of this study showed a nonlinear association between the number of indicators 

per factor and the minimum required sample size necessary to avoid six important consequences 

for the analysis.  In most of the cases studied, an upper limit was reached for the number of 

indicators per factor associated with the smallest value for the minimum required sample size.  

Beyond this point larger minimum sample size was necessary to compensate for the increasing 

model size brought about by the additional indicators per factor.  It was demonstrated that this 

increase was largely due to bias in the model chi-square statistic.  However, other factors, namely 

adequate power for the parameter of interest and reasonable average relative bias in the standard 

error of the parameter estimate, also play an important role near the turning point where the 

maximum desirable number of indicators is reached.  While the exact value for the desirable 

number of indicators per factor depended on model size and factor determinacy, this study 

demonstrated the existence of a practical upper bound on the number of indicators per factor.   

Models with relatively weak loadings tended to have a larger desirable number of 

indicators per factor than models with stronger loadings based on considerations of sample size, 

solution propriety, bias, and power.  Models with few factors also tended to have a larger desirable 

number of indicators per factor than models with more factors.  Models with many factors and 

strong indicators reached a minimum required sample size with as few as three indicators per 

factor. 

Limitations 

This study had some important limitations that should be considered in interpreting the 

results.  First, some of the six criteria are not perfectly consistent. For example, it is known that 
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the bias in the Swain-corrected model chi-square is only approximately consistent, and not 

perfectly consistent.  Thus, minimum sample sizes meeting this criterion can only be 

approximately determined, but not perfectly determined. 

Continuing developments may alter the minimum sample sizes reported in this study. For 

example, some evidence suggests that other correction factors, such as Yuan, Tian, and 

Yanagihara’s (2015) empirically corrected chi-square, may be more effective than the Swain 

correction in reducing bias in the model chi-square statistic (Shi, Lee & Terry, 2018).  This may 

reduce minimum sample sizes and increase the number of indicators per factor beyond which 

diminishing returns are found.  However, improved corrections may not alter the basic 

implication of this study that more indicators per factor is not necessarily better.  Bias in the 

model chi-square with large numbers of observed variables has been shown to persist across 

corrected statistics in spite of large sample sizes (Yang, Jiang, & Yuan, 2018).   

As a single experiment with limited conditions, this study provided insight into the exact 

number of desirable indicators per factor for only a limited number of the wide variety of 

circumstances encountered in practice.  It should not be assumed that the results of this study 

would generalize to indicators with nonnormal distributions, such as ordinal items, or estimation 

methods where bias in the model chi-square is not a concern, such as Bayesian estimation.  It has 

recently been proposed that overall model power and bias in the chi-square statistic be investigated 

concurrently while accounting for data nonnormality (Yuan, Zhang & Zhao, 2017).  Future 

research should consider sample size implications for conditions in which the normality 

assumption is violated.  Further research into this phenomenon should yield insights into the 

desirable number of indicators per factor for a comprehensive range of conditions.     

Implications 
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Taken at face value, the notion that there is a “sweet spot” for the number of indicators per 

factor may seem to contradict the findings from Marsh, Hau, Balla, and Grayson (1998), from 

which many have concluded that more indicators per factor is better.  While Marsh et al. briefly 

acknowledged the growing bias in the model chi-square as the size of the model increased, the 

study did not control for this bias.  Jackson, Voth, and Frey (2013) later introduced controlling 

bias in the model chi-square as a criterion for minimum sample size.  The present study has built 

upon both Marsh, et al. and Jackson, et al. to demonstrate that more indicators per factor is not 

always better.  Increasing the number of indicators per factor beyond the desirable number 

requires that the researcher either seek a larger sample or accept demonstrated consequences for 

the analysis, such as bias in the model chi-square statistic.  Researchers should be cautioned 

against feeling a need to include as many indicators as possible, following the more-is-better 

philosophy that was derived from the prior literature.  The more-is-better approach to the number 

of indicators per factor combined with failure to consider bias in the model chi-square statistic can 

easily lead to situations in which sample size is inadequate and conclusions erroneous. 

The results of this study provide new insight into the question of whether there is a 

compensatory relation between sample size and number of indicators per factor.  That is, can 

having a large number of indicators per factor help compensate for small sample size and a large 

sample size help compensate for few indicators per factor, as claimed by Marsh, Hau, Balla, and 

Grayson (1998)?  Based on the nonlinear relation found in this study, the answer is that there can 

be such a compensatory relation, but only within certain parameters. With a model of three factors 

and relatively weak loadings, having as many as 12 indicators per factor can reduce the minimum 

required sample size to a reasonable level of approximately 200, while having an extraordinarily 

large sample size of over 1,000 will likely provide reasonable outcomes with as few as three 
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indicators per factor.  However, the results of this study suggest that for models with large 

numbers of factors and relatively strong loadings, a large sample size will instead be necessary to 

compensate for having many indicators per factor, not fewer indicators per factor. 

An interesting area for future research is the situation where factor determinacy differs 

across factors in a model.  It is common to have models in which some constructs generally have 

more reliable indicators than other constructs.  Related to this problem is the effect of differing 

numbers of indicators per factor across factors on the minimum required sample size for the entire 

model.  Addressing variation within a model requires a number of considerations that were 

clearly beyond the practical scope of the current study. 

In conclusion, the nonlinear association between the number of indicators per factor and 

the minimum required sample size found in this study demonstrates that more indicators per factor 

is not always better.  Once the upper limit on the number of indicators per factor is reached, 

increasing minimum sample size is necessary to compensate for the increasing model size brought 

about by the additional indicators per factor.  Thus, the results contradict the universal 

applicability of a compensatory relation between sample size and number of indicators per factor.    
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Table 1 

Minimum Required Sample Size by Number of Indicators per Factor with Homogeneous Loadings 

  Indicators per factor 

f Loading 3 4 5 6 7 8 9 10 11 12 

3 0.4 1050 500 550 375 300 275 250 275 225 200 

3 0.6 375 211 175 150 150 125 125 125 150 150 

3 0.8 375 211 145 110 100 100 100 125 150 150 

6 0.4 900 625 500 450 275 300 225 250 275 350 

6 0.6 225 175 175 150 175 200 225 275 325 350 

6 0.8 117 125 125 150 200 200 250 275 325 350 

12 0.4 675 475 500 350 350 500 600 600 750 850 

12 0.6 250 175 275 325 375 500 625 675 750 850 

12 0.8 125 200 300 350 375 525 625 675 750 875 

Note.  f = number of factors.  Loading is standardized.   

 



Indicators per Factor in CFA  24 

Table 2 

Minimum Required Sample Size for Homogeneous Versus Heterogeneous Loadings 

      Homogeneous   Heterogeneous 

f 
Average 

loading 

Indicators 

per Factor 
Loadings 

Minimum 

n 
Driving factor Loadings 

Minimum 

n 
Driving factor 

3 0.4 3 .4, .4, .4 1050 RBse   .3, .4, .5 850 RBse  

3 0.4 4 .4, .4, .4, .4 500 RBse   .3, .3, .5, .5 625 RBse  

3 0.4 5 .4, .4, .4, .4, .4 550 RBse   .3, .3, .4, .5, .5 550 RBse  

3 0.4 6 .4, .4, .4, .4, .4, .4 375 RBse   .3, .3, .3, .5, .5, .5 350 RBse  

3 0.6 3 .6, .6, .6 375 RMSEA  .5, .6, .7 375 RMSEA 

3 0.6 4 .6, .6, .6, .6 211 RMSEA  .5, .5, .7, .7 211 RMSEA 

3 0.6 5 .6, .6, .6, .6, .6 175 RBse & power  .5, .5, .6, .7, .7 150 power 

3 0.6 6 .6, .6, .6, .6, .6, .6 150 power  .5, .5, .5, .7, .7, .7 150 power 

6 0.4 3 .4, .4, .4 900 RBse   .3, .4, .5 675 RBse  

6 0.4 4 .4, .4, .4, .4 625 RBse   .3, .3, .5, .5 400 RBse & power 

6 0.4 5 .4, .4, .4, .4, .4 500 RBse   .3, .3, .4, .5, .5 400 RBse  

6 0.4 6 .4, .4, .4, .4, .4, .4 450 RBse   .3, .3, .3, .5, .5, .5 300 RBse  

6 0.6 3 .6, .6, .6 225 RBse & power  .5, .6, .7 200 RBse & power 

6 0.6 4 .6, .6, .6, .6 175 RBse & power  .5, .5, .7, .7 175 power 

6 0.6 5 .6, .6, .6, .6, .6 175 power  .5, .5, .6, .7, .7 175 RBse  

6 0.6 6 .6, .6, .6, .6, .6, .6 150 ChiSq & power   .5, .5, .5, .7, .7, .7 175 ChiSq 

Note.  f = number of factors.  Loadings are standardized.  RMSEA = adequate power for the RMSEA test of close fit; RBse = 

reasonable average relative bias in the standard error of the parameter estimate; power = adequate power for the parameter of interest; 

ChiSq = reasonable rejection rate for the model chi-square statistic. 
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Table 3 

Minimum Required Sample Size with the Addition of a Single Weak Indicator 

    Base condition   Add one weak indicator 

f Indicators per Factor Loadings Minimum n Driving factor   Loadings Minimum n Driving factor 

3 3 .4, .4, .4 1050 RBse   .4, .4, .4, .2 775 RBse  

3 4 .4, .4, .4, .4 500 RBse   .4, .4, .4, .4, .2 725 RBse  

3 5 .4, .4, .4, .4, .4 550 RBse   .4, .4, .4, .4, .4, .2 450 RBse  

3 6 .4, .4, .4, .4, .4, .4 375 RBse   .4, .4, .4, .4, .4, .4, .2 375 RBse  

3 3 .6, .6, .6 375 RMSEA  .6, .6, .6, .2 225 RBse & power 

3 4 .6, .6, .6, .6 211 RMSEA  .6, .6, .6, .6, .2 175 RBse & power 

3 5 .6, .6, .6, .6, .6 175 RBse & power  .6, .6, .6, .6, .6, .2 150 power 

3 6 .6, .6, .6, .6, .6, .6 150 power  .6, .6, .6, .6, .6, .6, .2 150 power 

6 3 .4, .4, .4 900 RBse   .4, .4, .4, .2 675 RBse  

6 4 .4, .4, .4, .4 625 RBse   .4, .4, .4, .4, .2 600 RBse  

6 5 .4, .4, .4, .4, .4 500 RBse   .4, .4, .4, .4, .4, .2 400 RBse  

6 6 .4, .4, .4, .4, .4, .4 450 RBse   .4, .4, .4, .4, .4, .4, .2 450 RBse  

6 3 .6, .6, .6 225 RBse & power  .6, .6, .6, .2 225 power 

6 4 .6, .6, .6, .6 175 RBse & power  .6, .6, .6, .6, .2 175 RBse & power 

6 5 .6, .6, .6, .6, .6 175 power  .6, .6, .6, .6, .6, .2 150 ChiSq & power 

6 6 .6, .6, .6, .6, .6, .6 150 ChiSq & power  .6, .6, .6, .6, .6, .6, .2 175 ChiSq 

 Note.  f = number of factors.  Loadings are standardized.  RMSEA = adequate power for the RMSEA test of close fit; RBse = 

reasonable average relative bias in the standard error of the parameter estimate; power = adequate power for the parameter of interest; 

ChiSq = reasonable rejection rate for the model chi-square statistic. 
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Figure 1.  Minimum required sample size by number of indicators per factor for nine 

confirmatory factor analysis models with varying numbers of factors and standardized loadings.  

 adequate percentage of proper solutions 
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 RBse – reasonable average relative bias in the standard error of the parameter estimate 
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