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Hand-Fabricated CNt/AgNps 
electrodes using Wax-on-
plastic platforms for electro-
Immunosensing Application
sensen Chen, Ahmad Z. Qamar, Narges Asefifeyzabadi, Madison Funneman, Motahareh taki, 
Lee elliot, Mary e. Kinsel, Gary R. Kinsel & Mohtashim H. shamsi  

Fabrication of inexpensive and flexible electronic and electrochemical sensors is in high demand 
for a wide range of biochemical and biomedical applications. We explore hand fabrication of CNt 
modified AgNPs electrodes using wax-on-plastic platforms and their application in electrochemical 
immunosensing. Wax patterns were printed on polyethylene terephthalate-based substrates to 
laydown templates for the electrodes. Hand painting was employed to fabricate a silver conductive 
layer using AgNps ink applied in the hydrophilic regions of the substrate surrounded by wax. CNt was 
drop cast on top of the working electrodes to improve their electrochemical signal. the device layers 
were characterized by scanning electron microscopy. the electrochemical performance of the hand 
fabricated AgNPs and CNT/AgNPs electrodes was tested using cyclic voltammetry, differential pulse 
voltammetry, and amperometry. the electrochemical response of CNt/AgNps electrodes was relatively 
faster, higher, and more selective than unmodified AgNPs sensing electrodes. Finally, the hand-painted 
CNt/AgNps electrodes were applied to detect carcinoembryonic antigen (CeA) by measuring the end-
product of immunoassay performed on magnetic particles. the detection limit for CeA was found to be 
0.46 ng/mL.

Chemical and bio(chemical) sensing on chips integrated with diverse detection tools are currently hot areas of 
research1. Reports are growing rapidly on the development of novel procedures to fabricate sensor chips and 
microfluidic platforms2–4. Therefore, integration of electronic/electrochemical sensors into flexible devices are in 
high demand mainly as geared toward point-of-care and wearable sensors5,6. For almost a decade, printing meth-
ods (i.e. screen, wax, and inkjet) have drawn the attention of the biosensing community as a means to develop 
inexpensive and simple fabrication procedures7–18. Screen-printing has been popular for electrochemical bio-
sensing because it produces reliable electrode surfaces owing to large metal particulates in the ink19,20. However, 
screen-printing requires delicate and thin screens that are tedious to manufacture. Inkjet printing of metallic ink 
has been widely used for high throughput, instantaneous patterning but it is sensitive to the rheological properties 
of ink and prone to frequent nozzle clogging21,22. These potential problems might be costly in resource deprived 
settings. Wax printing has emerged as a means to fabricate robust hydrophobic patterns for electrochemical 
devices on paper substrates23–25. Although paper substrates are inexpensive they lack tear toughness that might be 
required under certain environmental conditions.

Here, we introduce a simpler method of fabrication that combines wax patterning, hand-painting, and drop 
casting to fabricate sensitive electrochemical sensors on a plastic substrate. Plastic substrates are as inexpensive 
as paper-based substrates (i.e. $0.50 per letter-sized sheet), but they have high tear toughness which is critical for 
greater shelf-life. The fabrication strategy used here can be used to construct a variety of electrodes using various 
materials by avoiding the problems of inkjet printing and screen-printing while maintaining low-cost and robust 
response. In contrast to paper-based fabrication, wax patterns on plastic substrates do not require heating to 
create stable hydrophobic barriers between hydrophilic islands26. Such thermal stability can benefit fabrication 
procedures where high temperatures are involved in subsequent steps.
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The fabrication procedure used here involved modified polyethylene terephthalate as a substrate, a solid wax 
printer to create hydrophobic barriers and insulator layers, hand-painting of silver nanoparticles (AgNPs) to lay 
down a conductive layer, and drop casting of carbon nanotubes (CNT) to enhance the sensitivity of the sensing 
electrodes. The layers of the electrochemical sensor were characterized by scanning electron microscopy (SEM) 
to study the integrity of the sensor interfaces. The electrochemical performance of the AgNPs and CNT/AgNPs 
electrodes were analyzed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As a proof of 
concept, the CNT/AgNPs electrodes were applied for the amperometric detection of carcinoembryonic antigen 
(CEA), a cancer biomarker, by monitoring an electroactive product released from a magnetic-bead based immu-
noassay. The immunoassay sensitivity for the CEA was found to be comparable to that of ceramic-based and 
paper-based screen-printed devices25, but the protocol developed here offers a simpler way to FABRICATE robust 
sensors. Moreover, electrodes comprising CNT-AgNPS mixtures and nanocomposites in absence and presence 
of polymer additives have been previously reported for improved signaling27–29, the results of this work show that 
the improvement in electrochemical performance can be achieved by simple drop casting of CNT on the AgNPs 
working electrodes.

experimental
Reagents and equipment. Silver nanoparticles ink (30 wt%, ≤45 μΩ-cm, 28 cP) were purchased from 
Sigma-Aldrich (Milwaukee, WI). Multiwalled carbon nanotubes (2 g/L, 3 cP) were purchased from NanoLab 
(Waltham, MA). Carcinoembryonic antigen (CEA), biotinylated primary antibody (Ab1), secondary antibody 
conjugated with horseradish peroxidase (Ab2-HRP), and angiogenin were obtained from Fitzgerald Industries 
International (Acton, MA). Bovine serum albumin solution (30 ± 2%, BSA) and phosphate buffered saline buffer 
(pH 7.4, 10× concentrate) were purchased from Sigma-Aldrich (Milwaukee, WI). Magnetic beads coated with 
streptavidin (Dynabeads M-280, dia. 2.8 μm) were purchased from Fisher Scientific. The magnetic beads were 
then coated with primary antibody (Ab1) using the manufacturer described protocol. All solutions were made 
in PBS buffer (pH 7.4). The Novelle substrate (modified polyethylene terephthalate, PET) was obtained from 
Novacentrix (Austin, Texas). The wax printer (Xerox ColorQube 8580) was purchased from Xerox Inc. The CNT 
screen-printed electrodes were purchased from Dropsens (Metrohm, USA). Potentiostat, The CHI 660E, was 
purchased from CHI Instruments (Austin, Texas) and used for all electrochemical measurements by coupling 
a commercial adapter (Product of Dropsens) obtained from Metrohm (USA). All wax patterns were designed 
by using Inkscape (Version 0.91), which is a vector designing software and available free online. Fetal bovine 
serum (FBS) was kindly provided by Professor Keith Gagnon in the Department of Chemistry and Biochemistry, 
Southern Illinois University Carbondale. FBS was used after 1:1 dilution in PBS buffer and filtering through a 2 
micron filter.

Fabrication of electrodes. Sensor patterns were designed using Inkscape (Version 0.91) software. Each 
sensor chip comprised three-electrodes (working, counter, and reference) with wires and contact pads. The sensor 
patterns were printed on PET-based substrates (4 inch × 6 inch) using a Xerox ColorQube 8580 printer. There 
were 12 sensor chips patterned on a sheet and each sensor chip had dimensions of 2.5 cm in length and 1.0 cm 
in width. The wax patterns have 60 μm channels and 120 μm line resolutions on these plastic substrates which 
are stable up to 160 °C26. The working electrodes were printed in a circular shape having 1.0–3.0 mm diameter. 
The areas of the reference and counter electrodes were constant, i.e. 0.049 cm2 and 0.238 cm2, respectively. The 
electrode wires were 1.8 cm long and 0.15 cm wide. After the pattern fabrication, a conductive layer of silver nano-
particles was hand-painted in the hydrophilic islands using a paint brush. After air drying for 30 min, any residual 
silver nanoparticles on top of the hydrophobic wax layer were washed from the sensor with DI water. Next, the 
conductive patterns were sintered on a hot plate at 120 °C for 15 min. The conducting wires were then covered 
by printing a wax layer on top of the wires. Finally, a 4 µL aliquot of CNTs was dropped over the central working 
electrode and allowed to air dry for 1 h followed by sintering at 120 °C.

Characterization of electrodes. Laser desorption ionization mass spectrometry (LDI MS) was performed 
to analyze formulation of the AgNPs ink. A 0.5 μL aliquot of the ink was deposited onto a stainless-steel target and 
allowed to form a thin film after air drying. Then, the target was inserted into the ion source of a Bruker Daltonics 
MicroflexRL time-of-flight mass spectrometer with a nitrogen laser operating at 337 nm. The LDI mass spectrum 
was acquired in linear, positive ion mode. One-hundred laser shots were averaged to generate the mass spectrum. 
The mass spectrum was internally calibrated using the observed silver cluster ions. The surface structures and 
properties of the device interfaces were acquired using electron microscopy. SEM was performed using a Quanta 
450 FEG (FEI) microscope located in the Image Center facility at SIUC. Elemental composition of the surfaces 
was obtained using EDX mode in SEM.

electrochemical performance and optimization. The electrochemical performance of the 
hand-painted sensors was tested by performing the DPV and amperometry in the presence of electroactive 
H2O2-TMB (2 + 5 mM) mixture in PBS buffer (pH 7.4). The electroactive H2O2-TMB mixture has been used 
as a substrate in enzyme catalyzed immunoassays3. The factors that were studied include the effects of (a) CNT 
modification, (b) pH, and (c) fabrication batch. Amperometry was used to optimize parameters and to detect the 
immunoassay product. The following parameters were optimized: (a) catalytic reaction time, (b) sensitivity of the 
sensor, and (c) size of the working electrodes. These amperometric tests were performed for the catalytic reaction 
between Ab2-HRP (1 µg/mL) and H2O2-TMB (2 + 5 mM) at 8 mV for 50 s.

CeA Immunoassay and Amperometric Detection. An ELISA type immunoassay was performed to 
detect CEA using supramagnetic particles. The immunoassay steps are as followed: (1) a 50 µL aliquot of the 
Ab1-beads suspension was washed with 1 mL of 0.1 M PBS followed by the separation of Ab1-beads from the 
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supernatant by placing a magnet underneath, (2) a 1 mL aliquot of CEA biomarker was added into the Ab1-beads 
and allowed to incubate for 1 h at room temperature on a shaker followed by five washing steps, (3) after the 
separation of ‘CEA/Ab1-beads’, 1 µg/mL of Ab2-HRP conjugate was added and incubated for 2 h while shaking, as 
previously reported30, followed by five washing steps and separation of the immunoassay complex, i.e. Ab2-HRP/
CEA/Ab1-beads, (4) the enzyme catalyzed reaction was carried out by adding 1 mL of the H2O2-TMB substrate in 
the immunoassay complex and allowed to incubate for 5 min at 37 °C, (5) finally, the soluble electroactive product 
‘TMB DI’ was separated from the immunoassay complex and placed on to a CNT modified hand-painted sensor 
to record the amperometric current.

As a negative control, PBS buffer (1 mL) was used in place of the antigen CEA. Angiogenin (1 µg/mL) was used 
as a positive control. Angiogenin is a protein that expresses in human colorectal cancer cells and can indicate the 
degree of tumor progression31. The immunoassay performance was also studied in the presence of a complex 
matrix made of fetal bovine serum (FBS). To compare the performance of the hand-fabricated CNT/AgNPs 
sensors with commercial screen-printed sensors, the amperometric measurements were made for CEA immuno-
assay on CNT based commercial screen-printed electrodes.

Results and Discussion
In this work, we demonstrate the development of wax-on-plastic electrochemical sensors fabricated by hand 
painting of electrodes on wax patterned flexible plastic. Figure 1 describes the fabrication of hand-painted sensors 
on wax-on-plastic platforms and illustrates the amperometric detection of CEA using the hand-painted sensors. 
The device fabrication comprises six key steps: (1) patterning of wax on the plastic substrate using a wax printer to 
lay down a template of electrodes, (2) hand painting of a silver nanoparticles (AgNPs) layer into the hydrophilic 
regions of the plastic substrate, (3) sintering of the AgNPs layer to remove solvent, (4) insulating electrode wires 
by a second wax printing step, (5) drop casting of carbon nanotubes (CNT) on top of the AgNPs working elec-
trodes, and (6) sintering of the CNT layer at 120 °C. Although, composites made of AgNPs and CNT are known 
for patterning conductive films and electrodes32,33, this is the first example of hand-based fabrication of AgNPs 
followed by drop-casting of the CNT using a wax-on-plastic platform. Moreover, the wax-on-plastic platform is 
unique because the hydrophobic wax layer on the PET substrate stays stable even above  the melting temperature 
of wax, as reported previously26.

The sintering procedures at 120 °C for 20 min in steps 3 & 6 of the fabrication procedure removed solvent and 
volatile additives from the AgNPs and CNT leading to coalescence of the nanoparticles. The sintering step was 
critical to optimize the conductivity of the AgNPs and CNT as prescribed in the product information. The fidelity 
of the device layers and their thicknesses before and after the sintering procedure was characterized by SEM. 
Figure 2(a) shows that the wax layer before sintering was found to be 20 ± 5 μm thick and well-adhered to 140 μm 
thick PET substrate. The effect of heating on the wax layer (Fig. 2(b)) was consistent with our previously reported 
results26. Specifically, while the wax layer appeared stable at this temperature the thickness of the layer decreased 
by up to 10 μm and may have increased in width in the xy plane a similar amount. The variation in the pattern in 
the xy plane at this length scale is not a major concern in our fabrication due to significantly larger dimensions 
in the millimeter scale. Figure 2(c) shows the thickness of the hand-painted silver layer before the sintering step. 
The Ag ink layer was analyzed in the electrode and wire regions of at least six samples where the thickness before 
sintering was measured to be 3.10 ± 0.24 µm. As expected, sintering removed the solvent and capping agents that 
allowed the AgNPs to coalesce to form a layer with average thickness of 0.86 ± 0.14 µm, Fig. 2(d). Drop casting 
of 4 µL of the CNT produces a 10.26 ± 2.16 µm thick layer before sintering marked on top of the silver layer in 
Fig. 2(e). Sintering adhered the CNT layer on the AgNPs with an average thickness of 0.46 ± 0.15 µm (Fig. 2(f)). 
The fidelity of the hand-fabricated electrodes for consistent electrochemical response is an obvious concern and 
the issue was addressed by testing the electrochemical response of various batches of the electrodes.

The amperometric test was performed to study the effect of manual painting on the electrochemical perfor-
mance of the CNT/AgNPs electrodes using an electroactive mixture of H2O2-TMB. Figure S1 in the supporting 
information shows the amperometric current responses of four batches. The statistical test for four batches involv-
ing single factor ANOVA confirmed that the difference between the batches is not significant.

The electrochemical performance of the hand-painted AgNPs and CNT/AgNPs electrodes were first tested 
for fast electron kinetics by monitoring the CV response of Fe(CN)6

3−/4− (Fig. S2 in supplementary information). 
Theoretically, fast electron transfer kinetics, also known as a reversible process or Nernstian behavior, should show 
a peak separation of ~59 mV between the oxidation and reduction peaks per electron transfer. The AgNPs elec-
trodes were found to be extremely inactive, which is evident from the peak separation of ~500 mV (see Fig. S2a). 
However, CNT modification increased the current response and improved the electron kinetics by reducing the 
peak separation to half, i.e. ~240 mV (see Fig. S2b). In a control experiment, CNT was drop cast on a cleaned 
indium tin oxide (ITO) surface and tested for reversible response of Fe(CN)6

3−/4−. Figure S3 (supplementary 
information) shows the CV scans of CNT/ITO electrodes measured for scan rates 5 to 50 mV/s, which verified 
the reversible electron kinetics with a peak separation of ~55 mV per electron transfer along with a linear current 
increase with the square root of the scan rates and without significant change in peak positions–both behaviors 
are the signs of fast electron kinetics. It was hypothesized that the slow kinetics of the hand-painted AgNPs and 
CNT/AgNPs electrodes was due to the presence of additives in the AgNPs ink. Therefore, the AgNPs ink was ana-
lyzed by LDI MS to identify the additives. The LDI MS spectrum (Fig. S4 in the supporting information) showed 
a pattern of polymer-like ion signals in the mass spectrum suggesting the presence of a silver attached polymer 
having a repeat unit of 117.6 Da. The polymer may have been added as a binder or a capping agent. However, this 
information was not found in the manufacturer’s product description. According to the product information, 
the AgNPs were dispersed in ethylene glycol, however no ethylene glycol ion signal was observed in the mass 
spectrum. From these experiments, it was concluded that a significant polymer content is present in the AgNPs 
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ink, which may be the main hindrance in achieving fast electrode kinetics in the hand-fabricated CNT/AgNPs 
electrodes.

The electrochemical performance of the AgNPs and CNT/AgNPs electrodes were characterized by 
DPV, which is a sensitive electrochemical technique that results in a current peak at the formal potential of a 
redox couple34. Figure 3(a) shows the DPV response of the H2O2-TMB recorded on AgNPs and CNT/AgNPs 
hand-fabricated electrodes. For the AgNPs electrode, a broad peak was observed between 30–75 mV with a max-
imum peak current of 0.8 mA. In contrast, the CNT addition to the AgNPs enhances the current response by 
almost a factor of four leading to a maximum peak current of 3 mA. It is noteworthy that the electrochemical 
signal amplification by CNT addition has been previously attributed to a higher surface area offered by the multi-
walled carbon nanotubes35. Moreover, a shoulder on the right side of the peak was also observed, which indicates 
that the CNT/AgNPs electrode can be somewhat selective towards the TMB and H2O2 oxidation processes due to 
relatively active surface of the CNT as confirmed by the cyclic voltametric measurements (Fig. S2).

Further experiments to optimize the immunoassay parameters were performed using CNT/AgNPs electrodes. 
Figure 3(b) shows the effect of pH on the current response of CNT/AgNPs electrodes using the DPV technique. A 
trend of increasing peak current from pH 5–9 and a shift in potential is observed, where the highest peak current 

Figure 1. (a) Fabrication steps and layering of CNT/AgNPs hand-painted electrochemical sensors. Fabrication 
steps 1–6 were performed in sequence. In step 4, a wax layer was printed selectively to insulate wires, while in 
steps 5 and 6, CNT was drop cast on the working electrode followed by sintering. (b) Image shows the flexibility 
of the 12 hand-painted CNT/AgNPs electrochemical sensors on a wax-on-plastic platform. (c) Image of a hand-
painted CNT/AgNPs electrochemical sensor. (d) Illustration describes the sandwich type immunoassay. Ab1-
beads capture carcinoembryonic antigen (CEA) recognized by the HRP conjugated secondary antibody (Ab2-
HRP). The addition of H2O2-TMB substrate produces the electroactive product, TMB DI, which is separated 
from the Ab2-HRP/CEA/Ab1-beads using a permanent magnet and transferred to the hand-painted CNT/
AgNPs sensor followed by amperometric current detection.
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of 3.5 mA was observed at a 40 mV potential for pH 9.0. Such behavior is generally attributed to systems that 
involve consumption and production of H+, which affects the overpotentials and current intensities36.

In an enzyme catalyzed immunoassay, signal is typically generated by a chemical species produced as a result 
of a reaction between an enzyme and a substrate. The immunoassay performed here involves the reaction between 
Ab2-HRP (an enzyme conjugated secondary antibody) and H2O2-TMB (a substrate). The reaction time was opti-
mized by monitoring the amperometric current of the product using the CNT/AgNPs electrodes. Figure 4(a) 
shows the optimization of reaction time as measured by amperometry at 8 mV (pH 7.4) over 2.5 mm diameter 
working electrodes. Figure 4(b) verifies that the current response increases with the increase in time of reaction 
and levels off after 5 min of incubation and this incubation time was used in further studies.

Figure 5 shows the sensitivity of the CNT/AgNPs hand-fabricated electrodes toward the concentration of 
Ab2-HRP. The amperometric curves were obtained for the catalytic reaction between TMB-H2O2 substrate and 
0.05–1.00 μg/mL Ab2-HRP. The amperometric current was found to be linearly related to the concentration and 
the calibration sensitivity increased with the area of the working electrodes (see Fig. S5 in supporting informa-
tion). The dynamic range covers two orders of magnitude and the increase in the slope of the calibration curves 
with the area of the working electrodes is consistent with the theoretical model of the Randle-Sevcik expression, 
i.e. current is directly proportional to the area of working electrode36. For the electro-immunosensing application, 
the 1.0 mm diameter working electrode was selected because of the lowest background current (noise).

Figure 2. SEM characterizations shows the cross-section views of the device layers before and after sintering at 
120 °C for 20 min. The layers are marked by solid white and black lines. Printed wax layer on the multilayered 
PET substrate before heating (a) and after heating (b). Hand-painted layer of AgNPs ink before sintering (c) and 
after sintering (d). Drop-cast layer of CNT on top of the hand-painted AgNPs layer before sintering (e) and after 
sintering (f).
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Figure 3. (a) DPV curves for H2O2-TMB (2 + 5 mM) mixture in PBS buffer (pH 7.4) using hand-painted 
AgNPs electrodes (◦) and CNT/AgNPs electrodes (∆). (b) DPV curves for H2O2-TMB using CNT/AgNPs 
electrodes in PBS buffer at pH 5.0 (◦), pH 7.4 (∆), and pH 9.0 (□). Diameter of the working electrode is 2.5 mm.

Figure 4. (a) Representative amperometric curves for the reaction between 1 μg/mL Ab2-HRP and H2O2-TMB 
(2 mM + 5 mM) substrate at different incubation periods using CNT/AgNPs electrodes. (b) Plot of current 
versus incubation time obtained from the amperometric curves. Error bars represent standard deviation for 
n = 3. Amperometry was performed at pH 7.4, diameter of working electrodes 2.5 mm, and applied potential 
8 mV.

Figure 5. Representative amperometric curves for the reaction between Ab2-HRP and H2O2-TMB at different 
concentrations of Ab2-HRP using 2.5 mm diameter CNT/AgNPs electrodes.
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As a final proof of concept, the CNT/AgNPs hand-fabricated electrodes were applied to detect the ampero-
metric current from the carcinoembryonic antigen (source: purified human liver carcinoma >80% purity) immu-
noassay. As illustrated in Fig. 1, the sandwich type immunoassay was performed on magnetic particle surfaces 
modified to capture CEA followed by amperometric detection. Specifically, the Ab1-modified-bead captures the 
CEA antigen, which is then recognized by the Ab2-HRP (enzyme-secondary antibody conjugate). The subsequent 
addition of H2O2-TMB substrate initiates an enzymatic reaction that produces electroactive TMB DI for the 
amperometric detection. The electroactive product TMB DI is separated from the bead suspension by placing 
a magnet under the container and a 5 μL drop of the product is placed on a sensing electrode for amperometric 
measurement. Figure 6(a) shows the amperometric response of the immunoassay as a function of CEA concen-
tration. Figure 6(b) shows a calibration curve for a CEA concentration range of 0.025–1.00 μg/mL. The inset in 
Fig. 6(b) shows the current values for the concentrations 25–100 ng/mL along with the straight-line equation. The 
detection limit (LOD) for CEA was calculated using equation LOD = 3 × (standard deviation of blank) divided 
by the slope of the calibration curve37.

As a negative control, 1 mL of a PBS buffer was used that yields a blank current 2.1 ± 0.06 μA. Thus, the cal-
culated LOD for CEA using the CNT/AgNPs hand-painted electrodes was 0.46 ng/mL. This LOD for CEA using 
the CNT/AgNPS is 10× lower than the clinical cut-off value. In healthy individuals, the normal CEA level is in 
the range of 3–5 ng/mL in blood38. Since commercial screen printed electrodes are widely used for electrochem-
ical immunoassays, it is appropriate to question the utility of the hand-fabricated electrodes given the presence 
of these commercial electrodes. Therefore, the end product of the CEA immunoassay was analyzed in parallel 
workflow on the commercial CNT based screen-printed electrodes. Figure S6 shows the amperometric response 
and calibration curve obtained from the commercial electrodes (Dropsens, 4.0 mm dia.), which lead to a LOD 
of 0.38 ng/mL for CEA, comparable to the hand-fabricated CNT/AgNPs electrodes. Table 1 compares the results 
with the recent report on the CEA immunoassay using a paper-based device produced by screen-printing of gold 
nanoparticles (AuNPs) electrodes. The LOD for the CEA was reported to be 0.33 ng/mL on the paper substrate25.

The specificity of the immunoassay system was also tested using a non-specific protein, angiogenin, which 
signals cancer progression. Figure 7 shows the current response of the angiogenin (positive control), mixture 
of angiogenin and CEA, and CEA antigen in PBS buffer. Statistically, the effect of the non-specific adsorption of 
angiogenin was found to be insignificant. The effect of a complex matrix was also tested using fetal bovine serum 
(FBA) in the antigen medium. This matrix apparently interferes with the immunoassay leading to loss in current 
response. This behavior may be due to the loss in electroactive product formation, which eventually lowers the 
current response. It is important to mention that FBS was present in the first step of the immunoassay, (i.e. anti-
gen binding event), while it was washed away in the subsequent steps. This insight suggests that the lower current 
response in the complex matrix is not because of the inefficiency of the CNT/AgNPs electrodes, but rather due 
to the nonspecific adsorption of matrix material on the magnetic particles surfaces, which can be rectified using 
improved washing procedures for the assay.

Figure 6. (a) Amperometric curves for the detection of CEA using 1.0 mm diameter CNT/AgNPs electrodes. 
Negative control was 1 mL of PBS buffer. (b) Calibration curve for CEA for the CEA concentration range 0.025–
1.00 μg/mL. Inset shows the current for 25–100 ng/mL with straight-line equation.

Electrode 
material Substrate Fabrication Electrode dia. LOD Source

AuNPs Paper Screen-printed Not given 0.33 ng/mL ref.25

CNT Ceramic Screen-printed 4.0 mm 0.38 ng/mL Commercial

CNT/AgNPs Plastic Hand-painted 1.0 mm 0.46 ng/mL This work

Table 1. Comparison of the performances of various electrodes for detecting CEA.
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Conclusion
In this report, a simplified fabrication of an electrochemical sensor involving wax patterning on plastic, hand 
painting of AgNPs to lay down a conducting layer, and simple drop casting of CNT to improve electrochemical 
performance of the sensor is described. The device layers were found to be well adhered to each other and the 
wax layer can sustain sintering up to a temperature of 120 °C. The fabrication procedure was found to be reliable 
from batch to batch as tested by amperometric current response. In addition, the electrochemical response of 
AgNPs electrodes was enhanced by simple drop casting of CNT. As a result of the modification, the CV response 
was improved by decreasing the peak separation from 500 mV to 240 mV. The DPV response was found to be 
enhanced by a factor of 4 in current intensity. Amperometrically, the CNT/AgNPs sensors responded line-
arly to analyte concentrations, area of working electrode, and catalytic product of the CEA immunoassay. The 
limit of detection for CEA was ca. 0.46 ng/mL, which is 10x lower than the clinical cutoff value and compara-
ble to the performance of expensive commercial screen-printed electrodes and recently reported paper-based 
screen-printed sensors. Considering the advantages of the fabrication approach in this work, the CNT/AgNPs 
electrodes on wax-on-plastic platforms have real potential for immediate applications, such as straightforward 
electrochemical assays in resource-limited settings.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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